number - an arithmetical value, expressed by a word, symbol, or figure, representing a particular quantity and used in counting and making calculations and for showing order in a series or for identification. A quantity or amount.
$100 fee plus $30 per month. Write an expression that describes the cost of a gym membership after m$100 fee plus $30 per month. Write an expression that describes the cost of a gym membership after m months.
Set up the cost function C(m) where m is the number of months you rent:
C(m) = Monthly membership fee * m + initial fee
[B]C(m) = 30m + 100[/B]
$3.75 in quarters and nickles in her car. The number of nickles is fifteen more than the number of q$3.75 in quarters and nickels in her car. The number of nickels is fifteen more than the number of quarters. How many of each type of coin does she have?
Let the number of nickels be n, and the number of quarters be q. We know nickels are 0.05, and quarters are 0.25. We're given:
[LIST=1]
[*]n = q + 15
[*]0.05n + 0.25q = 3.75
[/LIST]
Substituting (1) into (2), we get:
0.05(q + 15) + 0.25q = 3.75
0.05q + 0.75 + 0.25q = 3.75
Combine like term:
0.3q + 0.75 = 3.75
[URL='https://www.mathcelebrity.com/1unk.php?num=0.3q%2B0.75%3D3.75&pl=Solve']Typing this equation into our calculator[/URL], we get:
[B]q = 10[/B]
Substituting q = 10 into Equation (1), we get:
n = 10 + 15
[B]n = 25[/B]
$300 for 13 years at 8% compounded semiannually. P=principle = original funds, r=rate, in percent, w$300 for 13 years at 8% compounded semiannually. P=principle = original funds, r=rate, in percent, written as a decimal (1%=.01, 2%=.02,etc) , n=number of times per year, t= number of years
So we have:
[LIST]
[*]$300 principal
[*]13 * 2 = 26 periods for n
[*]Rate r for a semiannual compound is 8%/2 = 4% per 6 month period
[/LIST]
Using our [URL='https://www.mathcelebrity.com/simpint.php?av=&p=300&int=4&t=26&pl=Compound+Interest']compound interest with balance calculator[/URL], we get:
[B]$831.74[/B]
$45 and you add $2.25 each day$45 and you add $2.25 each day
Let d be the number of days. Our Cost function C(d) is:
[B]C(d) = 2.25d + 45[/B]
$6500 is 7/10 of a number. What is the numberThe number is $9,285 from our [URL='http://www.mathcelebrity.com/perc.php?num=+5&den=+8&num1=6500&pct1=70&pcheck=2&pct2=70&den1=80&idpct1=10&hltype=1&idpct2=90&pct=82&decimal=+65.236&astart=12&aend=20&wp1=20&wp2=30&pof1=40&pof2=20&pl=Calculate']percentage-decimal-fraction calculator[/URL].
π DigitsFree π Digits Calculator - Calculates PI (π) to a set number of decimal places using the Gauss-Legendre Algorithm.
(98)^2 no calculator mental mathRound 98 to the nearest 10. This is 100. Call this a.
Calculate b which is a - our original number:
b = 100 - 98
b = 2
We can use this formula:
(a - b)^2 = a(a- 2b) + b^2
Given a = 100 and b = 2, we have:
(100 - 2)^2 = 100(100 - 2(2)) + 2^2
98^2 = 100(96) + 4
98^2 = 9600 + 4
98^2 = [B]9,604[/B]
[MEDIA=youtube]8lQdxVVo-Ps[/MEDIA]
-11, -9, -7, -5, -3 What is the next number? What is the 200th term in this sequence?-11, -9, -7, -5, -3 What is the next number? What is the 200th term in this sequence?
We see that Term 1 is -11, Term 2 is -9, so we do a point slope equation of (1,-11)(2,-9) to get the [URL='https://www.mathcelebrity.com/search.php?q=%281%2C-11%29%282%2C-9%29']nth term of the formula[/URL]
f(n) = 2n - 13
The next number is the 6th term:
f(6) = 2(6) - 13
f(6) = 12 - 13
f(6) = [B]-1
[/B]
The 200th term is:
f(200) = 2(200) - 13
f(200) = 400 - 13
f(200) = [B]387[/B]
-28 is the solution to the sum of a number p and 21-28 is the solution to the sum of a number p and 21
The sum of a number p and 21:
p + 21
The phrase [I]is the solution to[/I] means an equation, so we set p + 21 equal to -28:
[B]p + 21 = -28
[/B]
If the problem asks you to solve for p, then we [URL='https://www.mathcelebrity.com/1unk.php?num=p%2B21%3D-28&pl=Solve']type this into our search engine[/URL] and we get:
p = [B]-49[/B]
-65 times the difference between a number and 79 is equal to the number plus 98-65 times the difference between a number and 79 is equal to the number plus 98
The phrase [I]a number[/I] means an arbitrary variable. Let's call it x.
The first expression, [I]the difference between a number and 79[/I] means we subtract 79 from our arbitrary variable of x:
x - 79
Next, -65 times the difference between a number and 79 means we multiply our result above by -65:
-65(x - 79)
The phrase [I]the number[/I] refers to the arbitrary variable x earlier. The number plus 98 means we add 98 to x:
x + 98
Now, let's bring it all together. The phrase [I]is equal to[/I] means an equation. So we set -65(x - 79) equal to x + [B]98:
-65(x - 79) = x + 98[/B] <-- This is our algebraic expression
If the problem asks you to take it a step further and solve for x, then you [URL='https://www.mathcelebrity.com/1unk.php?num=-65%28x-79%29%3Dx%2B98&pl=Solve']type this equation into our search engine[/URL], and you get:
x = [B]76.31818[/B]
-n = n-n = n
Add n to each side:
-n + n = n + n
Cancel the n's on the left side:
0 = 2n
Only number that solves this is [B]n = 0[/B]
0,7,14,21 What is the next number? What is the 1000th term?0,7,14,21
What is the next number?
What is the 1000th term?
We're adding 7 to the last term, so we get a next term of:
21 + 7 = [B]28
[/B]
For our nth term, we notice a pattern for the nth term of:
7n - 7
[LIST]
[*]n = 1 --> 7(1) - 7 = 0
[*]n = 2 --> 7(2) - 7 = 7
[*]n = 3 --> 7(3) - 7 = 14
[/LIST]
For n = 1000, we have:
7(1000) - 7 = 7000 - 7 = [B]6993[/B]
1 box is used every 1.5 days. How many are used in 242 days?1 box is used every 1.5 days. How many are used in 242 days?
Set up a proportion of boxes to days where b is the number of boxes used for 242 days:
1/1.5 = b/242
To solve this proportion for b, we [URL='https://www.mathcelebrity.com/prop.php?num1=1&num2=b&den1=1.5&den2=242&propsign=%3D&pl=Calculate+missing+proportion+value']type it in our search engine[/URL] and we get:
b = [B]161.3333[/B]
1 Die RollFree 1 Die Roll Calculator - Calculates the probability for the following events in the roll of one fair dice (1 dice roll calculator or 1 die roll calculator):
* Probability of any total from (1-6)
* Probability of the total being less than, less than or equal to, greater than, or greater than or equal to (1-6)
* The total being even
* The total being odd
* The total being a prime number
* The total being a non-prime number
* Rolling a list of numbers i.e. (2,5,6)
* Simulate (n) Monte Carlo die simulations.
1 die calculator
1, 1/2, 1/3, 1/4, 1/5 What is the next number? What is the 89th term of the sequence?1, 1/2, 1/3, 1/4, 1/5
What is the next number?
What is the 89th term of the sequence?
Formula for nth term is 1/n
Next number is n = 5, so we have [B]1/5[/B]
With n = 89, we have [B]1/89[/B]
1, 1/2, 1/4, 1/8, 1/16 The next number in the sequence is 1/32. What is the function machine you wou1, 1/2, 1/4, 1/8, 1/16
The next number in the sequence is 1/32. What is the function machine you would use to find the nth term of this sequence?
Hint: look at the denominators
We notice that
1/2^0 = 1/1 = 1
1/2^1 = 1/2
1/2^2 = 1/4
1/2^3 = 1/8
1/2^4 = 1/32
So we write our explicit formula for term n:
f(n) = [B]1/2^(n - 1)[/B]
1, 4, 9, 16, 25 What is the next number? What is the 50th term?1, 4, 9, 16, 25
What is the next number?
What is the 50th term?
We see that 1^2 = 1, 2^2 = 4, 3^2 = 9, 4^2 = 16, 5^2 = 25
We build a formula for the nth term:
f(n) = n^2
The next number means n = 6th term:
f(6) = 6^2 = [B]36
[/B]
The 50th term means n = 50:
f(50) = 50^2 = [B]2500[/B]
1, 9, 25, 49, .......... What is next1, 9, 25, 49, .......... What is next
1^2 = 1
3^2 = 9
5^2 = 25
7^2 = 49
So this pattern takes odd numbers and squares them. Our next odd number is 9:
9^2 = [B]81[/B]
1/2 of a number decreased by twice a number1/2 of a number decreased by twice a number
[LIST=1]
[*]The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
[*]1/2 of a number: x/2
[*]Twice a number means we multiply x by 2: 2x
[*]The phrase [I]decreased by[/I] means we subtract
[/LIST]
[B]x/2 - 2x[/B]
1/2, 3, 5&1/2, 8......203 What term is the number 203?1/2, 3, 5&1/2, 8......203
What term is the number 203?
We see the following pattern:
1/2 = 2.5*1 - 2
3 = 2.5*2 - 2
5&1/2 = 2.5*3 - 2
8 = 2.5*4 - 2
We build our function
f(n) = 2.5n - 2
Set 2.5n - 2 = 203
Using our [URL='https://www.mathcelebrity.com/1unk.php?num=2.5n-2%3D203&pl=Solve']equation solver[/URL], we get:
n = [B]82[/B]
1/3 a number increased by 10 times by that same number1/3 a number increased by 10 times by that same number
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
1/3 a number
1/3 * x = x/3
That same number means the same arbitrary variable as above:
x
10 times that same number:
10x
The phrase [I]increased by[/I] means we add:
[B]x/3 + 10x
[MEDIA=youtube]29TGt3i28jw[/MEDIA][/B]
1/3 of students at a school are boys. If there are 600 students at the school, how many are girls?1/3 of students at a school are boys. If there are 600 students at the school, how many are girls?
If 1/3 are boys, then the number of boys is:
600 * 1/3
600/3
We [URL='https://www.mathcelebrity.com/fraction.php?frac1=600%2F3&frac2=3%2F8&pl=Simplify']type this fraction into our search engine to simplify[/URL], and we get:
200
Now we need to find how many girls are at the school:
Girls = Total Students - Boys
Girls = 600 - 200
Girls = [B]400[/B]
1/3 of the sum of a number and 2 plus 5 is -201/3 of the sum of a number and 2 plus 5 is -20
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
the sum of a number and 2:
x + 2
1/3 of the sum of a number and 2
1/3(x + 2)
1/3 of the sum of a number and 2 plus 5
1/3(x + 2) + 5
The phrase [I]is[/I] means equal to, so we set 1/3(x + 2) + 5 equal to -20:
[B]1/3(x + 2) + 5 = -20[/B]
1/4 of the difference of 6 and a number is 2001/4 of the difference of 6 and a number is 200
Take this [B]algebraic expression[/B] in 4 parts:
[LIST=1]
[*]The phrase [I]a number[/I] means an arbitrary variable, let's call it x
[*]The difference of 6 and a number means we subtract x from 6: 6 - x
[*]1/4 of the difference means we divide 6 - x by 4: (6 - x)/4
[*]Finally, the phrase [I]is[/I] means an equation, so we set (6 - x)/4 equal to 200
[/LIST]
[B](6 - x)/4 = 200[/B]
1/5 of the sum of the number u and 21/5 of the sum of the number u and 2
The sum of the number u and 2 means we add 2 to u:
u + 2
1/5 of the sum:
[B](u + 2)/5[/B]
10 more than a number z, divided by k10 more than a number z, divided by k
The phrase [I]a number[/I] means an arbitrary variable, lets call it x.
10 more than a number means we add 10 to x:
x + 10
We divide this quantity by k:
[B](x + 10)/k[/B]
10 times a number is 42010 times a number is 420
A number denotes an arbitrary variable, let's call it x.
10 times a number:
10x
The phrase is means equal to, so we set 10x equal to 420
[B]10x = 420 <-- This is our algebraic expression
[/B]
If you want to solve for x, use our [URL='http://www.mathcelebrity.com/1unk.php?num=10x%3D420&pl=Solve']equation calculator[/URL]
We get x = 42
10 times the square of a number w divided by 1210 times the square of a number w divided by 12
The square of a number w
w^2
10 times this
10w^2
Divided by 12
[B]10w^2/12[/B]
100, 75, 50, 25, 0, -25 What is the next number? What is the 100th term?100, 75, 50, 25, 0, -25 What is the next number? What is the 100th term?
Using point slope, we get (1, 100)(2, 75)
Our [URL='https://www.mathcelebrity.com/search.php?q=%281%2C+100%29%282%2C+75%29&x=0&y=0']series function becomes[/URL]
f(n) = -25n + 125
The next term is the 7th term:
f(7) = -25(7) + 125
f(7) = -175 + 125
f(7) = [B]-50
[/B]
The 100th term is found by n = 100:
f(100) = -25(100) + 125
f(100) = -2500 + 125
f(100) = [B]-2375[/B]
1089 Number TrickFree 1089 Number Trick Calculator - Demonstrates the 1089 number trick for a 3 digit number that you enter
11 to the power of 6 multiply 11 to the power of 311 to the power of 6 multiply 11 to the power of 3
Take this in parts.
[U]Step 1: 11 to the power of 6 means we raise 11 to the 6th power using exponents:[/U]
11^6
[U]Step 2: 11 to the power of 3 means we raise 11 to the 3rd power using exponents:[/U]
11^3
[U]Step 3: Multiply each term together:[/U]
11^6 * 11^3
[U]Step 4: Simplify[/U]
Because we have 2 numbers that are the same, in this case, 11, we can add the exponents together when multiplying:
11^(6 + 3)
[B]11^9
[MEDIA=youtube]gCxVq7LqyHk[/MEDIA][/B]
12 is multiplied by some number, that product is reduced by 9, and the total is equal to 3712 is multiplied by some number, that product is reduced by 9, and the total is equal to 37
The phrase [I]some number[/I] means an arbitrary variable, let's call it x.
12 multiplied by this number:
12x
The product of 12x is reduced by 9
12x - 9
The phrase [I]the total is equal to[/I] means an equation, so we set 12x - 9 equal to 37:
[B]12x - 9 = 37[/B]
12 plus 6 times a number is 9 times the number12 plus 6 times a number is 9 times the number
The phrase [I]a number [/I]means an arbitrary variable. Let's call it x.
6 times a number is written as:
6x
12 plus 6 times the number means we add 6x to 12:
12 + 6x
9 times a number is written as:
9x
The phrase [I]is[/I] means an equation, so we set 12 + 6x equal to 9x
[B]12 + 6x = 9x <-- This is our algebraic expression[/B]
[B][/B]
If the problem asks you to solve for x, then you [URL='https://www.mathcelebrity.com/1unk.php?num=12%2B6x%3D9x&pl=Solve']type this expression into our search engine[/URL] and you get:
x = [B]4[/B]
12 plus the product of 4 and a number is greater than 72A number means an arbitrary variable, let's call it x.
The product of 4 and a number is 4x.
12 plus that product is 4x + 12
Is greater than means an inequality, so we set the entire expression greater than 72
4x + 12 > 72
12 students want pancakes and 14 students want waffles. What is the ratio of the number of students12 students want pancakes and 14 students want waffles. What is the ratio of the number of students who want pancakes to the total number of students?
12/14 is the initial ratio. However, we can simplify this. [URL='https://www.mathcelebrity.com/fraction.php?frac1=12%2F14&frac2=3%2F8&pl=Simplify']So we type 12/14 into our search engine and choose simplify.[/URL] We get:
6/7
13 minutes to answer 4 problems. how many minutes would it take to answer 22 questions13 minutes to answer 4 problems. how many minutes would it take to answer 22 questions?
Set up a proportion of time to problems where m is the number of minutes it would take for 22 questions:
13/4 = m/22
[URL='https://www.mathcelebrity.com/prop.php?num1=13&num2=m&den1=4&den2=22&propsign=%3D&pl=Calculate+missing+proportion+value']Type this proportion into the search engine[/URL], and we get:
m = [B]71.5[/B]
149 cars are waiting to take a ferry across the channel each ferry can only hold 18 cars how many tr149 cars are waiting to take a ferry across the channel each ferry can only hold 18 cars how many trips will it take to get all the cars across
Number of trips = Total Cars / Cars Per ferry trip
Number of trips = 149/18
Number of trips = 8.28 trips
We round up to the next integer and we have [B]9 trips[/B]
15 added to a number is 16 times the number15 added to a number is 16 times the number
[LIST=1]
[*]The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
[*]15 added to a number: 15 + x
[*]16 times the number: 16x
[*]The phrase [I]is[/I] means equal to. So we set 15 + x equal to 16x
[/LIST]
[B]15 + x = 16x[/B]
15 added to the quotient of 8 and a number is 7.15 added to the quotient of 8 and a number is 7.
Take this algebraic expression in pieces:
[LIST]
[*]The phrase [I]a number[/I] means an arbitrary variable. Let's call it x.
[*]The quotient of 8 and a number: 8/x
[*]15 added to this quotient: 8/x + 15
[*]The word [I]is[/I] means an equation, so we set 8/x + 15 equal to 7
[/LIST]
[B]8/x + 15 = 7[/B]
15 less than a number squared15 less than a number squared
A number is denoted by an arbitrary variable, let's call it x.
x
Squared means we raise that number to a power of 2
x^2
15 less means we subtract
[B]x^2 -15[/B]
16 decreased by 3 times the sum of 3 and a number16 decreased by 3 times the sum of 3 and a number
Take this algebraic expression in parts:
[LIST]
[*]The phrase [I]a number[/I] means an arbitrary variable. Let's call it x.
[*]The sum of 3 and a number: 3 + x
[*]3 times the sum: 3(3 + x)
[*]16 decreased by... means we subtract 3(3 + x) from 16
[/LIST]
[B]3(3 + x) from 16[/B]
180 students 1/6 are Hispanic, how many are Hispanic?180 students 1/6 are Hispanic, how many are Hispanic?
Number of Hispanics = 180 * 1/6 = [B]30[/B]
2 baseball players hit 60 home runs combined last season. The first player hit 3 more home runs than2 baseball players hit 60 home runs combined last season. The first player hit 3 more home runs than twice a number of home runs the second player hit. how many home runs did each player hit?
Declare variables:
Let the first players home runs be a
Let the second players home runs be b
We're given two equations:
[LIST=1]
[*]a = 2b + 3
[*]a + b = 60
[/LIST]
To solve this system of equations, we substitute equation (1) into equation (2) for a:
2b + 3 + b = 60
Using our math engine, we [URL='https://www.mathcelebrity.com/1unk.php?num=2b%2B3%2Bb%3D60&pl=Solve']type this equation[/URL] in and get:
b = [B]19
[/B]
To solve for a, we substitute b = 19 into equation (1):
a = 2(19) + 3
a = 38 + 3
a = [B]41[/B]
2 cards have different expressions written on them.: 5y - 2 and 3y + 10. for what value of y do the2 cards have different expressions written on them.: 5y - 2 and 3y + 10. for what value of y do the 2 cards represent the same number?
If they have the same number, we set them equal to each other and solve for y:
5y - 2 = 3y + 10
To solve for y, we [URL='http://5y - 2 = 3y + 10']type this expression in our search engine [/URL]and we get:
y = [B]6[/B]
2 dice rollFree 2 dice roll Calculator - Calculates the probability for the following events in a pair of fair dice rolls:
* Probability of any sum from (2-12)
* Probability of the sum being less than, less than or equal to, greater than, or greater than or equal to (2-12)
* The sum being even
* The sum being odd
* The sum being a prime number
* The sum being a non-prime number
* Rolling a list of numbers i.e. (2,5,6,12)
* Simulate (n) Monte Carlo two die simulations.
2 dice calculator
2 less than half a numberA number means we pick an arbitrary variable, let's call it "x".
Half a number is 1/2x.
2 less than that is [B]1/2x - 2[/B]
2 minus 7 times a numberA number is represented by an arbitrary variable, let's call it x.
7 times x means we multiply 7 times x.
7x
2 minus 7x is written:
2 - 7x
2 more than twice the sum of 10 and a number2 more than twice the sum of 10 and a number
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
The sum of 10 and a number means we add x to 10:
10 + x
Twice the sum means we multiply 10 + x by 2:
2(10 + x)
2 more than twice the sum means we add 2 to 2(10 + x):
[B]2(10 + x) + 2[/B]
2 number Word ProblemsFree 2 number Word Problems Calculator - This calculator handles word problems in the format below:
* Two numbers have a sum of 70 and a product of 1189 What are the numbers?
* Two numbers have a sum of 70. Their difference 32
2 numbers add to 200. The first is 20 less than the second.2 numbers add to 200. The first is 20 less than the second.
Let the first number be x and the second number be y. We're given:
[LIST=1]
[*]x + y = 200
[*]x = y - 20
[/LIST]
Plug (2) into (1)
(y - 20) + y = 200
Group like terms:
2y - 20 = 200
[URL='https://www.mathcelebrity.com/1unk.php?num=2y-20%3D200&pl=Solve']Typing this equation into our search engine[/URL], we get:
[B]y = 110[/B] <-- This is the larger number
Plug y = 110 into Equation (2) to get the smaller number:
x = 110 - 20
[B]x = 90[/B] <-- This is the smaller number
Let's check our work for Equation (1) using x = 90, and y = 110
90 + 110 ? 200
200 = 200 <-- Good, our solutions check out for equation (1)
Let's check our work for Equation (2) using x = 90, and y = 110
90 = 110 - 20
90 = 90 <-- Good, our solutions check out for equation (2)
2 numbers that add up makes 5 but multiplied makes -362 numbers that add up makes 5 but multiplied makes -36
Let the first number be x and the second number be y. We're given two equations:
[LIST=1]
[*]x + y = 5
[*]xy = -36
[/LIST]
Rearrange equation (1) by subtracting y from each side:
[LIST=1]
[*]x = 5 - y
[*]xy = -36
[/LIST]
Substitute equation (1) for x into equation (2):
(5 - y)y = -36
5y - y^2 = -36
Add 36 to each side:
-y^2 + 5y + 36 = 0
We have a quadratic equation. To solve this, we [URL='https://www.mathcelebrity.com/quadratic.php?num=-y%5E2%2B5y%2B36%3D0&pl=Solve+Quadratic+Equation&hintnum=0']type it in our search engine and solve[/URL] to get:
y = ([B]-4, 9[/B])
We check our work for each equation:
[LIST=1]
[*]-4 + 9 = -5
[*]-4(9) = -36
[/LIST]
They both check out
2 numbers that are equal have a sum of 602 numbers that are equal have a sum of 60
Let's choose 2 arbitrary variables for the 2 numbers
x, y
Were given 2 equations:
[LIST=1]
[*]x = y <-- Because we have the phrase [I]that are equal[/I]
[*]x + y = 60
[/LIST]
Because x = y in equation (1), we can substitute equation (1) into equation (2) for x:
y + y = 60
Add like terms to get:
2y = 60
Divide each side by 2:
2y/2 = 60/2
Cancel the 2's and we get:
y = [B]30
[/B]
Since x = y, x = y = 30
x = [B]30[/B]
2 times a number added to another number is 25. 3 times the first number minus the other number is 22 times a number added to another number is 25. 3 times the first number minus the other number is 20.
Let the first number be x. Let the second number be y. We're given two equations:
[LIST=1]
[*]2x + y = 25
[*]3x - y = 20
[/LIST]
Since we have matching opposite coefficients for y (1 and -1), we can add both equations together and eliminate a variable.
(2 + 3)x + (1 - 1)y = 25 + 20
Simplifying, we get:
5x = 45
[URL='https://www.mathcelebrity.com/1unk.php?num=5x%3D45&pl=Solve']Typing this equation into the search engine[/URL], we get:
[B]x = 9[/B]
To find y, we plug in x = 9 into equation (1) or (2). Let's choose equation (1):
2(9) + y = 25
y + 18 = 25
[URL='https://www.mathcelebrity.com/1unk.php?num=y%2B18%3D25&pl=Solve']Typing this equation into our search engine[/URL], we get:
[B]y = 7[/B]
So we have (x, y) = (9, 7)
Let's check our work for equation (2) to make sure this system works:
3(9) - 7 ? 20
27 - 7 ? 20
20 = 20 <-- Good, we match!
2 times a number equals that number plus 52 times a number equals that number plus 5
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
2 times a number means we multiply 2 by x:
2x
That number plus 5 means we add 5 to the number x
x + 5
The phrase [I]equals[/I] means we set both expressions equal to each other
[B]2x = x + 5[/B] <-- This is our algebraic expression
If you want to take this further and solve this equation for x, [URL='https://www.mathcelebrity.com/1unk.php?num=2x%3Dx%2B5&pl=Solve']type this expression in the search engine[/URL] and we get:
[B]x = 5[/B]
2 times a number minus 4 times another number is 6. The sum of 2 numbers is 8. Find the 2 numbers2 times a number minus 4 times another number is 6. The sum of 2 numbers is 8. Find the 2 numbers.
Let the first number be x, and the second number be y. We're given two equations:
[LIST=1]
[*]2x - 4y = 6
[*]x + y = 8
[/LIST]
Using our simultaneous equation calculator, there are 3 ways to solve this:
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=2x+-+4y+%3D+6&term2=x+%2B+y+%3D+8&pl=Substitution']Substitution[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=2x+-+4y+%3D+6&term2=x+%2B+y+%3D+8&pl=Elimination']Elimination[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=2x+-+4y+%3D+6&term2=x+%2B+y+%3D+8&pl=Cramers+Method']Cramer's Rule[/URL]
[/LIST]
They all give the same answers:
(x, y) = [B](6.3333333, 1.6666667)[/B]
2 times a number subtracted by x2 times a number subtracted by x
The phrase [I]a number[/I] means an arbitrary variable, let's call it n.
n
2 times a number means we multiply n by 2:
2n
The phrase [I]subtracted by[/I] means we subtract 2n from x:
[B]x - 2n[/B]
2 times as many dimes as quarters and they have a combined value of 180 cents, how many of each coin2 times as many dimes as quarters and they have a combined value of 180 cents, how many of each coin does he have?
Let d be the number of dimes. Let q be the number of quarters. We're given two equations:
[LIST=1]
[*]d = 2q
[*]0.1d + 0.25q = 180
[/LIST]
Substitute (1) into (2):
0.1(2q) + 0.25q = 180
0.2q + 0.25q = 180
[URL='https://www.mathcelebrity.com/1unk.php?num=0.2q%2B0.25q%3D180&pl=Solve']Typing this equation into the search engine[/URL], we get:
[B]q = 400[/B]
Now substitute q = 400 into equation 1:
d = 2(400)
[B]d = 800[/B]
2 times half of a numberA number means an arbitrary variable, let's call it x.
Half of x means we divide x by 2, or multiply by 0.5
x/2
2 times half x is written:
[B]2(x/2)[/B]
If we simplify by cancelling the 2's, we just get x.
2 times the sum of 1 and some number is 30. What is the number?2 times the sum of 1 and some number is 30. What is the number?
We let the phrase "some number" equal the variable x.
The sum of 1 and some number is:
x + 1
2 times the sum:
2(x + 1)
The word "is" means equal to, so we set [B]2(x + 1) = 30[/B]
2 times the sum of 7 times a number and 42 times the sum of 7 times a number and 4
This is an algebraic expression. Let's take it in 4 parts:
[LIST=1]
[*]The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
[*]7 times a number means we multiply x by 7: 7x
[*]The sum of 7 times a number and 4 means we add 4 to 7x: 7x + 4
[*]Finally, we multiply the sum in #3 by 2
[/LIST]
Build our final algebraic expression:
[B]2(7x + 4)[/B]
2 times the sum of a number and 3 is equal to 3x plus 42 times the sum of a number and 3 is equal to 3x plus 4
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
The sum of a number and 3 means we add 3 to x:
x + 3
2 times this sum means we multiply the quantity x + 3 by 2
2(x + 3)
3x plus 4 means 3x + 4 since the word plus means we use a (+) sign
3x + 4
The phrase [I]is equal to[/I] means an equation, where we set 2(x + 3) equal to 3x + 4
[B]2(x + 3) = 3x + 4[/B]
2 times the sum of a number x and 52 times the sum of a number x and 5
The sum of a number x and 5 means we add 5 to x:
x + 5
2 times the sum:
[B]2(x + 5)[/B]
2, 4, 6, 8....1000. What term is the number 1000?2, 4, 6, 8....1000. What term is the number 1000?
Formula for nth term is 2n
If 2n = 1000, then dividing each side by 2, we see that:
2n/2 = 1000/2
n = [B]500[/B]
2/3 of a number 17 is at least 292/3 of a number 17 is at least 29
The phrase [I]a number[/I] means an arbitrary variable, let's call it x:
x
2/3 of a number means we multiply x by 2/3:
2x/3
The phrase [I]is at least[/I] also means greater than or equal to, so we set up the inequality:
[B]2x/3 >= 29[/B]
2/3 of a pie is four slices how many slices does the whole pie have2/3 of a pie is four slices how many slices does the whole pie have
Let s be the number of total slices of pie. We're given:
2s/3 = 4
Cross Multiply:
2s = 3 * 4
2s = 12
Divide each side by 2:
2s/2 = 12/2
[B]s = 6[/B]
2/5 the cube of a number2/5 the cube of a number
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
The cube of a number means we raise x to the power of 3:
x^3
2/5 of the cube means we multiply x^3 by 2/5:
[B](2x^3)/5[/B]
20 percent of my class is boys. There are 30 boys in class. How many girls in my class20 percent of my class is boys. There are 30 boys in class. How many girls in my class?
Let c be the number of people in class. Since 20% = 0.2, We're given:
0.2c = 30
[URL='https://www.mathcelebrity.com/1unk.php?num=0.2c%3D30&pl=Solve']Type this equation into our search engine[/URL], we get:
c = 150
Since the class is made up of boys and girls, we find the number of girls in the class by this equation:
Girls = 150 - 30
Girls = [B]120[/B]
20 teachers made a bulk purchase of some textbooks. The teachers received a 24% discount for the bul20 teachers made a bulk purchase of some textbooks. The teachers received a 24% discount for the bulk purchase, which originally cost $5230. Assuming the cost was divided equally among the teachers, how much did each teacher pay?
[U]Calculate Discount Percent:[/U]
If the teachers got a 24% discount, that means they paid:
100% - 24% = 76%
[URL='https://www.mathcelebrity.com/perc.php?num=+5&den=+8&num1=+16&pct1=+80&pct2=+90&den1=+80&pct=76&pcheck=4&decimal=+65.236&astart=+12&aend=+20&wp1=20&wp2=30&pl=Calculate']76% as a decimal[/URL] = 0.76 (Discount Percent)
[U]Calculate discount price:[/U]
Discount Price = Full Price * (Discount Percent)
Discount Price = 5230 * 0.76
Discount Price = 3974.80
Price per teacher = Discount Price / Number of Teachers
Price per teacher = 3974.80 / 20
Price per teacher = [B]$198.74[/B]
20% of a number is x. What is 100% of the number? Assume x>0.20% of a number is x. What is 100% of the number? Assume x>0.
Let the number be n. We're given:
0.2n = x <-- Since 20% = 0.2
To find n, we multiply each side of the equation by 5:
5(0.2)n = 5x
n = [B]5x[/B]
21 apples and 49 pears. What is the largest number of baskets to make and still use up all the fruit21 apples and 49 pears. What is the largest number of baskets to make and still use up all the fruit
We use our [URL='https://www.mathcelebrity.com/gcflcm.php?num1=21&num2=49&num3=&pl=GCF+and+LCM']greatest common factor calculator for GCF(21, 49)[/URL] to get:
GCF(21, 49) = 7
This means with [B]7 baskets[/B]:
[LIST]
[*]We divide 21 apples by 7 to get 3 apples per basket
[*]We divide 49 pears by 7 to get 7 pears per basket
[/LIST]
21 the total of 21 and21 the total of 21 and?
Let the number we want be n. We have:
21 = 21 + n
n must be [B]0[/B], since 21 = 21
25 boxes are loaded on a truck. If each box weighs 22 kg, what is the total weight of the load25 boxes are loaded on a truck. If each box weighs 22 kg, what is the total weight of the load?
Total Weight = Number of boxes * weight per box
Total Weight = 25 * 22 kg
Total Weight = [B]550 kg[/B]
26 increased by 12 times a number26 increased by 12 times a number
A number is represented by an arbitrary variable, let's call it x
12 times a number is written as 12x
26 increased by 12 times a number means we add:
[B]26 + 12x[/B]
28 less than twice a number[U]A number means an arbitrary variable, let's call it x.[/U]
[LIST]
[*]x
[/LIST]
[U]Twice a number means multiply by 2[/U]
[LIST]
[*]2x
[/LIST]
[U]28 less than twice a number means we subtract 28[/U]
[LIST]
[*][B]2x - 28[/B]
[/LIST]
28 students in class and 16 are boys what is percent of girls?28 students in class and 16 are boys what is percent of girls?
Calculate the number of girls:
Girls = Total Students - Boys
Girls = 28 - 16
Girls = 12
The percent of girls is found by this formula:
Percent of Girls = 100 * Number of Girls / Number of Students
Percent of Girls = 100 * 12 / 28
Percent of Girls = 1,200 / 28
Percent of Girls = [B]42.86%[/B]
2x increased by 3 times a number2x increased by 3 times a number
The phrase [I]a number[/I] means an arbitary variable, let's call it x.
3 times a number means we multiply x by 3:
3x
The phrase [I]increased by[/I] means we add 3x to 2x:
2x + 3x
Simplifying, we get:
[B]5x[/B]
3 boys share 100 in the ratio 1:2:2. how much each boy will get?3 boys share 100 in the ratio 1:2:2. how much each boy will get?
Given the ratio 1 : 2 : 2, calculate the expected number of items from a population of 100
A ratio of 1 : 2 : 2 means that for every of item A, we can expect 2 of item B and 2 of item c
Therefore, our total group is 1 + 2 + 2 = 5
[SIZE=5][B]Calculate Expected Number of Item A:[/B][/SIZE]
Expected Number of Item A = 1 x 100/5
Expected Number of Item A = 100/5
Using our [URL='http://mathcelebrity.com/gcflcm.php?num1=100&num2=5&pl=GCF']GCF Calculator[/URL], we see this fraction can be reduced by 5
Expected Number of Item A = 20/1
Expected Number of Item A = [B]20[/B]
[SIZE=5][B]Calculate Expected Number of Item B:[/B][/SIZE]
Expected Number of Item B = 2 x 100/5
Expected Number of Item B = 200/5
Using our [URL='http://mathcelebrity.com/gcflcm.php?num1=200&num2=5&pl=GCF']GCF Calculator[/URL], we see this fraction can be reduced by 5
Expected Number of Item B = 40/1
Expected Number of Item B = [B]40[/B]
[SIZE=5][B]Calculate Expected Number of Item C:[/B][/SIZE]
Expected Number of Item C = 2 x 100/5
Expected Number of Item C = 200/5
Using our [URL='http://mathcelebrity.com/gcflcm.php?num1=200&num2=5&pl=GCF']GCF Calculator[/URL], we see this fraction can be reduced by 5
Expected Number of Item C = 40/1
Expected Number of Item C = [B]40[/B]
[B]Final Answer:[/B]
(A, B, C) =[B] (20, 40, 40)[/B] for 1:2:2 on 100 people
3 decreased by 7 times a number3 decreased by 7 times a number
A number signifies an arbitrary variable, let's call it x.
7 times a number:
7x
3 decreased by this means we subtract 7x
[B]3 - 7x[/B]
3 is subtracted from square of a number3 is subtracted from square of a number
The phrase [I]a number[/I] means an arbitrary variable, let's call it x:
x
Square of a number means we raise x to the 2nd power:
x^2
3 is subtracted from square of a number
[B]x^2 - 3[/B]
3 less than a number times itself3 less than a number times itself
The phrase [I]a number[/I] means an arbitrary variable, let's call it x:
x
Itself means the same variable as above. So we have:
x * x
x^2
3 less than this means we subtract 3 from x^2:
[B]x^2 - 3[/B]
3 more than the product of 7 and a number x is less than 26The product of 7 and a number x is written as 7x.
3 more than that product is written as 7x + 3.
Finally, that entire expression is less than 26, so we have:
7x + 3 < 26 as our algebraic expression.
[MEDIA=youtube]ESuHovml5WQ[/MEDIA]
3 people can build a shed in 8 hours, how long would it take 5 people3 people can build a shed in 8 hours, how long would it take 5 people
We set up a proportion of people to hours where h is the number of hours for 5 people:
3/8 = 5/h
[URL='https://www.mathcelebrity.com/prop.php?num1=3&num2=5&den1=8&den2=h&propsign=%3D&pl=Calculate+missing+proportion+value']Using our proportion calculator[/URL], we get:
13.3333 hours
But what if the problem asks for minutes? Then we say 8 hours = 60 * 8 = 480 minutes. We set up the proportion where m is the number of minutes:
3/480 = 5/m
In this case, [URL='https://www.mathcelebrity.com/prop.php?num1=3&num2=5&den1=480&den2=m&propsign=%3D&pl=Calculate+missing+proportion+value']we use our search engine again[/URL] and get:
m = 800
3 per ride r plus $10 to get into the park3 per ride r plus $10 to get into the park
Cost function C(r) where r is rides:
C(r) = Rate per ride * number of rides + admission cost
[B]C(r) = 3r + 10[/B]
3 times a number increased by 1 is between -8 and 133 times a number increased by 1 is between -8 and 13.
Let's take this algebraic expression in [U]4 parts[/U]:
Part 1 - The phrase [I]a number[/I] means an arbitrary variable, let's call it x:
x
Part 2 - 3 times this number means we multiply x by 3:
3x
Part 3 - Increased by 1 means we add 1 to 3x:
3x + 1
The phrase [I]between[/I] means we have an inequality:
[B]-8 <= 3x + 1 <=13[/B]
3 times a number is 3 more a number3 times a number is 3 more a number
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
3 times a number:
3x
3 more than a number means we add 3 to x:
x + 3
The word [I]is[/I] means and equation, so we set 3x equal to x + 3
[B]3x = x + 3[/B]
3 times the square of a number x minus 123 times the square of a number x minus 12.
Build the algebraic expression piece by piece:
[LIST]
[*]Square of a number x: x^2
[*]3 times this: 3x^2
[*]Minus 12: [B]3x^2 - 12[/B]
[/LIST]
3, 8, 13, 18, .... , 5008 What term is the number 5008?3, 8, 13, 18, .... , 5008 What term is the number 5008?
For term n, we have a pattern:
f(n) = 5(n - 1) + 3
Set this equal to 5008
5(n - 1) + 3 = 5008
Using our [URL='https://www.mathcelebrity.com/1unk.php?num=5%28n-1%29%2B3%3D5008&pl=Solve']equation solver,[/URL] we get:
n = [B]1002[/B]
3/4 a number b divided by 53/4 a number b divided by 5
3/4 a number b:
3b/4
Divided by 5:
3b/4/5
We multiply top and bottom by 5 to remove the double fraction:
3b*5/4
[B]15b/4[/B]
3/5 of workers at a company have enrolled in the 403(b) program. If 24 workers have enrolled in the3/5 of workers at a company have enrolled in the 403(b) program. If 24 workers have enrolled in the program, how many workers are employed at this company?
We read this as 3/5 of the total workers employed at the company equals 24. Let w be the number of workers. We have the following equation:
3/5w = 24
Run [URL='http://www.mathcelebrity.com/1unk.php?num=3%2F5w%3D24&pl=Solve']3/5w = 24[/URL] through the search engine, we get [B]w = 40[/B].
30 increased by 3 times the square of a numberLet "a number" equal the arbitrary variable x.
The square of that is x^2.
3 times the square of that is 3x^2.
Now, 30 increased by means we add 3x^2 to 30
30 + 3x^2
30 increased by 3 times the square of a number30 increased by 3 times the square of a number
The phrase [I]a number[/I] means an arbitrary variable, let's call it x
x
The square of a number means we raise x to the power of 2:
x^2
3 times the square:
3x^2
The phrase [I]increased by[/I] means we add 3x^2 to 30:
[B]30 + 3x^2[/B]
32 girls and 52 boys were on an overseas learning trip . They were divided into as many groups as po32 girls and 52 boys were on an overseas learning trip . They were divided into as many groups as possible where the number of groups of girls and the number of groups of boys is the same .how many boys and how many girls were in each group
We want a number such that our total members divided by this number equals our group size.
We take the greatest common factor (32,52) = 4
Therefore, we have:
[LIST]
[*][B]32/4 = 8 girls in each group[/B]
[*][B]52/4 = 13 boys in each group[/B]
[/LIST]
331 students went on a field trip. Six buses were filled and 7 students traveled in cars. How many s331 students went on a field trip. Six buses were filled and 7 students traveled in cars. How many students were in each bus?
Calculate the students in buses:
Students in buses = Total Students - Students in Cars
Students in buses = 331 - 7
Students in buses = 324
Calculate the students in each bus
Students in each bus = Students in buses / Number of Buses
Students in each bus = 324 / 6
Students in each bus = [B]54[/B]
331 students went on a field trip. Six buses were filled and 7 students traveled in cars. How many s331 students went on a field trip. Six buses were filled and 7 students traveled in cars. How many students were in each bus?
The number of students who went on the bus is 331 - 7 in the car = 324
324 students on the bus / 6 buses = [B]54 per bus[/B]
36, 34, 30, 28, 24 …36, 34, 30, 28, 24 …
It alternates like this:
-2
-4
-2
-4
Next numbers should subtract 2
24 - 2 = [B]22
[MEDIA=youtube]nfkxUcJZLU0[/MEDIA][/B]
38 books into 8 boxes. 6 left. How many books in each box38 books into 8 boxes. 6 left. How many books in each box
Let the number of books in each box be b. We have the following relation:
8b + 6 = 38
to solve this equation, we [URL='https://www.mathcelebrity.com/1unk.php?num=8b%2B6%3D38&pl=Solve']type it in our search engine[/URL] and we get:
b = [B]4[/B]
3timesanumberdecreasedby3A necklace chain costs $15. Beads cost $2.50 each. You spend a total of $30 on a necklace and beads before tax. How many beads did you buy in addition to the necklace?
Let the number of beads be b. We're given the following equation:
2.5b + 15 = 30
To solve for b, we [URL='https://www.mathcelebrity.com/1unk.php?num=2.5b%2B15%3D30&pl=Solve']type this equation into our search engine[/URL] and we get:
b = [B]6[/B]
4 adults and 3 children cost $40. Two adults and 6 children cost $384 adults and 3 children cost $40. Two adults and 6 children cost $38
Givens and Assumptions:
[LIST]
[*]Let the number of adults be a
[*]Let the number of children be c
[*]Cost = Price * Quantity
[/LIST]
We're given 2 equations:
[LIST=1]
[*]4a + 3c = 40
[*]2a + 6c = 38
[/LIST]
We can solve this system of equations 3 ways
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=4a+%2B+3c+%3D+40&term2=2a+%2B+6c+%3D+38&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=4a+%2B+3c+%3D+40&term2=2a+%2B+6c+%3D+38&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=4a+%2B+3c+%3D+40&term2=2a+%2B+6c+%3D+38&pl=Cramers+Method']Cramer's Rule[/URL]
[/LIST]
No matter what method we use, we get:
[LIST]
[*][B]a = 7[/B]
[*][B]c = 4[/B]
[/LIST]
4 machines can complete a job in 6 hours how long will it take 3 machines to complete the same jobs?4 machines can complete a job in 6 hours how long will it take 3 machines to complete the same jobs?
Set up a proportion of machines to hours where h is the number of hours that 3 machines take:
4/6 = 3/h
[URL='https://www.mathcelebrity.com/prop.php?num1=4&num2=3&den1=6&den2=h&propsign=%3D&pl=Calculate+missing+proportion+value']Type this proportion into our search engine[/URL] and we get:
h = [B]4.5[/B]
4 teaspons of vegetable oil and 6 teaspoons of vinegar. 20 teaspoons of vegetable oil to how many te4 teaspons of vegetable oil and 6 teaspoons of vinegar. 20 teaspoons of vegetable oil to how many teaspoons of vinegar?
Set up a proportion where x is the number of teaspoons of vinegar in the second scenario:
4/6 = 20/x
[URL='http://www.mathcelebrity.com/prop.php?num1=4&num2=20&den1=6&den2=x&propsign=%3D&pl=Calculate+missing+proportion+value']Plug that expression into the search engine to get[/URL]
[B]x = 30[/B]
4 times a number added to 8 times a number equals 364 times a number added to 8 times a number equals 36
Let [I]a number[/I] be an arbitrary variable, let us call it x.
4 times a number:
4x
8 times a number:
8x
We add these together:
4x + 8x = 12x
We set 12x equal to 36 to get our final algebraic expression of:
[B]12x = 36
[/B]
If the problem asks you to solve for x, you [URL='https://www.mathcelebrity.com/1unk.php?num=12x%3D36&pl=Solve']type this algebraic expression into our search engine[/URL] and get:
x = [B]3[/B]
4 times a number cubed decreased by 74 times a number cubed decreased by 7
A number is denoted as an arbitrary variable, let's call it x
x
Cubed means raise x to the third power
x^3
Decreased by 7 means subtract 7
x^3 - 7
4 times a number is the same as the number increased by 784 times a number is the same as the number increased by 78.
Let's take this algebraic expression in parts:
[LIST=1]
[*]The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
[*]4 times a number is written as 4x
[*]The number increased by 78 means we add 78 to x: x + 78
[*]The phrase [I]the same as[/I] mean an equation, so we set #2 equal to #3
[/LIST]
[B]4x = x + 78[/B] <-- This is our algebraic expression
If the problem asks you to take it a step further, then [URL='https://www.mathcelebrity.com/1unk.php?num=4x%3Dx%2B78&pl=Solve']we type this equation into our search engine [/URL]and get:
x = 26
4 times a number plus 9A number means an arbitrary variable, let's call it "x".
4 times a number is 4x.
Plus 9 means we add:
4x + 9
4 times the difference of 6 times a number and 74 times the difference of 6 times a number and 7
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
6 times a number
6x
The difference of 6x and 7 means we subtract 7 from 6x:
6x - 7
Now we multiply this difference by 4:
[B]4(6x - 7)[/B]
4 times the number of cows plus 2 times the number of ducks4 times the number of cows plus 2 times the number of ducks
Let c be the number of cows. Let d be the number of ducks. We've got an algebraic expression below:
[B]4c + 2d[/B]
4 times the quantity of a number plus 64 times the quantity of a number plus 6
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
The word [I]plus[/I] means we addd 6 to x
x + 6
The phrase [I]4 times the quantity [/I]means we multiply x + 6 by 4
[B]4(x + 6)[/B]
414 people used public pool. Daily prices are $1.75 for children and $2.00 for adults. Total cost wa414 people used public pool. Daily prices are $1.75 for children and $2.00 for adults. Total cost was $755.25. How many adults and children used the pool
Let the number of children who used the pool be c, and the number of adults who used the pool be a. We're given two equations:
[LIST=1]
[*]a + c = 414
[*]2a + 1.75c = 755.25
[/LIST]
We have a simultaneous equations. You can solve this any of 3 ways below:
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=a+%2B+c+%3D+414&term2=2a+%2B+1.75c+%3D+755.25&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=a+%2B+c+%3D+414&term2=2a+%2B+1.75c+%3D+755.25&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=a+%2B+c+%3D+414&term2=2a+%2B+1.75c+%3D+755.25&pl=Cramers+Method']Cramer's Rule[/URL]
[/LIST]
Whichever method you choose, you get the same answer:
[LIST]
[*][B]a = 123[/B]
[*][B]c = 291[/B]
[/LIST]
45 students, 12 taking spanish, 15 taking chemistry, 5 taking both spanish and chemistry. how many s45 students, 12 taking spanish, 15 taking chemistry, 5 taking both spanish and chemistry. how many students are not taking either?
Let S be the number of students taking spanish and C be the number of students taking chemistry:
We have the following equation relating unions and intersections:
P(C U S) = P(C) + P(S) - P(C and S)
P(C U S) = 15 + 12 - 5
P(C U S) = 22
To get people that aren't taking either are, we have:
45 - P(C U S)
45 - 22
[B]23[/B]
45 water balloons were given to 9 children. If each child received the same number of water balloons45 water balloons were given to 9 children. If each child received the same number of water balloons, how many water balloons did each child receive?
Water Balloons per child = Total Water Balloons / Number of Children
Water Balloons per child = 45/9
Water Balloons per child = [B]5[/B]
46 people showed up to the party. There were 8 less men than women present. How many men were there?46 people showed up to the party. There were 8 less men than women present. How many men were there?
Let the number of men be m. Let the number of women be w. We're given two equations:
[LIST=1]
[*]m = w - 8 [I](8 less men than women)[/I]
[*]m + w = 46 [I](46 showed up to the party)[/I]
[/LIST]
Substitute equation (1) into equation (2) for m:
w - 8 + w = 46
To solve for w in this equation, we [URL='https://www.mathcelebrity.com/1unk.php?num=w-8%2Bw%3D46&pl=Solve']type in the equation into our search engine [/URL]and we get:
w = 27
To solve for men (m), we substitute w = 27 into equation (1):
m = 27 - 8
m = [B]19[/B]
4subtractedfrom6timesanumberis324 subtracted from 6 times a number is 32.
Take this algebraic expression in pieces.
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
6 times this number means we multiply by x by 6
6x
4 subtracted from this expression means we subtract 4
6x - 4
The phrase [I]is[/I] means an equation, so we set 6x - 4 equal to 32
[B]6x - 4 = 32
[/B]
If you need to solve this equation, [URL='https://www.mathcelebrity.com/1unk.php?num=6x-4%3D32&pl=Solve']type it in the search engine here[/URL].
5 is one-fourth of a number c5 is one-fourth of a number c
[LIST]
[*]A number c is just written as c
[*]one-fourth of c means we multiply c by 1/4: c/4
[*]The phrase [I]is[/I] means equal to, so we set c/4 equal to 5
[/LIST]
[B]c/4 = 5[/B]
5 more than the reciprocal of a number5 more than the reciprocal of a number
Take this algebraic expression in pieces:
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
The reciprocal of this number means we divide 1 over x:
1/x
5 more means we add 5 to 1/x
[B]1/x + 5[/B]
5 more than twice the cube of a number5 more than twice the cube of a number.
Take this algebraic expression in pieces.
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
The cube of a number means we raise it to a power of 3
x^3
Twice the cube of a number means we multiply x^3 by 2
2x^3
5 more than twice the cube of a number means we multiply 2x^3 by 5
5(2x^3)
Simplifying, we get:
10x^3
5 more than twice the cube of a number5 more than twice the cube of a number
The phrase [I]a number[/I] means an arbitrary variable, let's call it x:
x
The cube of a number means we raise x to the power of 3:
x^3
Twice the cube means we multiply x^3 by 2
2x^3
Finally, 5 more than twice the cube means we add 5 to 2x^3:
[B]2x^3 + 5[/B]
5 squared minus a number x5 squared minus a number x
5 squared is written as 5^2
Minus a number x means we subtract the variable x
[B]5^2 - x[/B]
5 subtracted from 3 times a number is 445 subtracted from 3 times a number is 44.
The problem asks for an algebraic expression.
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
3 times this number is 3x.
5 subtracted from this is written as 3x - 5.
The phrase [I]is[/I] means an equation, so we set 3x - 5 equal to 44
[B]3x - 5 = 44[/B]
5 times a number increased by 135 times a number increased by 13
A number is denoted as an arbitrary variable, let's call it x
x
5 times that number
5x
Increased by 13 means we add
5x + 13
5 times a number increased by 4 is divided by 6 times the same number5 times a number increased by 4 is divided by 6 times the same number
Take this algebraic expression in parts.
Part 1: 5 times a number increased by 4
[LIST]
[*]The phrase [I]a number[/I] means an arbitrary variable, let's call it x: x
[*]5 times the number means multiply x by 5: 5x
[*][I]Increased by 4[/I] means we add 4 to 5x: 5x + 4
[/LIST]
Part 2: 6 times the same number
[LIST]
[*]From above, [I]a number[/I] is x: x
[*]6 times the number means we multiply x by 6: 6x
[/LIST]
The phrase [I]is divided by[/I] means we have a quotient, where 5x + 4 is the numerator, and 6x is the denominator.
[B](5x + 4)/6x[/B]
5 times a number is 4 more than twice a number5 times a number is 4 more than twice a number
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
5 times a number:
5x
Twice a number means we multiply x by 2:
2x
4 more than twice a number
2x + 4
The word [I]is[/I] means equal to, so we set 5x equal to 2x + 4
[B]5x = 2x + 4[/B]
5 times a number is that number minus 35 times a number is that number minus 3
The phrase [I]a number[/I] means an arbitrary variable. Let's call it x.
[LIST]
[*]5 times a number: 5x
[*]That number means we use the same number from above which is x
[*]That number minus 3: x - 3
[*]The phrase [I]is[/I] means an equation, so we set 5x equal to x - 3
[/LIST]
[B]5x = x - 3[/B]
5 times the product of 2 numbers a and b5 times the product of 2 numbers a and b
The product of 2 numbers a and be means we multiply the variables together:
ab
5 times the product means we multiply ab by 5:
[B]5ab[/B]
5 times the sum of 3 times a number and -55 times the sum of 3 times a number and -5
The phrase [I]a number[/I] means an arbitrary variable, let's call it x:
x
3 times a number means we multiply x by 3:
3x
the sum of 3 times a number and -5 means we add -5 to 3x:
3x - 5
5 times the sum means we multiply 3x - 5 by 5:
[B]5(3x - 5)[/B]
5, 14, 23, 32, 41....1895 What term is the number 1895?5, 14, 23, 32, 41....1895 What term is the number 1895?
Set up a point slope for the first 2 points:
(1, 5)(2, 14)
Using [URL='https://www.mathcelebrity.com/search.php?q=%281%2C+5%29%282%2C+14%29&x=0&y=0']point slope formula, our series function[/URL] is:
f(n) = 9n - 4
To find what term 1895 is, we set 9n - 4 = 1895 and solve for n:
9n - 4 = 1895
Using our [URL='https://www.mathcelebrity.com/1unk.php?num=9n-4%3D1895&pl=Solve']equation solver[/URL], we get:
n = [B]211[/B]
5,10,15,20 What is the next number? What is the 100th term?5,10,15,20
What is the next number?
What is the 100th term?
Increment is by 5, so next number is 20 + 5 = [B]25[/B]
Formula for nth number is 5 * n
With n = 100, we have 5 * 100 = [B]500[/B]
5000 union members of a financially troubled company accepted a 17% pay cut. The company announced t5000 union members of a financially troubled company accepted a 17% pay cut. The company announced that this would save them approximately $108 million annually. Based on this information, calculate the average annual pay of a single union member
Let the full salary of the union members be s. Since 17% is 0.17, We're given:
0.17s = 108000000
To solve this equation, we [URL='https://www.mathcelebrity.com/1unk.php?num=0.17s%3D108000000&pl=Solve']type it in our search engine[/URL] and we get:
s = 635,294,117.65
Calculate the average annual pay of a single union member:
Average Pay = Total Pay / Number of Union Members
Average Pay = 635,294,117.65 / 5000
Average Pay = [B]127,058.82[/B]
508 people are there, the daily price is $1.25 for kids and $2.00 for adults. The receipts totaled $508 people are there, the daily price is $1.25 for kids and $2.00 for adults. The receipts totaled $885.50. How many kids and how many adults were there?
Assumptions:
[LIST]
[*]Let the number of adults be a
[*]Let the number of kids be k
[/LIST]
Given with assumptions:
[LIST=1]
[*]a + k = 508
[*]2a + 1.25k = 885.50 (since cost = price * quantity)
[/LIST]
Rearrange equation (1) by subtracting c from each side to isolate a:
[LIST=1]
[*]a = 508 - k
[*]2a + 1.25k = 885.50
[/LIST]
Substitute equation (1) into equation (2):
2(508 - k) + 1.25k = 885.50
Multiply through:
1016 - 2k + 1.25k = 885.50
1016 - 0.75k = 885.50
To solve for k, we [URL='https://www.mathcelebrity.com/1unk.php?num=1016-0.75k%3D885.50&pl=Solve']type this equation into our search engine[/URL] and we get:
k = [B]174[/B]
Now, to solve for a, we substitute k = 174 into equation 1 above:
a = 508 - 174
a = [B]334[/B]
51 decreased by twice a numberA number is denoted as an arbitrary variable, let's call it x.
Twice a number means we multiply by 2, so 2x.
51 decreased by twice a number means we subtract 2x from 51
[B]51 - 2x
[MEDIA=youtube]xqZzYvxmj5w[/MEDIA][/B]
6 is divided by square of a number6 is divided by square of a number
The phrase [I]a number [/I]means an arbitrary variable, let's call it x.
x
the square of this means we raise x to the power of 2:
x^2
Next, we divide 6 by x^2:
[B]6/x^2[/B]
6 is one third of a number s6 is one third of a number s
A number s is written as s:
s
One third of a number s means we multiply s by 1/3
s/3
The word [I]is[/I] means equal to, so we set s/3 equal to 6
[B]s/3 = 6[/B]
6 numbers have a mean of 4. What is the total of the 6 numbers?6 numbers have a mean of 4. What is the total of the 6 numbers?
Mean = Sum of numbers / Count of numbers
Plug our Mean of 4 and our count of 6 into this equation:
4 = Sum/Total of Numbers / 6
Cross multiply:
Sum/Total of Numbers = 6 * 4
Sum/Total of Numbers = [B]24[/B]
6 plus twice the sum of a number and 7.6 plus twice the sum of a number and 7.
The phrase [I]a number[/I] mean an arbitrary variable, let's call it x.
The sum of a number and 7 means we add 7 to the variable x.
x + 7
Twice the sum means we multiply the sum by 2:
2(x + 7)
6 plus means we add 6 to 2(x + 7)
[B]6 + 2(x + 7)[/B]
6 sided die probability to roll a odd number or a number less than 66 sided die probability to roll a odd number or a number less than 6
First, we'll find the set of rolling an odd number. [URL='https://www.mathcelebrity.com/1dice.php?gl=1&opdice=1&pl=Odds&rolist=+2%2C3%2C4&dby=+2%2C3%2C5&montect=+100']From this dice calculator[/URL], we get:
Odd = {1, 3, 5}
Next, we'll find the set of rolling less than a 6. [URL='https://www.mathcelebrity.com/1dice.php?gl=4&pl=6&opdice=1&rolist=+2%2C3%2C4&dby=+2%2C3%2C5&montect=+100']From this dice calculator[/URL], we get:
Less than a 6 = {1, 2, 3, 4, 5}
The question asks for [B]or[/B]. Which means a Union:
{1, 3, 5} U {1, 2, 3, 4, 5} = {1, 2, 3, 4, 5}
This probability is [B]5/6[/B]
6 subtracted from the product of 5 and a number is 686 subtracted from the product of 5 and a number is 68
Take this algebraic expression in parts.
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
The product of 5 and this number is:
5x
We subtract 6 from 5x:
5x - 6
The phrase [I]is[/I] means an equation, so we set 5x - 6 equal to 68
[B]5x - 6 = 68[/B]
6 times a number multiplied by 3 all divided by 46 times a number multiplied by 3 all divided by 4
Take this algebraic expression in parts:
[LIST]
[*]The phrase [I]a number[/I] means an arbitrary variable, let's call it x
[*]6 times a number: 6x
[*]Multiplied by 3: 3(6x) = 18x
[*]All divided by 4: 18x/4
[/LIST]
We can simplify this:
We type 18/4 into our search engine, simplify, and we get 9/2. So our answer is:
[B]9x/2[/B]
6 times a number, x, is at least 22.6 times a number, x, is at least 22.
6 times a number x:
6x
The phrase [I]is at least[/I] means greater than or equal to. So we have an inequality:
[B]6x >= 22[/B] <-- This is our algebraic expression
[URL='https://www.mathcelebrity.com/interval-notation-calculator.php?num=6x%3E%3D22&pl=Show+Interval+Notation']To solve this for x, paste this into the search engine[/URL] and we get:
[B]x >= 3.666667[/B]
6 times the reciprocal of a number equals 2 times the reciprocal of 7. What is the number6 times the reciprocal of a number equals 2 times the reciprocal of 7. What is the number
We've got two algebraic expressions here. Let's take it in parts:
Term 1:
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
The reciprocal is 1/x
Multiply this by 6: 6/x
Term 2:
Reciprocal of 7: 1/7
2 times this: 2/7
We set these terms equal to each other:
6/x = 2/7
[URL='https://www.mathcelebrity.com/prop.php?num1=6&num2=2&den1=x&den2=7&propsign=%3D&pl=Calculate+missing+proportion+value']Type this proportion into the search engine[/URL], and we get:
[B]x = 21[/B]
6 times the reciprocal of a number equals 3 times the reciprocal of 7 .6 times the reciprocal of a number equals 3 times the reciprocal of 7 .
This is an algebraic expression. Let's take it in parts:
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
The reciprocal of a number x means we divide 1 over x:
1/x
6 times the reciprocal means we multiply 6 by 1/x:
6/x
The reciprocal of 7 means we divide 1/7
1/7
3 times the reciprocal means we multiply 1/7 by 3:
3/7
Now, the phrase [I]equals[/I] mean an equation, so we set 6/x = 3/7
[B]6/x = 3/7[/B] <-- This is our algebraic expression
If the problem asks you to solve for x, then [URL='https://www.mathcelebrity.com/prop.php?num1=6&num2=3&den1=x&den2=7&propsign=%3D&pl=Calculate+missing+proportion+value']we type this proportion in our search engine[/URL] and get:
x = 14
6 times the sum of a number and 3 is equal to 42. What is this number?6 times the sum of a number and 3 is equal to 42. What is this number?
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
The sum of a number and 3 means we add 3 to x:
x + 3
6 times the sum:
6(x + 3)
The word [I]is[/I] means an equation, so we set 6(x + 3) equal to 42 to get our [I]algebraic expression[/I] of:
[B]6(x + 3) = 42[/B]
[B][/B]
If the problem asks you to solve for x, then [URL='https://www.mathcelebrity.com/1unk.php?num=6%28x%2B3%29%3D42&pl=Solve']you type this equation into our search engine[/URL] and you get:
x = [B]4[/B]
6 times the sum of a number and 5 is 166 times the sum of a number and 5 is 16
A number represents an arbitrary variable, let's call it x
x
The sum of x and 5
x + 5
6 times the sum of x and 5
6(x + 5)
Is means equal to, so set 6(x + 5) equal to 16
[B]6(x + 5) = 16 <-- This is our algebraic expression
Solve for x[/B]
Multiply through:
6x + 30 = 16
Subtract 30 from each side:
6x - 30 + 30 = 16 - 30
6x = -14
Divide each side by 6
6x/6 = -14/6
Simplify this fraction by dividing top and bottom by 2:
x = [B]-7/3
[MEDIA=youtube]oEx5dsYK7DY[/MEDIA][/B]
60 percent of a number minus 17 is -6560 percent of a number minus 17 is -65
Using our [URL='https://www.mathcelebrity.com/perc.php?num=+5&den=+8&num1=+16&pct1=+80&pct2=+90&den1=+80&pct=60&pcheck=4&decimal=+65.236&astart=+12&aend=+20&wp1=20&wp2=30&pl=Calculate']percent to decimal calculator[/URL], we see that 60% is 0.6, so we have:
0.6
The phrase [I]a number[/I] means an arbitrary variable, let's call it x. So 60% of a number is:
0.6x
Minus 17:
0.6x - 17
The word [I]is[/I] means an equation, so we set 0.6x - 17 equal to -65 to get our algebraic expression of:
[B]0.6x - 17 = -65[/B]
[B][/B]
If you want to solve for x in this equation, you [URL='https://www.mathcelebrity.com/1unk.php?num=0.6x-17%3D-65&pl=Solve']type it in our search engine and you get[/URL]:
[B]x = -80[/B]
7 black shirts 5 white shirts 10 gray shirts one is chosen at random, what is the probability that i7 black shirts 5 white shirts 10 gray shirts one is chosen at random, what is the probability that it is not gray
[U]Find the total shirts:[/U]
Total shirts = Black Shirts + White Shirts + Gray Shirts
Total shirts = 7 + 5 + 10
Total shirts = 22
[U]Calculate the probability of choosing a gray shirt:[/U]
P(Gray) = Number of Gray shirts / Total Shirts
P(Gray) = 10/22
We can simplify this fraction. We [URL='https://www.mathcelebrity.com/fraction.php?frac1=10%2F22&frac2=3%2F8&pl=Simplify']type in 10/22 into our search engine, choose simplify[/URL], and we get:
P(Gray) = [B]5/11[/B]
7 is 1/4 of some number7 is 1/4 of some number
The phrase [I]some number[/I] means an arbitrary variable, let's call it x.
1/4 of this is written as:
x/4
The word [I]is[/I] means an equation, so we set x/4 equal to 7:
[B]x/4 = 7[/B]
7 less than -2 times a number x is greater than or equal to 41-2 times a number x is written as -2x.
Less means subtract, so we have 7 less than this is -2x - 7.
Finally, greater than or equal to is >=, so our expression becomes:
-2x - 7 >= 41
7 less than -2 times a number x is greater than or equal to 41-2 times a number x is denoted as -2x.
7 less than that means we subtract 7:
-2x - 7
Finally, that entire expression is greater than or equal to 41
-2x - 7 >= 41
7 less than -2 times a number x is greater than or equal to 41-2 times a number x is denoted as -2x.
7 less means we subtract, so 7 less than that is -2x - 7.
Finally, that entire expression is greater than or equal to 41
-2x - 7 >= 41
7 less than -2 times a number x is greater than or equal to 417 less than -2 times a number x is greater than or equal to 41
-2 times a number x
-2x
7 less than this
-2x - 7
Now we set this expressions greater than or equal to 41
[B]-2x - 7 >= 41[/B]
7 minus a number all divided by 47 minus a number all divided by 4
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
7 minus a number
7 - x
All divided by 4:
[B](7 - x)/4[/B]
7 out of every 30 students ride their bikes to school. There are 720 students. How many ride their b7 out of every 30 students ride their bikes to school. There are 720 students. How many ride their bikes
Set up a proportion of students who ride their bike to total students where r is the number of students who ride their bikes:
7/30 = r/720
To solve this proportion for r, we [URL='https://www.mathcelebrity.com/prop.php?num1=7&num2=r&den1=30&den2=720&propsign=%3D&pl=Calculate+missing+proportion+value']type it in our calculation engine and we get:[/URL]
r = [B]168[/B]
7 plus the quantity of 9 increased by a number7 plus the quantity of 9 increased by a number
The phrase [I]a number[/I] means an arbitrary variable, let's call it x:
x
9 increased by a number means we add 9 to x
9 + x
7 plus this quantity means we add (9 + x) to 7
[B]7 + (9 + x)[/B]
7 times a number and 2 is equal to 4 times a number decreased by 87 times a number and 2 is equal to 4 times a number decreased by 8
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
7 times a number:
7x
and 2 means we add 2:
7x + 2
4 times a number
4x
decreased by 8 means we subtract 8:
4x - 8
The phrase [I]is equal to[/I] means an equation, so we set 7x + 2 equal to 4x - 8:
[B]7x + 2 = 4x - 8[/B]
7 times a number increased by 4 times the number7 times a number increased by 4 times the number
Let [I]a number[/I] and [I]the number[/I] be an arbitrary variable. Let's call it x. We have an algebraic expression. Let's take it in pieces:
[LIST]
[*]7 times a number: 7x
[*]4 times the number: 4x
[*]The phrase [I]increased by[/I] means we add 4x to 7x:
[*]7x + 4x
[*]Simplifying, we get: (7 + 4)x
[*][B]11x[/B]
[/LIST]
7 times a number is the same as 12 more than 3 times a number7 times a number is the same as 12 more than 3 times a number
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
[B][U]Algebraic Expression 1:[/U][/B]
7 times a number means we multiply 7 by x:
7x
[B][U]Algebraic Expression 2:[/U][/B]
3 times a number means we multiply 3 by x:
3x
12 more than 3 times a number means we add 12 to 3x:
3x + 12
The phrase [I]is the same as[/I] means an equation, so we set 7x equal to 3x + 12
[B]7x = 3x + 12[/B] <-- Algebraic Expression
7 times a positive number n is decreased by 3, it is less than 257 times a positive number n is decreased by 3, it is less than 25
7 times a positive number n:
7n
Decreased by 3:
7n - 3
The phrase [I]it is less than [/I]means an inequality. So we relate 7n - 3 less than 25 using the < sign to get our algebraic expression of:
[B]7n - 3 < 25[/B]
7 times the number of lions plus 4 times the number of tigers7 times the number of lions plus 4 times the number of tigers
Let the number of lions be l
Let the number of tigers be t
We have an algebraic expression of:
[B]7l + 4t[/B]
7 times the quantity of 3 times a number reduced by 107 times the quantity of 3 times a number reduced by 10
The phrase [I]a number[/I] means an arbitrary variable. Let's call it x.
x
3 times a number:
3x
Reduced by 10 means we subtract 10:
3x - 10
7 times this quantity:
[B]7(3x - 10)[/B]
7, 10, 15, 22 What is the next number in the sequence? What is the 500th term?7, 10, 15, 22
What is the next number in the sequence?
What is the 500th term?
We see that:
1^2 + 6 = 7
2^2 + 6 = 10
3^3 + 6 = 15
4^2 + 6 = 22
We build our function as f(n) = n^2 + 6
Next term in the sequence is f(5)
f(5) = 5^2 + 6
f(5) = 25 + 6
f(5) = [B]31
[/B]
Calculate the 500th term:
f(500) = 500^2 + 6
f(500) = 250,000 + 6
f(500) = [B]250,006[/B]
72 pounds and increases by 3.9 pounds per month72 pounds and increases by 3.9 pounds per month
Let m be the number of months. We write the algebraic expression below:
[B]3.9m + 72[/B]
76 decreased by twice a number. Use the variable n to represent the unknown number76 decreased by twice a number. Use the variable n to represent the unknown number.
Twice a number (n) means we multiply the unknown number n by 2:
2n
76 decreased by twice a number means we subtract 2n from 76 using the (-) operator
[B]76 - 2n[/B]
8 bags weigh 14 pounds. how much do 20 bags weigh8 bags weigh 14 pounds. how much do 20 bags weigh
Set up a proportion of bags to pounds where p is the number of pounds for 20 bags:
8/14 = 20/p
We [URL='https://www.mathcelebrity.com/prop.php?num1=8&num2=20&den1=14&den2=p&propsign=%3D&pl=Calculate+missing+proportion+value']type this proportion in our calculator[/URL] and we get:
p = [B]35[/B]
8 increased by the product of a number and 7 is greater than or equal to -18Take this in parts:
First, the phrase, "a number" means we pick an arbitrary variable, let's call it x.
The product of a number and 7 is 7x.
8 increased by the product of 7x means we add them together.
7x + 8
Finally that entire expression is greater than [U]or equal to[/U] -18
[B]7x + 8 >=-18[/B]
8 is subtracted from thrice a numberThrice a number means we multiply by 3. A number means an arbitrary variable, let's call it x
3x
8 is subtracted from 3x
[B]3x - 8[/B]
8 is subtracted from twice a numberTwice a number:
[LIST]
[*]Choose an arbitrary variable, let's call it x
[*]Twice x means multiply by 2
[*]2x
[/LIST]
8 subtracted from 2x:
[B]2x - 8[/B]
8 more than twice a number is less than 6 more than the number8 more than twice a number is less than 6 more than the number.
This is an algebraic expression, let's take it in pieces...
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
8 more than twice a number:
Twice a number means multiply x by 2: 2x
Then add 8: 2x + 8
6 more than the number, means we add 6 to x
x + 6
The phrase [I]is less than[/I] means an inequality, where we set 2x + 8 less than x + 6
[B]2x + 8 < x + 6[/B]
8 times the difference of a number and 2 is the same as 3 times the sum of the number and 3. What is8 times the difference of a number and 2 is the same as 3 times the sum of the number and 3. What is the number?
Let the number be n. We're given two expressions:
[LIST=1]
[*]8(n - 2) [I]difference means we subtract[/I]
[*]3(n + 3) [I]sum means we add[/I]
[/LIST]
The phrase [I]is the same as[/I] mean an equation. So we set the first expression equal to the second expression:
8(n - 2) = 3(n + 3)
To solve this equation for n, we [URL='https://www.mathcelebrity.com/1unk.php?num=8%28n-2%29%3D3%28n%2B3%29&pl=Solve']type it in our search engine[/URL] and we see that:
n =[B] 5[/B]
8 times the sum of 5 times a number and 98 times the sum of 5 times a number and 9
Take this algebraic expression in parts:
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
5 times a number means:
5x
The sum of this and 9 means we add 9 to 5x:
5x + 9
Now we multiply 8 times this sum:
[B]8(5x + 9)[/B]
8,11,14,17,20 What is the next number? What is the 150th term?8,11,14,17,20
What is the next number?
What is the 150th term?
We're adding by 3 to the last number in the sequence, so we have the next number as:
20 + 3 = [B]23
[/B]
For the nth term, we have a formula of this:
3n + 5
3(1) + 5 = 8
3(2) + 5 = 11
3(3) + 5 = 14
With n = 150, we have:
3(150) + 5 = 450 + 5 = [B]455[/B]
80 people 40% were women 12 were children. How many men?80 people 40% were women 12 were children. How many men?
Calculate the number of women:
40% of 80 is 32.
12 were children, so the women and children = 32 + 12 = 44.
Which means the men = 80 - 44 = [B]36[/B]
9 friends were paid $385 to clean up the local lake. How much does each friend receive9 friends were paid $385 to clean up the local lake. How much does each friend receive
Each friend gets:
Total Payment / Number of friends
$385/9
[B]$42.78[/B]
9 is one-third of a number x9 is one-third of a number x
A number x can be written as x
x
one-third of a number x means we multiply x by 1/3:
x/3
The phrase [I]is[/I] means an equation, so we set 9 equal to x/3 to get our final algebraic expression of:
[B]x/3 = 9[/B]
If the problem asks you to solve for x, you [URL='https://www.mathcelebrity.com/prop.php?num1=x&num2=9&den1=3&den2=1&propsign=%3D&pl=Calculate+missing+proportion+value']type this algebraic expression into our search engine[/URL] and you get:
[B]x = 27[/B]
9 is the sum of 7 and twice a number9 is the sum of 7 and twice a number
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
Twice a number means we multiply x by 2:
2x
The sum of 7 and twice a number
7 + 2x
The word [I]is[/I] mean equal to, so we set 7 + 2x equal to 9:
[B]7 + 2x = 9[/B]
9 less than 5 times a number is 3 more than 2x9 less than 5 times a number is 3 more than 2x
The phrase [I]a number[/I] means an arbitrary variable, let's call it x:
x
5 times a number means we multiply x by 5:
5x
9 less than 5x means we subtract 9 from 5x:
5x - 9
3 more than 2x means we add 3 to 2x:
2x + 3
The word [I]is[/I] means an equation, so we set 5x - 9 equal to 2x + 3:
[B]5x - 9 = 2x + 3 <-- This is our algebraic expression[/B]
[B][/B]
If you want to solve for x, [URL='https://www.mathcelebrity.com/1unk.php?num=5x-9%3D2x%2B3&pl=Solve']type this equation into the search engine[/URL], and we get:
x = [B]4[/B]
9 subtracted from the product of 3 and a number is greater than or equal to 169 subtracted from the product of 3 and a number is greater than or equal to 16
[LIST=1]
[*]The phrase [I]a number[/I] means an arbitrary variable, let's call it x
[*]The product of 3 and a number means we multiply 3 times x: 3x
[*]9 subtracted from the product: 3x - 9
[*]The phrase is greater than or equal to means an inequality. So we set up an inequality with >= for the greater than or equal to sign in relation to 3x - 9 and 16
[/LIST]
Our algebraic expression (inequality) becomes:
[B]3x - 19 >= 16[/B]
9 times a number is that number minus 109 times a number is that number minus 10
The phrase [I]a number[/I] means we define a random/arbitrary variable, let's call it x:
x
9 times a number means we multiply x by 9:
9x
The phrase [I]that number[/I] refers back to the original arbitrary variable we defined above, which is x:
x
That number minus 10 means we subtract 10 from x:
x - 10
The word [I]is[/I] means equal to, so we set 9x equal to x - 10
[B]9x = x - 10[/B]
9 times a number is that number minus 39 times a number is that number minus 3
Let [I]a number[/I] be an arbitrary variable, let's call it x. We're given:
9 times a number is 9x
The number minus 3 is x - 3
The word [I]is[/I] means an equation, so we set 9x equal to x - 3 to get our [I]algebraic expression[/I]:
[B]9x = x - 3[/B]
To solve for x, we type this equation into our search engine and we get:
x = [B]-0.375 or -3/8[/B]
9, 3, 1, 1/3, 1/9 What is the next number in this sequence? What is the function machine for this se9, 3, 1, 1/3, 1/9
What is the next number in this sequence?
What is the function machine for this sequence?
We see the following pattern in this sequence:
9 = 9/3^0
3 = 9/3^1
1 = 9/3^2
1/3 = 9/3^3
1/9 = 9/3^4
Our function machine formula is:
[B]f(n) = 9/3^(n - 1)
[/B]
Next term is the 6th term:
f(6) = 9/3^(6 - 1)
f(6) = 9/3^5
f(6) = 9/243
f(6) = [B]1/27[/B]
993 cold drinks bottles are to be placed in crates. Each crate can hold 9 bottles. How many crates w993 cold drinks bottles are to be placed in crates. Each crate can hold 9 bottles. How many crates would be needed and how many bottles will remain?
Let c equal the number of crates
9 bottles per crate * c = 993
9c = 993
Solve for [I]c[/I] in the equation 9c = 993
[SIZE=5][B]Step 1: Divide each side of the equation by 9[/B][/SIZE]
9c /9 = 993/9
c = 110.33333333333
Since we can't have fractional crates, we round up 1 to the next full crate
c = [B]111[/B]
A $1,000 investment takes a 10% loss each year. What will be the value 3 years?A $1,000 investment takes a 10% loss each year. What will be the value 3 years?
10% is 0.1. Our Balance function B(y) where y is the number of years since the start is:
B(y) = 1000(1 - 0.1)^y
B(y) = 1000(0.9)^y
We want to know B(3):
B(3) = 1000(0.9)^3
B(3) = 1000(0.729)
B(3) = [B]729[/B]
A 100 point test contains a total of 20 questions. The multiple choice questions are worth 3 pointsA 100 point test contains a total of 20 questions. The multiple choice questions are worth 3 points each and short response questions are worth 8 points each. Write a system of linear equations that represents this situation
Assumptions:
[LIST]
[*]Let m be the number of multiple choice questions
[*]Let s be the number of short response questions
[/LIST]
Since total points = points per problem * number of problems, we're given 2 equations:
[LIST=1]
[*][B]m + s = 20[/B]
[*][B]3m + 8s = 100[/B]
[/LIST]
We can solve this system of equations 3 ways:
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=m+%2B+s+%3D+20&term2=3m+%2B+8s+%3D+100&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=m+%2B+s+%3D+20&term2=3m+%2B+8s+%3D+100&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=m+%2B+s+%3D+20&term2=3m+%2B+8s+%3D+100&pl=Cramers+Method']Cramer's Rule[/URL]
[/LIST]
No matter which method we choose, we get:
[B]m = 12, s = 8[/B]
a 12 sided die is rolled find the probability of rolling a number greater than 7a 12 sided die is rolled find the probability of rolling a number greater than 7
We assume this is a fair die, not loaded.
This means each side 1-12 has an equal probability of 1/12 of being rolled.
The problem asks, P(Roll > 7)
Greater than 7 means our sample space is {8, 9, 10, 11, 12}
If each of these 5 faces have an equal probability of being rolled, then we have:
P(Roll > 7) = P(Roll = 8) + P(Roll = 9) + P(Roll = 10) + P(Roll = 11) + P(Roll = 12)
P(Roll > 7) = 1/12 + 1/12 + 1/12 + 1/12 + 1/12
P(Roll > 7) =[B] 5/12[/B]
A 12-sided die is rolled. The set of equally likely outcomes is {1,2,3,4,5,6,7,,8,9,10,11,12}. FindA 12-sided die is rolled. The set of equally likely outcomes is {1,2,3,4,5,6,7,,8,9,10,11,12}. Find the probability of rolling a number less than 6.
We want a {1, 2, 3, 4, 5}
P(X < 6) =[B] 5/12[/B]
A 12-sided die is rolled. The set of equally likely outcomes is {1,2,3,4,5,6,7,8,9,10,11,12}. Find tA 12-sided die is rolled. The set of equally likely outcomes is {1,2,3,4,5,6,7,8,9,10,11,12}. Find the probability of rolling a number less than 6.
We have 12 outcomes.
Less than 6 means 1, 2, 3, 4, 5.
Our probability P(x < 6) is:
P(x < 6) = [B]5/12[/B]
A 16 pound roast will feed 24 people. If the largest roast you can buy is 12 pounds. How many peopleA 16 pound roast will feed 24 people. If the largest roast you can buy is 12 pounds. How many people can you feed?
Set up a proportion of roast pounds to people fed, where p is the number of people fed on a 12 pound roast:
16/24 = 12/p
[URL='https://www.mathcelebrity.com/prop.php?num1=16&num2=12&den1=24&den2=p&propsign=%3D&pl=Calculate+missing+proportion+value']Run this through our proportion calculator[/URL] by typing 16/24 = 12/p into our search engine.
We get [B]p = 18[/B].
A 12 pound roast will feed 18 people.
A 1975 comic book has appreciated 8% per year and originally sold for $0.26. What will the comic booA 1975 comic book has appreciated 8% per year and originally sold for $0.26. What will the comic book be worth in 2020
Calculate the number of years:
2020 - 1975 = 45
Set up the accumulation function A(t) where t is the number of years since 1975:
A(t) = 0.26(1.08)^t
We want A(45)
A(45) = 0.26(1.08)^45
A(45) = 0.26 * 32.9045
A(45) = [B]8.30[/B]
a 24 sheet of aluminum is to be cut into 2.5 strips. how wide is the remaining wasted piece of alumia 24 sheet of aluminum is to be cut into 2.5 strips. how wide is the remaining wasted piece of aluminum
Divide 24 by 2.5 to get number of sheets:
24/2.5 = 9.6
So we have 9 full sheets. Which means each strip is [B]0.6 wide[/B]
A 3-digit security code can use the numbers 0-9. How many possible combinations are there if the numA 3-digit security code can use the numbers 0-9. How many possible combinations are there if the numbers can be repeated
[0-9] * [0-9] * [0-9]
10 * 10 * 10 = [B]1,000 combinations[/B]
A 50-pound bowling ball and an 8-pound bowling ball are dropped from a tall building. Which ball wilA 50-pound bowling ball and an 8-pound bowling ball are dropped from a tall building. Which ball will hit first?
[B]They will land at the same time[/B]
[B]How fast something falls due to gravity is determined by a number known as the "acceleration of gravity", which is 9.81 m/s^2 at the surface of our Earth. In one second, [I]any object[/I]’s downward velocity will increase by 9.81 m/s because of gravity. This is just the way gravity works - it accelerates everything at exactly the same rate.[/B]
A 6-sided die is rolled once. What is the probability of rolling a number less than 4?A 6-sided die is rolled once. What is the probability of rolling a number less than 4?
Using our [URL='https://www.mathcelebrity.com/1dice.php?gl=4&pl=4&opdice=1&rolist=+2%2C3%2C4&dby=+2%2C3%2C5&montect=+100']one dice calculator[/URL], we get:
P(N < 4) = [B]1/2[/B]
A 6000 seat theater has tickets for sale at $24 and $40. How many tickets should be sold at each priA 6000 seat theater has tickets for sale at $24 and $40. How many tickets should be sold at each price for a sellout performance to generate a total revenue of $188,800?
Let x be the number of $24 tickets, and y be the number of $40 tickets. We have:
[LIST=1]
[*]24x + 40y = 188,800
[*]x + y = 6,000
[*]Rearrange (2) to solve for x: x = 6000 - y
[*]Plug in (3) to (1):
[/LIST]
24(6000 - y) + 40y = 188800
144,000 - 24y + 40y = 188,800
16y + 144,000 = 188,800
Subtract 144,000 from each side:
16y = 44,800
Divide each side by 16
y = 2,800 ($40 tickets)
Plug this into (2)
x + 2,800 = 6000
Subtract 2,800 from each side:
x = 3,200 ($24 tickets)
A = himpunan bilangan prima yang kurang dari 20. Banyaknya anggota himpunan A adalah …A = himpunan bilangan prima yang kurang dari 20. Banyaknya anggota himpunan A adalah …
[URL='https://www.mathcelebrity.com/prime-numbers.php?num=8&pl=Prime+Numbers']Dengan menggunakan kalkulator nombor perdana, kami mendapat[/URL]:
[B]A = {2, 3, 5, 7, 11, 13, 17, 19}[/B]
A bag contains 19 balls numbered 1 through 19. What is the probability that a randomly selected ballA bag contains 19 balls numbered 1 through 19. What is the probability that a randomly selected ball has an even number?
Even numbers in the bag are {2,4,6,8,10,12,14,16,18}
So we have 9 total even numbers.
Therefore, the probability of drawing an even number is [B]9/19[/B]
A bag contains 3 red marbles and 4 blue marbles. a marble is taken at random and replaced. another mA bag contains 3 red marbles and 4 blue marbles. a marble is taken at random and replaced. Another marble is taken from the bag. Work out the probability that the two marbles taken from the bag are the same color.
[LIST]
[*]Total number of marbles in the bag is 3 + 4 = 7.
[*]The problem asks for the probability of (RR) [I]or[/I] (BB).
[*]It's worthy to note we are replacing the balls after each draw, which means we always have 7 to draw from
[/LIST]
Since each draw is independent, we take the product of each event for the total event probability.
P(RR) = 3/7 * 3/7 = 9/49
P(BB) = 4/7 * 4/7 = 16/49
We want to know P(RR) + P(BB)
P(RR) + P(BB) = 9/49 + 16/49 = 25/49
[MEDIA=youtube]26F9vjsgNGs[/MEDIA]
A bag contains 5 blue marbles, 6 red marbles, and 4 green marbles. You select one marble at random fA bag contains 5 blue marbles, 6 red marbles, and 4 green marbles. You select one marble at random from the bag. What is P(blue)
P(blue) = Number of blue marbles / Total Marbles
P(blue) = 5 / (5 + 6 + 4)
P(blue) = 5/15
We can reduce this. So we [URL='https://www.mathcelebrity.com/fraction.php?frac1=5%2F15&frac2=3%2F8&pl=Simplify']type in 5/15 into our search engine, choose simplify[/URL], and we get:
P(blue) = [B]1/3[/B]
A bag contains 666 red balls, 444 green balls, and 333 blue balls. If we choose a ball, then anotherA bag contains 666 red balls, 444 green balls, and 333 blue balls. If we choose a ball, then another ball without putting the first one back in the bag, what is the probability that the first ball will be green and the second will be red?
[U]Calculate total number of balls to start:[/U]
Total Balls = Red Balls + Green Balls + Blue Balls
Total Balls = 666 + 444 + 333
Total Balls = 1,443
[U]Calculate the probability of drawing a green ball on the first pick:[/U]
P(Green) = Green Balls / Total Balls
P(Green) = 444/1443
P(Green) = 0.30769
[U]Calculate the probability of drawing a red ball on the second pick (without replacement):[/U]
Total Balls decrease by 1, since we do not replace. So Total Balls = 1,443 - 1 = 1,442
P(Red) = Red Balls / Total Balls
P(Red) = 666/1442
P(Red) = 0.46186
Now, we want the probability of Green, Red in that order.
Since each event is independent, we multiply the event probabilities
P(Green, Red) = P(Green) * P(Red)
P(Green, Red) = 0.30769 * 0.46186
P(Green, Red) = [B]0.14211[/B]
A bag contains tiles, 3 tiles are red. 6 tiles are green, and 3 tiles are blue. A tile will be randoA bag contains tiles, 3 tiles are red. 6 tiles are green, and 3 tiles are blue. A tile will be randomly selected from the bag . What is the probability that the tile selected will be green
P(green) = Number of green tiles / Total Tiles
P(green) = 6 / (3 + 6 + 3)
P(green) = 6 / 12
We can simplify this fraction. We [URL='https://www.mathcelebrity.com/fraction.php?frac1=6%2F12&frac2=3%2F8&pl=Simplify']type in 6/12 into our search engine, pick simplify[/URL], and we get:
P(green) = [B]1/2 or 0.5[/B]
A bag of fertilizer covers 300 square feet of lawn. Find how many bags of fertilizer should be purchA bag of fertilizer covers 300 square feet of lawn. Find how many bags of fertilizer should be purchased to cover a rectangular lawn 290 feet by 150 feet.
The area of a rectangle is length * width, so we have:
A = 290 * 150
A = 43,500 sq ft.
Now, to find the number of bags needed for a 300 square feet per bag of fertilizer, we have:
Bags Needed = Total Square Feet of Lawn / Square Feet covered per bag
Bags Needed = 43,500 / 300
Bags Needed = [B]145[/B]
A bag of marbles is said to contain 50 marbles to the nearest ten. What is the greatest number of maA bag of marbles is said to contain 50 marbles to the nearest ten. What is the greatest number of marbles that could be in the bag and what is the least number of marbles that could be in the bag
The key word in this problem is [I][B]nearest ten[/B][/I].
The nearest ten below 50 starts at 45. Why? Because the last digit is 5. At 5, we round up to the nearest ten.
Therefore, the least number of marbles in the bag is 45 since it rounds up to 50 for the nearest ten
The greatest number above 50 rounded to the nearest ten is 54, because less than 5 on the last digit means we round down.
Therefore, the greatest number of marbles in the bag is 54 since it rounds down to 50 when the last digit is less than 5
Answer:
{[B]45, 54}
[MEDIA=youtube]-cl_OHA8-yc[/MEDIA][/B]
A bag of quarters and nickels is worth $8.30. There are two less than three times as many quarters aA bag of quarters and nickels is worth $8.30. There are two less than three times as many quarters as nickels. How many of the coins must be quarters?
Assumptions and givens:
[LIST]
[*]Let the number of quarters be q
[*]Let the number of nickels be n
[/LIST]
We have two equations:
[LIST=1]
[*]0.05n + 0.25q = 8.30
[*]n = 3q - 2 [I](Two less than Three times)[/I]
[/LIST]
Plug in equation (2) into equation (1) for q to solve this system of equations:
0.05(3q - 2) + 0.25q = 8.30
To solve this equation for q, we [URL='https://www.mathcelebrity.com/1unk.php?num=0.05%283q-2%29%2B0.25q%3D8.30&pl=Solve']type it in our search engine[/URL] and we get:
q = [B]21[/B]
A baker determined the annual profit in dollars from selling pies using p(n ) = 52n - 0.05n^2, whereA baker determined the annual profit in dollars from selling pies using p(n ) = 52n - 0.05n^2, where n is the number of pies sold. What is the annual profit if the baker sells 700 pies?
p(700) = 52(700) - 0.05(700)^2
p(700) = 36400 - 0.05 * 490000
p(700) = 36400 - 24500
p(700) = [B]11900[/B]
A baker determined the annual profit in dollars from selling pies using p(n) = 52n - 0.05n^2 , whereA baker determined the annual profit in dollars from selling pies using p(n) = 52n - 0.05n^2 , where n is the number of pies sold. What is the annual profit if the baker sells 400 pies?
p(400) = 52(400) - 0.05(400)^2
p(400) = 20800 - 0.05(160000)
p(400) = 20800 - 8000
p(400) = [B]12800[/B]
A bakery has a fixed cost of $119.75 per a day plus $2.25 for each pastry. The bakery would like toA bakery has a fixed cost of $119.75 per a day plus $2.25 for each pastry. The bakery would like to keep its daily costs at or below $500 per day. Which inequality shows the maximum number of pastries, p, that can be baked each day.
Set up the cost function C(p), where p is the number of pastries:
C(p) = Variable Cost + Fixed Cost
C(p) = 2.25p + 119.75
The problem asks for C(p) at or below $500 per day. The phrase [I]at or below[/I] means less than or equal to (<=).
[B]2.25p + 119.75 <= 500[/B]
A bakery sells 349 pieces pande coco in a day. About how many pande coco bread can bakery shop sellA bakery sells 349 pieces pande coco in a day. About how many pande coco bread can bakery shop sell in 25 days?
Total pieces of coco = Pieces per day * Number of Days
Total pieces of coco = 349 * 25
Total pieces of coco = [B]8,725[/B]
A bakery sells 5800 muffins in 2010. The bakery sells 7420 muffins in 2015. Write a linear model thaA bakery sells 5800 muffins in 2010. The bakery sells 7420 muffins in 2015. Write a linear model that represents the number y of muffins that the bakery sells x years after 2010.
Find the number of muffins sold after 2010 through 2015:
7,420 - 5,800 = 1,620
Now, since the problem states a linear sales model, we need to determine the sales per year:
1,620 muffins sold since 2010 / 5 years = 324 muffins per year.
Build our linear model:
[B]y = 5,800 + 324x
[/B]
Reading this out loud, we start with 5,800 muffins at the end of 2010, and we add 324 more muffins for each year after 2010.
A ball was dropped from a height of 6 feet and began bouncing. The height of each bounce was three-fA ball was dropped from a height of 6 feet and began bouncing. The height of each bounce was three-fourths the height of the previous bounce. Find the total vertical distance travelled by the all in ten bounces.
The height of each number bounce (n) is shown as:
h(n) = 6(0.75)^n
We want to find h(10)
h(n) = 6(0.75)^n
Time Height
0 6
1 4.5
2 3.375
3 2.53125
4 1.8984375
5 1.423828125
6 1.067871094
7 0.8009033203
8 0.6006774902
9 0.4505081177
10 0.3378810883
Adding up each bounce from 1-10, we get:
16.98635674
Since vertical distance means both [B]up and down[/B], we multiply this number by 2 to get:
16.98635674 * 2 = 33.97271347
Then we add in the initial bounce of 6 to get:
33.97271347 + 6 = [B]39.97271347 feet[/B]
A bamboo tree grew 3 inches per day. How many days will it take the tree to grow 144 inches? ChooseA bamboo tree grew 3 inches per day. How many days will it take the tree to grow 144 inches? Choose the correct equation to represent this situation.
Let the number of days be d. We have the equation:
3d = 144
To solve this equation for d, we [URL='https://www.mathcelebrity.com/1unk.php?num=3d%3D144&pl=Solve']type it in our search engine[/URL] and we get:
d = [B]48[/B]
A bank charges a service fee of $7.50 per month for a checking account. A bank account has $85.00. IA bank charges a service fee of $7.50 per month for a checking account. A bank account has $85.00. If no money is deposited or withdrawn except the service charge, how many months until the account balance is negative?
Let m be the number of months. Our balance is denoted by B(m):
B(m) = 85 - 7.5m
The question asks when B(m) is less than 0. So we set up an inequality:
85 - 7.5m < 0
To solve this inequality for m, [URL='https://www.mathcelebrity.com/1unk.php?num=85-7.5m%3C0&pl=Solve']we type it in our search engine[/URL] and we get:
m > 11.3333
We round up to the next whole integer and get [B]m = 12[/B]
A barn contains cows, ducks, and a 3-legged dog named Tripod. There are twice as many cows as ducksA barn contains cows, ducks, and a 3-legged dog named Tripod. There are twice as many cows as ducks in the barn and a total of 313 legs. How many ducks are there in the barn?
[LIST]
[*]Let the number of ducks be d. Duck legs = 2 * d = 2d
[*]Number of cows = 2d. Cow legs = 4 * 2d = 8d
[*]1 dog Tripod has 3 legs
[/LIST]
Total legs:
2d + 8d + 3 = 313
Solve for [I]d[/I] in the equation 2d + 8d + 3 = 313
[SIZE=5][B]Step 1: Group the d terms on the left hand side:[/B][/SIZE]
(2 + 8)d = 10d
[SIZE=5][B]Step 2: Form modified equation[/B][/SIZE]
10d + 3 = + 313
[SIZE=5][B]Step 3: Group constants:[/B][/SIZE]
We need to group our constants 3 and 313. To do that, we subtract 3 from both sides
10d + 3 - 3 = 313 - 3
[SIZE=5][B]Step 4: Cancel 3 on the left side:[/B][/SIZE]
10d = 310
[SIZE=5][B]Step 5: Divide each side of the equation by 10[/B][/SIZE]
10d/10 = 310/10
d = [B]31[/B]
[URL='https://www.mathcelebrity.com/1unk.php?num=2d%2B8d%2B3%3D313&pl=Solve']Source[/URL]
A baseball card that was valued at $100 in 1970 has increased in value by 8% each year. Write a funcA baseball card that was valued at $100 in 1970 has increased in value by 8% each year. Write a function to model the situation the value of the card in 2020.Let x be number of years since 1970
The formula for accumulated value of something with a percentage growth p and years x is:
V(x) = Initial Value * (1 + p/100)^x
Set up our growth equation where 8% = 0.08 and V(y) for the value at time x and x = 2020 - 1970 = 50, we have:
V(x) = 100 * (1 + 8/100)^50
V(x) = 100 * (1.08)^50
V(x) = 100 * 46.9016125132
V(x) = [B]4690.16[/B]
a baseball park charges $4.50 per admission ticket. the park has already sold 42 tickets. how many ma baseball park charges $4.50 per admission ticket. the park has already sold 42 tickets. how many more tickets would they need to sell to earn at least $441?
Let the number of tickets above 42 be t.
A few things to note on this question:
[LIST]
[*]The phrase [I]at least[/I] means greater than or equal to, so we have an inequality.
[*]Earnings = Price * Quantity
[/LIST]
We're given:
Earnings = 4.50 * 42 + 4.5t >= 441
Earnings = 189 + 4.5t >= 441
We want to solve this inequality for t:
Solve for [I]t[/I] in the inequality 189 + 4.5t ≥ 441
[SIZE=5][B]Step 1: Group constants:[/B][/SIZE]
We need to group our constants 189 and 441. To do that, we subtract 189 from both sides
4.5t + 189 - 189 ≥ 441 - 189
[SIZE=5][B]Step 2: Cancel 189 on the left side:[/B][/SIZE]
4.5t ≥ 252
[SIZE=5][B]Step 3: Divide each side of the inequality by 4.5[/B][/SIZE]
4.5t/4.5 ≥ 252.4.5
[B]t ≥ 56[/B]
A baseball player gets 3 hits in the first 15 games of the season. If he continues hitting at the saA baseball player gets 3 hits in the first 15 games of the season. If he continues hitting at the same rate, how many hits will he get in the first 45 games?
We set up a proportion of hits to games where h is the number of hits the player gets in 45 games:
3/15 = h/45
[URL='https://www.mathcelebrity.com/prop.php?num1=3&num2=h&den1=15&den2=45&propsign=%3D&pl=Calculate+missing+proportion+value']Enter this into our search engine[/URL], and we get [B]h = 9[/B].
A baseball player gets 7 hits in the first 15 games of the season. If he continues hitting at the saA baseball player gets 7 hits in the first 15 games of the season. If he continues hitting at the same rate, how many hits will he get in the first 45 games?
Let's find the proportion of hits to games. Using h as the number of hits in 45 games, we have:
7/15 = h/45
Using our [URL='http://www.mathcelebrity.com/prop.php?num1=7&num2=h&den1=15&den2=45&propsign=%3D&pl=Calculate+missing+proportion+value']proportion calculator[/URL], we get h = 21
a baseball player has 9 hits in his first 60 at bats. how many consecutive hits would he need to bria baseball player has 9 hits in his first 60 at bats. how many consecutive hits would he need to bring his average up to 0.400?
Let the amount of consecutive hits needed be h. We have:
hits / at bats = Batting Average
Plugging in our numbers, we get:
(9 + h)/60 = 0.400
Cross multiply:
9 + h = 60 * 0.4
9 + h = 24
To solve this equation for h, [URL='https://www.mathcelebrity.com/1unk.php?num=9%2Bh%3D24&pl=Solve']we type it in our search engine[/URL] and we get:
h = [B]15[/B]
A bicycle store costs $1500 per month to operate. The store pays an average of $60 per bike. The aveA bicycle store costs $1500 per month to operate. The store pays an average of $60 per bike. The average selling price of each bicycle is $80. How many bicycles must the store sell each month to break even?
Profit = Revenue - Cost
Let the number of bikes be b.
Revenue = 80b
Cost = 60b + 1500
Break even is when profit equals 0, which means revenue equals cost. Set them equal to each other:
60b + 1500 = 80b
We [URL='https://www.mathcelebrity.com/1unk.php?num=60b%2B1500%3D80b&pl=Solve']type this equation into our search engine[/URL] and we get:
b = [B]75[/B]
A bicycle store costs $2750 per month to operate. The store pays an average of $45 per bike. The aA bicycle store costs $2750 per month to operate. The store pays an average of $45 per bike. The average selling price of each bicycle is $95. How many bicycles must the store sell each month to break even?
Let the number of bikes be b.
Set up our cost function, where it costs $45 per bike to produce
C(b) = 45b
Set up our revenue function, where we earn $95 per sale for each bike:
R(b) = 95b
Set up our profit function, which is how much we keep after a sale:
P(b) = R(b) - C(b)
P(b) = 95b - 45b
P(b) = 50b
The problem wants to know how many bikes we need to sell to break-even. Note: break-even means profit equals operating cost, which in this case, is $2,750. So we set our profit function of 50b equal to $2,750
50b = 2750
[URL='https://www.mathcelebrity.com/1unk.php?num=50b%3D2750&pl=Solve']We type this equation into our search engine[/URL], and we get:
b = [B]55[/B]
a bicycle store costs $3600 per month to operate. The store pays an average of $60 per bike. the avea bicycle store costs $3600 per month to operate. The store pays an average of $60 per bike. the average selling price of each bicycle is $100. how many bicycles must the store sell each month to break even?
Cost function C(b) where b is the number of bikes:
C(b) = Variable Cost + Fixed Cost
C(b) = Cost per bike * b + operating cost
C(b) = 60b + 3600
Revenue function R(b) where b is the number of bikes:
R(b) = Sale price * b
R(b) = 100b
Break Even is when Cost equals Revenue, so we set C(b) = R(b):
60b + 3600 = 100b
To solve this equation for b, we [URL='https://www.mathcelebrity.com/1unk.php?num=60b%2B3600%3D100b&pl=Solve']type it in our math engine[/URL] and we get:
b = [B]90[/B]
A boat can carry 582 passengers to the base of a waterfall. A total of 13,105 people ride the boat tA boat can carry 582 passengers to the base of a waterfall. A total of 13,105 people ride the boat today. All the rides are full except for the first ride. How many rides are given?
582 passengers on the boat
Let r be the number of rides
So we want to find r when:
582r = 13105
To solve for r, we [URL='https://www.mathcelebrity.com/1unk.php?num=582r%3D13105&pl=Solve']type this equation into our math engine[/URL] and we get:
r = 22.517
If we round this down, setting 0.517 rides as the first ride, we get:
r = [B]22
[MEDIA=youtube]0J2YRPzKsoU[/MEDIA][/B]
A book publishing company has fixed costs of $180,000 and a variable cost of $25 per book. The booksA book publishing company has fixed costs of $180,000 and a variable cost of $25 per book. The books they make sell for $40 each.
[B][U]Set up Cost Function C(b) where b is the number of books:[/U][/B]
C(b) = Fixed Cost + Variable Cost x Number of Units
C(b) = 180,000 + 25(b)
[B]Set up Revenue Function R(b):[/B]
R(b) = 40b
Set them equal to each other
180,000 + 25b = 40b
Subtract 25b from each side:
15b = 180,000
Divide each side by 15
[B]b = 12,000 for break even[/B]
A Bouquet of lillies and tulips has 12 flowers. Lillies cost $3 each, and tulips cost $2 each. The bA Bouquet of lillies and tulips has 12 flowers. Lillies cost $3 each, and tulips cost $2 each. The bouquet costs $32. Write and solve a system of linear equations to find the number of lillies and tulips in the bouquet.
Let l be the number of lillies and t be the number of tulips. We're given 2 equations:
[LIST=1]
[*]l + t = 12
[*]3l + 2t = 32
[/LIST]
With this system of equations, we can solve it 3 ways.
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=l+%2B+t+%3D+12&term2=3l+%2B+2t+%3D+32&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=l+%2B+t+%3D+12&term2=3l+%2B+2t+%3D+32&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=l+%2B+t+%3D+12&term2=3l+%2B+2t+%3D+32&pl=Cramers+Method']Cramers Rule[/URL]
[/LIST]
No matter which method we choose, we get:
[LIST]
[*][B]l = 8[/B]
[*][B]t = 4[/B]
[/LIST]
[B]Now Check Your Work For Equation 1[/B]
l + t = 12
8 + 4 ? 12
12 = 12
[B]Now Check Your Work For Equation 2[/B]
3l + 2t = 32
3(8) + 2(4) ? 32
24 + 8 ? 32
32 = 32
A bowler knocks down at least 6 pins 70 percent of the time. Out of 200 rolls, how many times can yoA bowler knocks down at least 6 pins 70 percent of the time. Out of 200 rolls, how many times can you predict the bowler will knock down at least 6 pins?
Expected Value of (knocking down at least 6 pins) = number of rolls * probability of knocking down at least 6 pins
Expected Value of (knocking down at least 6 pins) = 200 * 0.7
Expected Value of (knocking down at least 6 pins) = [B]140[/B]
A box of pencils weights 3.25 grams. If the teacher orders 14 boxes, how much would the pencils weigA box of pencils weights 3.25 grams. If the teacher orders 14 boxes, how much would the pencils weigh?
Total Weight = Number of Boxes * Weight per box
Total Weight = 14 * 3.25
Total Weight = [B]45.5 grams[/B]
A bunny population is doubling every 2 years. There are currently 45 bunnies. How many will there beA bunny population is doubling every 2 years. There are currently 45 bunnies. How many will there be in 10 years?
Find the number of doubling periods:
Number of Doubling periods = Time / Doubling period
Number of Doubling periods = 10/2
Number of Doubling periods = 5
Create a function to determine the amount of bunnies after each doubling period:
B(n) = 45 * 2^n
Since we calculated 5 doubling periods, we want B(5):
B(5) = 45 * 2^5
B(5) = 45 * 32
B(5) = [B]1,440[/B]
A bus holds 45 students. How many buses were taken on a field trip if 13 students travels by car andA bus holds 45 students. How many buses were taken on a field trip if 13 students travels by car and total of 320 students went on a trip?
[U]Find the number of students who went on the bus:[/U]
Number of students who went on the bus = Total students on field trip - students who traveled by car
Number of students who went on the bus = 320 - 13
Number of students who went on the bus = 307
Calculate the number of buses needed:
Number of buses needed = Number of students who went on the bus / Bus Capacity
Number of buses needed = 307 / 45
Number of buses needed = 6.822
We round up for a full bus to get [B]7 buses[/B]
A bus ride cost 1.50. A 30 day pass cost $24. Write an inequallity to show that the 30 day pass is tA bus ride cost 1.50. A 30 day pass cost $24. Write an inequallity to show that the 30 day pass is the better deal
Let the number of days be d. We have the inequality below where we show when the day to day cost is greater than the monthly pass:
1.5d > 24
To solve this inequality for d, we [URL='https://www.mathcelebrity.com/interval-notation-calculator.php?num=1.5d%3E24&pl=Show+Interval+Notation']type it in our search engine[/URL] and we get:
[B]d > 16[/B]
A cab charges $5 for the ride plus $1.25 per mile. How much will a 53 mile trip cost?A cab charges $5 for the ride plus $1.25 per mile. How much will a 53 mile trip cost?
We set up our cost function C(m) where m is the number of miles:
C(m) = 1.25m + 5
The problem asks for C(53):
C(53) = 1.25(53) + 5
C(53) = 66.25 + 5
C(53) = [B]$71.25[/B]
A cab company charges $5 per cab ride, plus an additional $1 per mile driven , How long is a cab ridA cab company charges $5 per cab ride, plus an additional $1 per mile driven , How long is a cab ride that costs $13?
Let the number of miles driven be m. Our cost function C(m) is:
C(m) = Cost per mile * m + cab cost
C(m) = 1m + 5
The problem asks for m when C(m) = 13:
1m + 5 = 13
To solve this equation for m, [URL='https://www.mathcelebrity.com/1unk.php?num=1m%2B5%3D13&pl=Solve']we type it in our search engine[/URL] and we get:
m = [B]8[/B]
A cab company charges $5 per cab ride, plus an additional $3 per mile driven. How long is a cab rideA cab company charges $5 per cab ride, plus an additional $3 per mile driven. How long is a cab ride that costs $17?
Let m be the number of miles driven. We setup the cost equation C(m):
C(m) = Cost per mile driven * miles driven + ride cost
C(m) = 3m + 5
The questions asks for m when C(m) is 17:
3m + 5 = 17
To solve this equation for m, we [URL='https://www.mathcelebrity.com/1unk.php?num=3m%2B5%3D17&pl=Solve']type it in our search engine[/URL] and we get:
m = [B]4[/B]
A cable company charges $75 for installation plus $20 per month. Another cable company offers free iA cable company charges $75 for installation plus $20 per month. Another cable company offers free installation but charges $35 per month. For how many months of cable service would the total cost from either company be the same
[U]Set ups the cost function for the first cable company C(m) where m is the number of months:[/U]
C(m) = cost per month * m + installation fee
C(m) = 20m + 75
[U]Set ups the cost function for the second cable company C(m) where m is the number of months:[/U]
C(m) = cost per month * m + installation fee
C(m) = 35m
The problem asks for m when both C(m) functions are equal. So we set both C(m) functions equal and solve for m:
20m + 75 = 35m
To solve for m, we [URL='https://www.mathcelebrity.com/1unk.php?num=20m%2B75%3D35m&pl=Solve']type this equation into our search engine[/URL] and we get:
m = [B]5[/B]
A camel can drink 15 gallons of water in 10 minutes. At this rate, how much water can the camel drinA camel can drink 15 gallons of water in 10 minutes. At this rate, how much water can the camel drink in 14 minutes?
Set up a proportion of gallons of water over minutes where g is the number of gallons the camel can drink in 14 minutes:
15/10 = g/14
[URL='https://www.mathcelebrity.com/prop.php?num1=15&num2=g&den1=10&den2=14&propsign=%3D&pl=Calculate+missing+proportion+value']Typing this proportion into our search engine[/URL], we get:
[B]g = 21[/B]
A camel can drink 15 gallons of water in 10 minutes. At this rate, how much water can the camel drinA camel can drink 15 gallons of water in 10 minutes. At this rate, how much water can the camel drink in 8 minutes?
Set up a proportion of gallons of water to time where g is the number of gallons of water in 8 minutes.
15/10 = g/8
[URL='https://www.mathcelebrity.com/prop.php?num1=15&num2=g&den1=10&den2=8&propsign=%3D&pl=Calculate+missing+proportion+value']Run this problem through our proportion calculator[/URL] to get [B]g = 12.[/B]
A candlestick burns at a rate of 0.2 inches per hour. After eight straight hours of burning, the canA candlestick burns at a rate of 0.2 inches per hour. After eight straight hours of burning, the candlestick is 13.4 inches tall. Write and solve a linear equation to find the original height of the candle.
Let h equal the number of hours the candlestick burns. We have a candlestick height equation of C.
C = 13.4 + 0.2(8) <-- We need to add back the 8 hours of candlestick burning
C = 13.4 + 1.6
C = [B]15 inches[/B]
A car cost 500 how much does 5 cars costA car cost 500 how much does 5 cars cost
Total cost = Number of cars * cost per cars
Total cost = 5 * 500
Total cost = [B]2500[/B]
A car is purchased for $24,000 . Each year it loses 30% of its value. After how many years will tA car is purchased for $24,000 . Each year it loses 30% of its value. After how many years will the car be worth $7300 or less? (Use the calculator provided if necessary.) Write the smallest possible whole number answer.
Set up the depreciation equation D(t) where t is the number of years in the life of the car:
D(t) = 24,000 * (1 - 0.3)^t
D(t) = 24000 * (0.7)^t
The problem asks for D(t)<=7300
24000 * (0.7)^t = 7300
Divide each side by 24000
(0.7)^t = 7300/24000
(0.7)^t= 0.30416666666
Take the natural log of both sides:
LN(0.7^t) = -1.190179482215518
Using the natural log identities, we have:
t * LN(0.7) = -1.190179482215518
t * -0.35667494393873245= -1.190179482215518
Divide each side by -0.35667494393873245
t = 3.33687437943
[B]Rounding this up, we have t = 4[/B]
A car is purchased for $19000. After each year, the resale value decreases by 30% . What will the reA car is purchased for $19000. After each year, the resale value decreases by 30% . What will the resale value be after 4 years?
Set up a book value function B(t) where t is the number of years after purchase date. If an asset decreases by 30%, we subtract it from the original 100% of the starting value at time t:
B(t) = 19,000(1-0.3)^t
Simplifying this, we get:
B(t) = 19,000(0.7)^t <-- I[I]f an asset decreases by 30%, it keeps 70% of it's value from the prior period[/I]
The problem asks for B(4):
B(4) = 19,000(0.7)^4
B(4) = 19,000(0.2401)
B(4) = [B]4,561.90[/B]
a car is worth 24000 and it depreciates 3000 a year how long till it costs 9000a car is worth 24000 and it depreciates 3000 a year how long till it costs 9000
Let y be the number of years. We want to know y when:
24000 - 3000y = 9000
Typing [URL='https://www.mathcelebrity.com/1unk.php?num=24000-3000y%3D9000&pl=Solve']this equation into our search engine[/URL], we get:
y = [B]5[/B]
A car rents $35 per day plus 15 cents per mile drivenA car rents $35 per day plus 15 cents per mile driven
Set up the cost function C(m) where m is the number of miles driven:
C(m) = Cost per mile * m + Daily Fee
[B]C(m) = 0.15m + 35[/B]
A car who’s original value was $25600 decreases in value by $90 per month. How Long will it take befA car who’s original value was $25600 decreases in value by $90 per month. How Long will it take before the cars value falls below $15000
Let m be the number of months.We have our Book Value B(m) given by:
B(m) = 25600 - 90m
We want to know when the Book value is less than 15,000. So we have an inequality:
25600 - 90m < 15000
Typing [URL='https://www.mathcelebrity.com/1unk.php?num=25600-90m%3C15000&pl=Solve']this inequality into our search engine and solving for m[/URL], we get:
[B]m > 117.78 or m 118 months[/B]
A car worth $43,000 brand new, depreciates at a rate of $2000 per year. What is the formula that desA car worth $43,000 brand new, depreciates at a rate of $2000 per year. What is the formula that describes the relationship between the value of the car (C) and the time after it has been purchased (t)?
Let t be the number of years since purchase. Depreciation means the value decreases, so we have:
[B]C = 43000 - 2000t[/B]
a carnival charges $6 admission and $2.50 per ride. You have $50 to spend at the carnival. Which ofa carnival charges $6 admission and $2.50 per ride. You have $50 to spend at the carnival. Which of the following inequalities represents the situation if r is the number of rides?
We set up our inequality using less than or equal to, since our cash is capped at $50. We use S for our :
Cost per ride * r + Admission <= 50
Plugging in our numbers, we get:
2.50r + 6 <= 50
[B][/B]
Now, if the problem asks you to put this in terms of r, then [URL='https://www.mathcelebrity.com/1unk.php?num=2.50r%2B6%3C%3D50&pl=Solve']we plug this inequality into our search engine[/URL] and we get:
r <= 17.6
Since we cannot do fractional rides, we round down to 17:
[B]r <= 17[/B]
A carnival charges a $15 admission price. Each game at the carnival costs $4. How many games would aA carnival charges a $15 admission price. Each game at the carnival costs $4. How many games would a person have to play to spend at least $40?
Let g be the number of games. The Spend function S(g) is:
S(g) = Cost per game * number of games + admission price
S(g) = 4g + 15
The problem asks for g when S(g) is at least 40. At least is an inequality using the >= sign:
4g + 15 >= 40
To solve this inequality for g, we type it in our search engine and we get:
g >= 6.25
Since you can't play a partial game, we round up and get:
[B]g >= 7[/B]
A car’s purchase price is $24,000. At the end of each year, the value of the car is three-quarters oA car’s purchase price is $24,000. At the end of each year, the value of the car is three-quarters of the value at the beginning of the year. Write the first four terms of the sequence of the car’s value at the end of each year.
three-quarters means 3/4 or 0.75. So we have the following function P(y) where y is the number of years since purchase price:
P(y) = 24000 * 0.75^y
First four terms:
P(1) = 24000 * 0.75 = [B]18000[/B]
P(2) = 18000 * 0.75 = [B]13500[/B]
P(3) = 13500 * 0.75 = [B]10125[/B]
P(4) = 10125 * 0.75 = [B]7593.75[/B]
A cash register contains $5 bills and $20 bills with a total value of $180 . If there are 15 bills tA cash register contains $5 bills and $20 bills with a total value of $180 . If there are 15 bills total, then how many of each does the register contain?
Let f be the number of $5 dollar bills and t be the number of $20 bills. We're given the following equations:
[LIST=1]
[*]f + t = 15
[*]5f + 20t = 180
[/LIST]
We can solve this system of equations 3 ways. We get [B]t = 7[/B] and [B]f = 8[/B].
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=f+%2B+t+%3D+15&term2=5f+%2B+20t+%3D+180&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=f+%2B+t+%3D+15&term2=5f+%2B+20t+%3D+180&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=f+%2B+t+%3D+15&term2=5f+%2B+20t+%3D+180&pl=Cramers+Method']Cramers Method[/URL]
[/LIST]
A celebrity 50,000 followers on Instagram. The number of follower increases 45% each year. How manyA celebrity 50,000 followers on Instagram. The number of follower increases 45% each year. How many followers will they have after 8 years?
We set up a growth equation for followers F(y), where y is the number of years passed since now:
F(y) = 50000 * (1.45)^y <-- since 45% is 0.45
The problem asks for F(8):
F(8) = 50000 * 1.45^8
F(8) = 50000 * 19.5408755063
F(8) = [B]977,044[/B]
A cell phone company charges 8$ per minute. How much do you pay for 60 minutes?A cell phone company charges 8$ per minute. How much do you pay for 60 minutes?
Calculate the total bill:
Total Bill = Cost per minute * number of minutes
Total Bill = $8 * 60
Total Bill = [B]$480[/B]
A cell phone company charges a monthly rate of $12.95 and $0.25 a minute per call. The bill for m miA cell phone company charges a monthly rate of $12.95 and $0.25 a minute per call. The bill for m minutes is $21.20. Write an equation that models this situation.
Let m be the number of minutes. We have the cost equation C(m):
[B]0.25m + 12.95 = $21.20[/B]
A cell phone plan charges $1.25 for the first 400 minutes and $0.25 for each additional minute, x. WA cell phone plan charges $1.25 for the first 400 minutes and $0.25 for each additional minute, x. Which represents the cost of the cell phone plan?
Let C(x) be the cost function where x is the number of minutes we have:
[B]C(x) = 1.25(min(400, x)) + 0.25(Max(0, 400 - x))[/B]
A cell phone plan costs $20 a month and includes 200 free minutes. Each additional minute costs 5 ceA cell phone plan costs $20 a month and includes 200 free minutes. Each additional minute costs 5 cents. If you use your cell phone for at least 200 minutes a month, write a function C(x) that represents the total cost per x minutes.
We add the flat rate per month to 5% of the number of minutes [U]over[/U] 200:
[B]C(x) = 20 + 0.05(x - 200)[/B]
A cell phone provider is offering an unlimited data plan for $70 per month or a 5 GB plan for $55 peA cell phone provider is offering an unlimited data plan for $70 per month or a 5 GB plan for $55 per month. However, if you go over your 5 GB of data in a month, you have to pay an extra $10 for each GB. How many GB would be used to make both plans cost the same?
Let g be the number of GB.
The limited plan has a cost as follows:
C = 10(g - 5) + 55
C = 10g - 50 + 55
C = 10g + 5
We want to set the limited plan equal to the unlimited plan and solve for g:
10g + 5 = 70
Solve for [I]g[/I] in the equation 10g + 5 = 70
[SIZE=5][B]Step 1: Group constants:[/B][/SIZE]
We need to group our constants 5 and 70. To do that, we subtract 5 from both sides
10g + 5 - 5 = 70 - 5
[SIZE=5][B]Step 2: Cancel 5 on the left side:[/B][/SIZE]
10g = 65
[SIZE=5][B]Step 3: Divide each side of the equation by 10[/B][/SIZE]
10g/10 = 65/10
g = [B]6.5[/B]
Check our work for g = 6.5:
10(6.5) + 5
65 + 5
70
A certain Illness is spreading at a rate of 10% per hour. How long will it take to spread to 1,200 pA certain Illness is spreading at a rate of 10% per hour. How long will it take to spread to 1,200 people if 3 people initially exposes? Round to the nearest hour.
Let h be the number of hours. We have the equation:
3 * (1.1)^h = 1,200
Divide each side by 3:
1.1^h = 400
[URL='https://www.mathcelebrity.com/natlog.php?num=1.1%5Eh%3D400&pl=Calculate']Type this equation into our search engine [/URL]to solve for h:
h = 62.86
To the nearest hour, we round up and get [B]h = 63[/B]
A certain number added to its square is 30Let x be the number. We have:
x^2 + x = 30
Subtract 30 from each side:
x^2 + x - 30 = 0
Using our [URL='http://www.mathcelebrity.com/quadratic.php?num=x%5E2%2Bx-30%3D0&pl=Solve+Quadratic+Equation&hintnum=+0']quadratic calculator[/URL], we get potential solutions of:
[B]x = 5 or x = -6[/B]
Check 5:
5 + 5^2 = 5 + 25 = [B]30[/B]
Check -6
-6 + -6^2 = -6 + 36 = [B]30[/B]
A certain species of fish costs $3.19 each. You can spend at most $35. How many of this type of fA certain species of fish costs $3.19 each. You can spend at most $35. How many of this type of fish can you buy for your aquarium?
Let the number of fish be f. We have the following inequality where "at most" means less than or equal to:
3.19f <= 35
[URL='https://www.mathcelebrity.com/interval-notation-calculator.php?num=3.19f%3C%3D35&pl=Show+Interval+Notation']Typing this inequality into our search engine[/URL], we get:
f <= 10.917
Since we need a whole number of fish, we can buy a maximum of [B]10 fish[/B].
A checking account is set up with an initial balance of $2400 and $200 are removed from the accountA checking account is set up with an initial balance of $2400 and $200 are removed from the account each month for rent right and equation who solution is the number of months and it takes for the account balance to reach 1000
200 is removed, so we subtract. Let m be the number of months. We want the following equation:
[B]2400 - 200m = 1000
[/B]
Now, we want to solve this equation for m. So [URL='https://www.mathcelebrity.com/1unk.php?num=2400-200m%3D1000&pl=Solve']we type it in our search engine[/URL] and we get:
m = [B]7[/B]
A chest of treasure was hidden in the year 64 BC and found in 284 AD. For how long was the chest hidA chest of treasure was hidden in the year 64 BC and found in 284 AD. For how long was the chest hidden
BC stands for Before Christ. Year 0 is when Christ was born. AD stands for After Death
On a number line, the point of Christ's birth is 0.
So BC is really negative
AD is positive
So we have:
284 - -64
284 + 64
[B]348 years[/B]
A city doubles its size every 48 years. If the population is currently 400,000, what will the populaA city doubles its size every 48 years. If the population is currently 400,000, what will the population be in 144 years?
Calculate the doubling time periods:
Doubling Time Periods = Total Time / Doubling Time
Doubling Time Periods = 144/48
Doubling Time Periods = 3
Calculate the city population where t is the doubling time periods:
City Population = Initital Population * 2^t
Plugging in our numbers, we get:
City Population = 400,000 * 2^3
City Population = 400,000 * 8
City Population = [B]3,200,000[/B]
A city has a population of 240,000 people. Suppose that each year the population grows by 7.25%. WhaA city has a population of 240,000 people. Suppose that each year the population grows by 7.25%. What will the population be after 9 years?
Let's build a population function P(t), where t is the number of years since right now.
P(t) = 240,000(1.0725)^t <-- 7.25% as a decimal is 0.0725
The question asks for P(9)
P(9) = 240,000(1.0725)^9
P(9) = 240,000(1.87748)
P(9) = [B]450,596[/B]
A city has a population of 260,000 people. Suppose that each year the population grows by 8.75% . WA city has a population of 260,000 people. Suppose that each year the population grows by 8.75% . What will the population be after 12 years? Use the calculator provided and round your answer to the nearest whole number.
Using our [URL='http://www.mathcelebrity.com/population-growth-calculator.php?num=acityhasapopulationof260000people.supposethateachyearthepopulationgrowsby8.75%.whatwillthepopulationbeafter12years?usethecalculatorprovidedandroundyouranswertothenearestwholenumber&pl=Calculate']population growth calculator,[/URL] we get P = [B]711,417[/B]
A class has 35 boys and girls. There are 7 more girls than boys. Find the number of girls and boys iA class has 35 boys and girls. There are 7 more girls than boys. Find the number of girls and boys in the class
Let the number of boys be b and the number of girls be g. We're given two equations:
[LIST=1]
[*]b + g = 35
[*]g = b + 7 (7 more girls means we add 7 to the boys)
[/LIST]
To solve for b, we substitute equation (2) into equation (1) for g:
b + b + 7 = 35
To solve for b, we type this equation into our search engine and we get:
b = [B]14[/B]
Now, to solve for g, we plug b = 14 into equation (2) above:
g = 14 + 7
g = [B]21[/B]
A classroom fish tank contains x goldfish. The tank contains 4 times as many guppies as goldfish. EnA classroom fish tank contains x goldfish. The tank contains 4 times as many guppies as goldfish. Enter an equation that represents the total number of guppies, y, in the fish tank.
The phrase [I]4 times as many[/I] means we multiply the goldfish (x) by 4 to get the number of guppies (y):
[B]y = 4x[/B]
A coin is tossed and a die is rolled. Find the probability pf getting a head and a number greater thA coin is tossed and a die is rolled. Find the probability pf getting a head and a number greater than 4.
Since each event is independent, we multiply the probabilities of each event.
P(H) = 0.5 or 1/2
P(Dice > 4) = P(5) + P(6) = 1/6 + 1/6 = 2/6 = 1/3
P(H) AND P(Dice > 4) = 1/2 * 1/3 = [B]1/6
[MEDIA=youtube]ofsbmHmQmjs[/MEDIA][/B]
a collection of 7 pencils, every week 3 more pencils are added How many weeks will it take to have 3a collection of 7 pencils, every week 3 more pencils are added How many weeks will it take to have 30 pencils?
Set up a function, P(w), where w is the number of weeks, and P(w) is the total amount of pencils after w weeks. We have:
P(w) = 3w + 7
We want to know what w is when P(w) = 30
3w + 7 = 30
[URL='https://www.mathcelebrity.com/1unk.php?num=3w%2B7%3D30&pl=Solve']Typing this equation into our search engine[/URL], we get:
w = 7.6667
We round up to the nearest integer, so we get [B]w = 8[/B]
A collection of nickels and dime has a total value of $8.50. How many coins are there if there are 3A collection of nickels and dime has a total value of $8.50. How many coins are there if there are 3 times as many nickels as dimes.
Let n be the number of nickels. Let d be the number of dimes. We're give two equations:
[LIST=1]
[*]n = 3d
[*]0.1d + 0.05n = 8.50
[/LIST]
Plug equation (1) into equation (2) for n:
0.1d + 0.05(3d) = 8.50
Multiply through:
0.1d + 0.15d = 8.50
[URL='https://www.mathcelebrity.com/1unk.php?num=0.1d%2B0.15d%3D8.50&pl=Solve']Type this equation into our search engine[/URL] and we get:
[B]d = 34[/B]
Now, we take d = 34, and plug it back into equation (1) to solve for n:
n = 3(34)
[B]n = 102[/B]
A colony of 995 bacteria doubles in size every 206 minutes. What will the population be 618 minutesA colony of 995 bacteria doubles in size every 206 minutes. What will the population be 618 minutes from now?
Calculate the doubling time periods:
Doubling Time Periods = Total Minutes From Now / Doubling Period in Minutes
Doubling Time Periods = 618/206
Doubling Time Periods = 3
Calculate the new population using the doubling time formula below where t is the number of doubling periods:
Population = Initial Population * 2^2
Population = 995 * 2^3
Population = 995 * 8
Population = [B]7,960[/B]
A company charges $7 for a T-Shirt and ships and order for $22. A school principal ordered a numberA company charges $7 for a T-Shirt and ships and order for $22. A school principal ordered a number of T-shirts for the school store. The total cost of the order was $1,520. Which equation can be used to find the number one f shirts ordered?
Set up the cost equation C(f) where f is the number of shirts:
C(f) = Cost per shirt * f + Shipping
We're given C(f) = 1520, Shipping = 22, and cost per shirt is 7, so we have:
[B]7f + 22 = 1520
[/B]
To solve for f, we [URL='https://www.mathcelebrity.com/1unk.php?num=7f%2B22%3D1520&pl=Solve']type this equation in our search engine[/URL] and we get:
f = [B]214[/B]
A company had sales of $19,808 million in 1999 and $28,858 million in 2007. Use the Midpoint FormulaA company had sales of $19,808 million in 1999 and $28,858 million in 2007. Use the Midpoint Formula to estimate the sales in 2003
2003 is the midpoint of 1999 and 2007, so we use our [URL='https://www.mathcelebrity.com/mptnline.php?ept1=19808&empt=&ept2=28858&pl=Calculate+missing+Number+Line+item']midpoint calculator[/URL] to get:
[B]24,333[/B] sales in 2003
A company has 3,100 employees and is expected to grow at a rate of 0.04 for the next six years. HowA company has 3,100 employees and is expected to grow at a rate of 0.04 for the next six years. How many employees will they have in 6 years? Round to the nearest whole number.
We build the following exponential equation:
Final Balance = Initial Balance * (1 + growth rate)^time
Final Balance = 3100(1.04)^6
Final Balance = 3100 * 1.2653190185
Final Balance = 3922.48895734
The problem asks us to round to the nearest whole number. Since 0.488 is less than 0.5, we round [U]down.[/U]
Final Balance = [B]3,922[/B]
A company has a fixed cost of $26,000 / month when it is producing printed tapestries. Each item thaA company has a fixed cost of $26,000 / month when it is producing printed tapestries. Each item that it makes has its own cost of $34. One month the company filled an order for 2400 of its tapestries, selling each item for $63. How much profit was generated by the order?
[U]Set up Cost function C(t) where t is the number of tapestries:[/U]
C(t) = Cost per tapestry * number of tapestries + Fixed Cost
C(t) = 34t + 26000
[U]Set up Revenue function R(t) where t is the number of tapestries:[/U]
R(t) = Sale Price * number of tapestries
R(t) = 63t
[U]Set up Profit function P(t) where t is the number of tapestries:[/U]
P(t) = R(t) - C(t)
P(t) = 63t - (34t + 26000)
P(t) = 63t - 34t - 26000
P(t) = 29t - 26000
[U]The problem asks for profit when t = 2400:[/U]
P(2400) = 29(2400) - 26000
P(2400) = 69,600 - 26,000
P(2400) = [B]43,600[/B]
A company has a fixed cost of $34,000 and a production cost of $6 for each unit it manufactures. A uA company has a fixed cost of $34,000 and a production cost of $6 for each unit it manufactures. A unit sells for $15
Set up the cost function C(u) where u is the number of units is:
C(u) = Cost per unit * u + Fixed Cost
C(u) = [B]6u + 34000[/B]
Set up the revenue function R(u) where u is the number of units is:
R(u) = Sale price per unit * u
R(u) = [B]15u[/B]
a company has revenue given by R(x)=500x dollars and total cost given by C(x)=48,000 100x dollars, wa company has revenue given by R(x)=500x dollars and total cost given by C(x)=48,000 + 100x dollars, where x is the number of units produced and sold. How many units will give a profit
Profit P(x) is given by:
R(x) - C(x)
So we have:
P(x) = 500x - (100x + 48,000)
P(x) = 500x - 100x - 48,000
P(x) = 400x - 48,000
A profit is found when P(x) > 0, so we have:
400x - 48000 > 0
To solve this inequality, [URL='https://www.mathcelebrity.com/1unk.php?num=400x-48000%3E0&pl=Solve']we type it into our search engine [/URL]and we get:
[B]x > 120[/B]
A company makes a puzzle that is made of 53 small plastic cubes. The puzzles are shipped in boxes thA company makes a puzzle that is made of 53 small plastic cubes. The puzzles are shipped in boxes that each contain 52 puzzles. That boxes are loaded into trucks that each contain 53 boxes. What is the total number of small plastic cubes in each truck?
1 truck has 53 boxes, and each box contains 52 puzzles, and each puzzle has 53 small plastic cubes.
We have 53 * 52 * 53 = [B]146,068 plastic cubes[/B]
A company makes toy boats. Their monthly fixed costs are $1500. The variable costs are $50 per boat.A company makes toy boats. Their monthly fixed costs are $1500. The variable costs are $50 per boat. They sell boats for $75 a piece. How many boats must be sold each month to break even?
[U]Set up Cost function C(b) where t is the number of tapestries:[/U]
C(b) = Cost per boat * number of boats + Fixed Cost
C(b) = 50b + 1500
[U]Set up Revenue function R(b) where t is the number of tapestries:[/U]
R(b) = Sale Price * number of boats
R(b) = 75b
[U]Break even is where Revenue equals Cost, or Revenue minus Cost is 0, so we have:[/U]
R(b) - C(b) = 0
75b - (50b + 1500) = 0
75b - 50b - 1500 = 0
25b - 1500 = 0
To solve for b, we [URL='https://www.mathcelebrity.com/1unk.php?num=25b-1500%3D0&pl=Solve']type this equation in our math engine[/URL] and we get:
b = [B]60[/B]
A company now has 4900 employees nationwide. It wishes to reduce the number of employees by 300 perA company now has 4900 employees nationwide. It wishes to reduce the number of employees by 300 per year through retirements, until its total employment is 2560. How long will this take?
Figure out how many reductions are needed
4900 - 2560 = 2340
We want 300 per year for retirements, so let x equal how many years we need to get 2340 reductions.
300x = 2340
Divide each side by 300
x = 7.8 years.
If we want full years, we would do 8 full years
A company specializes in personalized team uniforms. It costs the company $15 to make each uniform aA company specializes in personalized team uniforms. It costs the company $15 to make each uniform along with their fixed costs at $640. The company plans to sell each uniform for $55.
[U]The cost function for "u" uniforms C(u) is given by:[/U]
C(u) = Cost per uniform * u + Fixed Costs
[B]C(u) = 15u + 640[/B]
Build the revenue function R(u) where u is the number of uniforms:
R(u) = Sale Price per uniform * u
[B]R(u) = 55u[/B]
Calculate break even function:
Break even is where Revenue equals cost
C(u) = R(u)
15u + 640 = 55u
To solve for u, we [URL='https://www.mathcelebrity.com/1unk.php?num=15u%2B640%3D55u&pl=Solve']type this equation into our search engine[/URL] and we get:
u = [B]16
So we break even selling 16 uniforms[/B]
A companys cost function is C(x) = 16x2 + 900 dollars, where x is the number of units. Find thA companys cost function is C(x) = 16x^2 + 900 dollars, where x is the number of units. Find the marginal cost function.
Marginal Cost is the derivative of the Cost function.
[B]C'(x) = 32x[/B]
A company’s number of personnel on active duty (not on sick leave or vacation leave) during the periA company’s number of personnel on active duty (not on sick leave or vacation leave) during the period 2000 - 2013 can be approximated by the cubic model f(x) = 2.5x^3 - 15x^2 - 80x + 1025, where x = 0 corresponds to 2000. Based on the model, how many personnel were on active duty in 2010? What is the domain of f?
If x = 0 corresponds to 2000, when 2010 is 2010 - 2000 = 10. We want f(10):
f(10) = 2.5(10)^3 - 15(10)^2 - 80(10) + 1025
f(10) = 2.5(1000) - 15(100) - 800 + 1025
f(10) = 2500 - 1500 - 800 + 1025
f(10) = [B]1,225[/B]
A computer randomly generates a whole number from 1 to 25. Find the probability that the computer geA computer randomly generates a whole number from 1 to 25. Find the probability that the computer generates a multiple of 5
[URL='https://www.mathcelebrity.com/factoriz.php?num=25&pl=Show+Factorization']Multiples of 5[/URL]:
{1, 5, 25}
So we have the probability of a random number multiple of 5 is
[B]3/25[/B]
A construction company can remove 2/3 tons of dirt from a construction site each hour. How long wilA construction company can remove 2/3 tons of dirt from a construction site each hour. How long will it take them to remove 30 tons of dirt from the site?
Let h be the number of hours. We have the following equation:
2/3h = 30
Multiply each side by 3:
2(3)h/3 = 30 * 3
Cancel the 3 on the left side:
2h = 90
[URL='https://www.mathcelebrity.com/1unk.php?num=2h%3D90&pl=Solve']Type 2h = 90 into the search engine[/URL], we get [B]h = 45[/B].
A construction company needs to remove 24 tons of dirt from a construction site. They can remove 3/8A construction company needs to remove 24 tons of dirt from a construction site. They can remove 3/8 ton s of dirt each hour. How long will I it take to remove the dirt?
Let h be the number of hours it takes, we have:
3/8h = 24
Multiply each side by 8/3
h = 24(8)/3
24/3 = 8, so we have:
h = 8(8)
h = [B]64 hours[/B]
A contractor’s crew can frame 3 houses in a week. How long will it take them to frame 54 houses if tA contractor’s crew can frame 3 houses in a week. How long will it take them to frame 54 houses if they frame the same number each week?
54 houses / 3 houses per week = [B]18 weeks[/B]
A cook has 2 3/4 pounds of ground beef. How many quarter-pound burgers can he make?A cook has 2 3/4 pounds of ground beef. How many quarter-pound burgers can he make?
Using [URL='https://www.mathcelebrity.com/fraction.php?frac1=2%263%2F4&frac2=3%2F8&pl=Simplify']our mixed number calculator[/URL], we see:
2&3/4 = 11/4
A quarter pounder is 1/4, so we have:
11 * (1/4) = 11/4
So we can make [B]11 [/B]quarter pound burgers
A cookie recipe uses 10 times as much flour as sugar. If the total amount of these ingredients is 8A cookie recipe uses 10 times as much flour as sugar. If the total amount of these ingredients is 8 1/4 cups, how much flour and how much sugar would it be?
Let f be the number of cups of sugar. And let f be the number of cups of flour. We're given two equations:
[LIST=1]
[*]f = 10s
[*]s + f = 8 & 1/4
[/LIST]
Substitute (1) into (2):
s + 10s = 8 & 1/4
11fs= 33/4 <-- 8 & 1/4 = 33/4
Cross multiply:
44s = 33
Divide each side by 44:
s= 33/44
Divide top and bottom by 11 and we get s [B]= 3/4 or 0.75[/B]
Now substitute this into (1):
f = 10(33/44)
[B]f = 330/44 or 7 & 22/44 or 7.5[/B]
A copy machine makes 28 copies per minute. how many copies does it make in 3 minutes and 45 secondsA copy machine makes 28 copies per minute. how many copies does it make in 3 minutes and 45 seconds?
45 seconds = 45/60 = 3/4 of a minute.
3/4 = 0.75
So we have 3.75 minutes.
Set up a proportion of copies to minutes where c is the number of copies made in 3 minutes and 45 seconds:
28/1 = c/3.75
[URL='https://www.mathcelebrity.com/prop.php?num1=28&num2=c&den1=1&den2=3.75&propsign=%3D&pl=Calculate+missing+proportion+value']Typing this proportion into our calculator[/URL], we get:
c = [B]105[/B]
A copy machine makes 44 copies per minute. How many copies does it make in 5 minutes and 45 secondsA copy machine makes 44 copies per minute. How many copies does it make in 5 minutes and 45 seconds
Set up a proportion of copies to minutes where c is the number of copies for 5 minutes and 45 seconds.
[URL='https://www.mathcelebrity.com/fraction.php?frac1=45%2F60&frac2=3%2F8&pl=Simplify']Since 45 seconds[/URL] is:
45/60 = 3/4 of a minute, we have:
5 minutes and 45 seconds = 5.75 minutes
44/1 = c/5.75
To solve this proportion, we [URL='https://www.mathcelebrity.com/prop.php?num1=44&num2=c&den1=1&den2=5.75&propsign=%3D&pl=Calculate+missing+proportion+value']type it in our search engine[/URL] and we get:
c = [B]253[/B]
A corn refining company produces corn gluten cattle feed at a variable cost of $84 per ton. If fixeA corn refining company produces corn gluten cattle feed at a variable cost of $84 per ton. If fixed costs are $110,000 per month and the feed sells for $132 per ton, how many tons should be sold each month to have a monthly profit of $560,000?
[U]Set up the cost function C(t) where t is the number of tons of cattle feed:[/U]
C(t) = Variable Cost * t + Fixed Costs
C(t) = 84t + 110000
[U]Set up the revenue function R(t) where t is the number of tons of cattle feed:[/U]
R(t) = Sale Price * t
R(t) = 132t
[U]Set up the profit function P(t) where t is the number of tons of cattle feed:[/U]
P(t) = R(t) - C(t)
P(t) = 132t - (84t + 110000)
P(t) = 132t - 84t - 110000
P(t) = 48t - 110000
[U]The question asks for how many tons (t) need to be sold each month to have a monthly profit of 560,000. So we set P(t) = 560000:[/U]
48t - 110000 = 560000
[U]To solve for t, we [URL='https://www.mathcelebrity.com/1unk.php?num=48t-110000%3D560000&pl=Solve']type this equation into our search engine[/URL] and we get:[/U]
t =[B] 13,958.33
If the problem asks for whole numbers, we round up one ton to get 13,959[/B]
A crate contains 300 coins and stamps. The coins cost $3 each and the stamps cost $1.5 each. The totA crate contains 300 coins and stamps. The coins cost $3 each and the stamps cost $1.5 each. The total value of the items is $825. How many coins are there?
Let c be the number of coins, and s be the number of stamps. We're given:
[LIST=1]
[*]c + s = 300
[*]3c + 1.5s = 825
[/LIST]
We have a set of simultaneous equations, or a system of equations. We can solve this 3 ways:
[LIST=1]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=c+%2B+s+%3D+300&term2=3c+%2B+1.5s+%3D+825&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=c+%2B+s+%3D+300&term2=3c+%2B+1.5s+%3D+825&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=c+%2B+s+%3D+300&term2=3c+%2B+1.5s+%3D+825&pl=Cramers+Method']Cramers Method[/URL]
[/LIST]
No matter which way we pick, we get:
s = 50
c = [B]250[/B]
A culture of bacteria doubles every hour. If there are 500 bacteria at the beginning, how many bacteA culture of bacteria doubles every hour. If there are 500 bacteria at the beginning, how many bacteria will there be after 9 hours?
Assumptions and givens;
[LIST]
[*]h is the number of hours.
[*]B(h) is the number of bacteria at time h
[*]B(0) is the starting bacteria amount
[*]Doubling means multiplying by 2, so we have:
[/LIST]
B(h) = B(0) * 2^h
We want h = 9, so we have:
B(9) = 500 * 2^9
B(9) = 500 * 512
B(9) = [B]256,000[/B]
A cup of coffee costs $1.75. A monthly unlimited coffee card costs $25.00. Which inequality represeA cup of coffee costs $1.75. A monthly unlimited coffee card costs $25.00. Which inequality represents the number x of cups of coffee you must purchase for the monthly card to be a better deal?
Let c be the number of cups. We want to know how many cups (x) where:
1.75x > 25
Using our [URL='https://www.mathcelebrity.com/interval-notation-calculator.php?num=1.75x%3E25&pl=Show+Interval+Notation']inequality solver[/URL], we see:
[B]x > 14.28[/B]
A daily pass costs $62. A season ski pass costs $450. The skier would have to rent skis with eitheA daily pass costs $62. A season ski pass costs $450. The skier would have to rent skis with either pass for $30 per day. How many days would the skier have to go skiing in order to make the season pass less expensive than the daily passes?
Let d be the number of days the skier attends.
Calculate the daily cost:
Daily Total Cost = Daily Cost + Rental Cost
Daily Total Cost = 62d + 30d
Daily Total Cost = 92d
Calculate Season Cost:
Season Total Cost = Season Fee + Rental Cost
Season Total Cost = 450 + 30d
Set the daily total cost and season cost equal to each other:
450 + 30d = 92d
[URL='https://www.mathcelebrity.com/1unk.php?num=450%2B30d%3D92d&pl=Solve']Typing this equation into the search engine[/URL], we get d = 7.258.
We round up to the next full day of [B]8[/B].
Now check our work:
Daily Total Cost for 8 days = 92(8) = 736
Season Cost for 8 days = 30(8) + 450 = 240 + 450 = 710.
Therefore, the skier needs to go at least [B]8 days[/B] to make the season cost less than the daily cot.
A department store buys 100 shirts at a cost of $600 and sells them at a selling price of 10 each fiA department store buys 100 shirts at a cost of $600 and sells them at a selling price of 10 each find the percentage mark up
Find Unit Cost:
Unit Cost = Cost / Number of Shirts
Unit Cost = 600 / 100
Unit Cost = 6
With a selling price of 10, our markup percentage is:
Markup % = 100 * (New Price - Old Price)/Old Price
Markup % = 100 * (10 - 6)/6
Markup % = 100 * 4/6
Markup % = 400/6
Markup % = [B]66.67%[/B]
A dish company needs to ship an order of 893 glass bowls. If each shipping box can hold 19 bowls, hoA dish company needs to ship an order of 893 glass bowls. If each shipping box can hold 19 bowls, how many boxes will the company need?
Number of boxes needed = Total bowls / Glass bowls per box
Number of boxes needed = 893/19
Number of boxes needed = [B]47[/B]
A diving board is 10 feet long and 1 foot wide. What is its area?A diving board is 10 feet long and 1 foot wide. What is its area?
A diving board is a rectangle. And the area of a rectangle is:
A = lw
Plugging in our numbers, we get:
A = 10(1)
A = [B]10 sq feet[/B]
A dog walker charges a flat rate of $6 per walk plus an hourly rate of $30. How much does the dog waA dog walker charges a flat rate of $6 per walk plus an hourly rate of $30. How much does the dog walker charge for a 3 hour walk?
Set up the cost equation C(h) where h is the number of hours:
C(h) = Hourly rate * h + flat rate
C(h) = 30h + 6
The question asks for C(h) when h = 3:
C(3) = 30(3) + 6
C(3) = 90 + 6
C(3) = [B]96[/B]
A family buys airline tickets online. Each ticket costs $167. The family buys travel insurance withA family buys airline tickets online. Each ticket costs $167. The family buys travel insurance with each ticket that costs $19 per ticket. The Web site charges a fee of $16 for the entire purchase. The family is charged a total of $1132. How many tickets did the family buy?
Let t be the number of tickets. We have the following equation with ticket price, insurance, and flat fee:
167t + 19t + 16 = 1132
Combine like terms:
186t + 16 = 1132
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=186t%2B16%3D1132&pl=Solve']equation calculator[/URL], we have:
[B]t = 6[/B]
A family decides to rent a canoe for an entire day. The canoe rental rate is $50 for the first threeA family decides to rent a canoe for an entire day. The canoe rental rate is $50 for the first three hours and then 20$ for each additional hour. Suppose the family can spend $110 for the canoe rental. What is the maximum number of hours the family can rent the canoe?
IF we subtract the $50 for the first 3 hours, we get:
110 - 50 = 60 remaining
Each additional hour is 20, so the max number of hours we can rent the canoe is
$60/20 = 3 hours additional plus the original 3 hours is [B]6 hours[/B]
a family went to a baseball game. the cost to park the car was $5 AND THE COST PER TICKET WAS $21. Wa family went to a baseball game. the cost to park the car was $5 AND THE COST PER TICKET WAS $21. WRITE A LINEAR FUNCTION IN THE FORM Y=MX+B, FOR THE TOTAL COST OF GOING TO THE BASEBALL GAME,Y, AND THE TOTAL NUMBER PEOPLE IN THE FAMILY,X.
We have:
[B]y = 21x + 5[/B]
Since the cost of each ticket is $21, we multiply this by x, the total number of people in the family.
We add 5 as the cost to park the car, which fits the entire family, and is a one time cost.
A farmer bought a number of pigs for $232. However, 5 of them died before he could sell the rest atA farmer bought a number of pigs for $232. However, 5 of them died before he could sell the rest at a profit of 4 per pig. His total profit was $56. How many pigs did he originally buy?
Let p be the purchase price of pigs. We're given:
[LIST]
[*]Farmer originally bought [I]p [/I]pigs for 232 which is our cost C.
[*]5 of them died, so he has p - 5 left
[*]He sells 4(p - 5) pigs for a revenue amount R
[*]Since profit is Revenue - Cost, which equals 56, we have:
[/LIST]
Calculate Profit
P = R - C
Plug in our numbers:
4(p - 5) - 232 = 56
4p - 20 - 232 = 56
To solve for p, [URL='https://www.mathcelebrity.com/1unk.php?num=4p-20-232%3D56&pl=Solve']we type this equation into our search engine[/URL] and we get:
p = [B]77[/B]
A farmer has a total of 200 ducks and cows in his barn. If he has n cows, how many total legs are thA farmer has a total of 200 ducks and cows in his barn. If he has n cows, how many total legs are there in the barn? (Make sure you include the farmer.)
[LIST]
[*]Number of cows = n
[*]Legs per cow = 4
[*]Cows legs = 4n
[*]Number of ducks = 200 - n
[*]Legs per duck = 2
[*]Number of ducks legs = (200 - n) x 2 = 400 - 2n
[*]Farmers legs = 2
[/LIST]
Total legs = Cows legs + Ducks Legs + Farmers Legs
Total legs = 4n + 400 - 2n + 2
Total legs = [B]2n + 402[/B]
A farmer is taking her eggs to the market in a cart, but she hits a pothole, which knocks over allA farmer is taking her eggs to the market in a cart, but she hits a
pothole, which knocks over all the containers of eggs. Though she is
unhurt, every egg is broken. So she goes to her insurance agent, who
asks her how many eggs she had. She says she doesn't know, but she
remembers somethings from various ways she tried packing the eggs.
When she put the eggs in groups of two, three, four, five, and six
there was one egg left over, but when she put them in groups of seven
they ended up in complete groups with no eggs left over.
What can the farmer figure from this information about the number of
eggs she had? Is there more than one answer?
We need a number (n) that leaves a remainder of 1 when divided by 2, 3, 4, 5, 6 but no remainder when divided by 7.
217 + 84 = [B]301[/B].
Other solutions are multiples of 3 x 4 x 5 x 7, but we want the lowest one here.
A Farmer Sell products at the market in 38- pound crates. If he sells 100 crates . How many pounds oA Farmer Sell products at the market in 38- pound crates. If he sells 100 crates . How many pounds of produce has he sold
[U]Calculate the pounds of produce:[/U]
Pounds of Produce = Number of Crates * pounds per crate
Pounds of Produce = 100 crates * 38 pounds per crates
Pounds of Produce = [B]3,800 pounds of produce[/B]3
A farmer was 1/3 of his land to grow corn, a quarter of his land to grow lettuce, and 12.5% of his lA farmer was 1/3 of his land to grow corn, a quarter of his land to grow lettuce, and 12.5% of his land to grow green beans. He uses the remaining 7 acres to grow wheat.How many total acres does the farmer own?
Convert all land portions to fractions or decimals. We will do fractions:
[LIST]
[*]1/3 for corn
[*][I]A quarter[/I] means 1/4 for lettuce
[*]12.5% is 12.5/100 or 1/8 for green beans
[/LIST]
Now add all these up:
1/3 + 1/4 + 1/8
We need a common factor for 3, 4, and 8. Using our [URL='https://www.mathcelebrity.com/gcflcm.php?num1=3&num2=4&num3=8&pl=LCM']LCM Calculator[/URL], we get 24.
1/3 = 8/24
1/4 = 6/24
18 = 3/24
Add them all up:
(8 + 6 + 3)/24
17/24
This means 17/24 of the land is used for everything but wheat. Wheat occupies (24-17)/24 = 7/24 of the land.
We'll use a for the number of acres on the farm.
7a/24 = 7
[B]a = 24[/B]
A first number plus twice a second number is 10. Twice the first number plus the second totals 29. FA first number plus twice a second number is 10. Twice the first number plus the second totals 29. Find the numbers.
Let the first number be x. Let the second number be y. We are given the following two equations:
[LIST=1]
[*]x + 2y = 10
[*]2x + y = 29
[/LIST]
We can solve this 3 ways using:
[LIST=1]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=x+%2B+2y+%3D+10&term2=2x+%2By+%3D+29&pl=Substitution']Substitution[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=x+%2B+2y+%3D+10&term2=2x+%2By+%3D+29&pl=Elimination']Elimination[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=x+%2B+2y+%3D+10&term2=2x+%2By+%3D+29&pl=Cramers+Method']Cramers Rule[/URL]
[/LIST]
Using any of the 3 methods, we get the same answers of [B](x, y) = (16, -3)[/B]
A first number plus twice a second number is 10. Twice the first number plus the second totals 35. FA first number plus twice a second number is 10. Twice the first number plus the second totals 35. Find the numbers.
[U]The phrase [I]a number[/I] means an arbitrary variable[/U]
A first number is written as x
A second number is written as y
[U]Twice a second number means we multiply y by 2:[/U]
2y
[U]A first number plus twice a second number:[/U]
x + 2y
[U]A first number plus twice a second number is 10 means we set x + 2y equal to 10:[/U]
x + 2y = 10
[U]Twice the first number means we multiply x by 2:[/U]
2x
[U]Twice the first number plus the second:[/U]
2x + y
[U]Twice the first number plus the second totals 35 means we set 2x + y equal to 35:[/U]
2x + y = 35
Therefore, we have a system of two equations:
[LIST=1]
[*]x + 2y = 10
[*]2x + y = 35
[/LIST]
Since we have an easy multiple of 2 for the x variable, we can solve this by multiply the first equation by -2:
[LIST=1]
[*]-2x - 4y = -20
[*]2x + y = 35
[/LIST]
Because the x variables are opposites, we can add both equations together:
(-2 + 2)x + (-4 + 1)y = -20 + 35
The x terms cancel, so we have:
-3y = 15
To solve this equation for y, we [URL='https://www.mathcelebrity.com/1unk.php?num=-3y%3D15&pl=Solve']type it in our search engine[/URL] and we get:
y = [B]-5
[/B]
Now we substitute this y = -5 into equation 2:
2x - 5 = 35
To solve this equation for x, we[URL='https://www.mathcelebrity.com/1unk.php?num=2x-5%3D35&pl=Solve'] type it in our search engine[/URL] and we get:
x = [B]20[/B]
A first number plus twice a second number is 11. Twice the first number plus the second totals 34. FA first number plus twice a second number is 11. Twice the first number plus the second totals 34. Find the numbers.
Let the first number be x and the second number be y. We're given:
[LIST=1]
[*]x + 2y = 11
[*]2x + y = 34
[/LIST]
Using our simultaneous equations calculator, we have 3 methods to solve this:
[LIST=1]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=x+%2B+2y+%3D+11&term2=2x+%2B+y+%3D+34&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=x+%2B+2y+%3D+11&term2=2x+%2B+y+%3D+34&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=x+%2B+2y+%3D+11&term2=2x+%2B+y+%3D+34&pl=Cramers+Method']Cramer's Rule[/URL]
[/LIST]
All 3 methods give the same solution:
[LIST]
[*][B]x = 19[/B]
[*][B]y = -4[/B]
[/LIST]
A first number plus twice a second number is 14. Twice the first number plus the second totals 40. FA first number plus twice a second number is 14. Twice the first number plus the second totals 40. Find the numbers.
[B][U]Givens and assumptions:[/U][/B]
[LIST]
[*]Let the first number be x.
[*]Let the second number be y.
[*]Twice means multiply by 2
[*]The phrases [I]is[/I] and [I]totals[/I] mean equal to
[/LIST]
We're given two equations:
[LIST=1]
[*]x + 2y = 14
[*]2x + y = 40
[/LIST]
To solve this system, we can take a shortcut, and multiply the top equation by -2 to get our new system:
[LIST=1]
[*]-2x - 4y = -28
[*]2x + y = 40
[/LIST]
Now add both equations together
(-2 _ 2)x (-4 + 1)y = -28 + 40
-3y = 12
To solve this equation, we [URL='https://www.mathcelebrity.com/1unk.php?num=-3y%3D12&pl=Solve']type it in our search engine[/URL] and we get:
y = [B]-4
[/B]
We substitute this back into equation 1 for y = -4:
x + 2(-4) = 14
x - 8 = 14
To solve this equation for x, we [URL='https://www.mathcelebrity.com/1unk.php?num=x-8%3D14&pl=Solve']type it in our search engine[/URL] and we get:
x = [B]22[/B]
A first number plus twice a second number is 22. Twice the first number plus the second totals 28. FA first number plus twice a second number is 22. Twice the first number plus the second totals 28. Find the numbers.
Let the first number be x. Let the second number be y. We're given two equations:
[LIST=1]
[*]x + 2y = 22 <-- Since twice means multiply by 2
[*]2x + y = 28 <-- Since twice means multiply by 2
[/LIST]
We have a set of simultaneous equations. We can solve this three ways
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=x+%2B+2y+%3D+22&term2=2x+%2B+y+%3D+28+&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=x+%2B+2y+%3D+22&term2=2x+%2B+y+%3D+28&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=x+%2B+2y+%3D+22&term2=2x+%2B+y+%3D+28&pl=Cramers+Method']Cramers Rule[/URL]
[/LIST]
No matter which method we use, we get the same answer:
[LIST]
[*][B]x = 11 & 1/3[/B]
[*][B]y = 5 & 1/3[/B]
[/LIST]
A first number plus twice a second number is 3. Twice the first number plus the second totals 24.A first number plus twice a second number is 3. Twice the first number plus the second totals 24.
Let the first number be x. Let the second number be y. We're given:
[LIST=1]
[*]x + 2y = 3 <-- Because [I]twice[/I] means multiply by 2
[*]2x + y = 24 <-- Because [I]twice[/I] means multiply by 2
[/LIST]
We have a system of equations. We can solve it any one of three ways:
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=x+%2B+2y+%3D+3&term2=2x+%2B+y+%3D+24&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=x+%2B+2y+%3D+3&term2=2x+%2B+y+%3D+24&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=x+%2B+2y+%3D+3&term2=2x+%2B+y+%3D+24&pl=Cramers+Method']Cramer's Rule[/URL]
[/LIST]
No matter which way we choose, we get:
[LIST]
[*]x = [B]15[/B]
[*]y = [B]-6[/B]
[/LIST]
A first number plus twice a second number is 6. Twice the first number plus the second totals 15. FiA first number plus twice a second number is 6. Twice the first number plus the second totals 15. Find the numbers.
Let the first number be x. Let the second number be y. We're given two equations:
[LIST=1]
[*]x + 2y = 6
[*]2x + y = 15
[/LIST]
Multiply the first equation by -2:
[LIST=1]
[*]-2x - 4y = -12
[*]2x + y = 15
[/LIST]
Now add them
-2x + 2x - 4y + y = -12 + 15
-3y = 3
Divide each side by -3:
y = 3/-3
y =[B] -1[/B]
Plug this back into equation 1:
x + 2(-1) = 6
x - 2 = 6
To solve for x, we [URL='https://www.mathcelebrity.com/1unk.php?num=x-2%3D6&pl=Solve']type this equation into our search engine[/URL] and we get:
x = [B]8[/B]
A first number plus twice a second number is 7A first number plus twice a second number is 7
Let the first number be x. Let the second number be y. We're given:
[LIST]
[*]A first number is x
[*]A second number is y
[*]Twice the second number means we multiply y by 2: 2y
[*][I]Plus [/I]means we add x to 2y: x + 2y
[*]The phrase [I]is[/I] means an equation, so we set x + 2y equal to 7
[/LIST]
[B]x + 2y = 7[/B]
A first number plus twice a second number is 7. Twice the first number plus the second totals 23. FiA first number plus twice a second number is 7. Twice the first number plus the second totals 23. Find the numbers
Let the first number be a and the second number be b. We have:
[LIST=1]
[*]a + 2b = 7
[*]2a + b = 23
[/LIST]
Rearrange (1) into (3)
(3) a = 7 - 2b
Substitute (3) into (2):
2(7 - 2b) + b = 23
Multiply through:
14 - 4b + b = 23
Combine like terms:
14 - 3b = 23
Subtract 14 from each side:
-3b = 9
Divide each side by -3
[B]b = -3[/B]
Substitute this into (3)
a = 7 - 2b
a = 7 - 2(-3)
a = 7 + 6
[B]a = 13[/B]
[B](a, b) = (13, -3)[/B]
A flower bed is to be 3 m longer than it is wide. The flower bed will an area of 108 m2 . What willA flower bed is to be 3 m longer than it is wide. The flower bed will an area of 108 m2 . What will its dimensions be?
A flower bed has a rectangle shape, so the area is:
A = lw
We are given l = w + 3
Plugging in our numbers given to us, we have:
108 = w(w + 3)
w^2 + 3w = 108
Subtract 108 from each side:
w^2 + 3w - 108 = 0
[URL='https://www.mathcelebrity.com/quadratic.php?num=w%5E2%2B3w-108%3D0&pl=Solve+Quadratic+Equation&hintnum=+0']Type this problem into our search engine[/URL], and we get:
w = (9, -12)
Since length cannot be negative, w = 9.
And l = 9 + 3 --> l = 12
So we have [B](l, w) = (12, 9)[/B]
Checking our work, we have:
A = (12)9
A = 108 <-- Match!
A food truck sells salads for $6.50 each and drinks for $2.00 each. The food trucks revenue from selA food truck sells salads for $6.50 each and drinks for $2.00 each. The food trucks revenue from selling a total of 209 salads and drinks in one day was $836.50. How many salads were sold that day?
Let the number of drinks be d. Let the number of salads be s. We're given two equations:
[LIST=1]
[*]2d + 6.50s = 836.50
[*]d + s = 209
[/LIST]
We can use substitution to solve this system of equations quickly. The question asks for the number of salads (s). Therefore, we want all expressions in terms of s. Rearrange Equation 2 by subtracting s from both sides:
d + s - s = 209 - s
Cancel the s's, we get:
d = 209 - s
So we have the following system of equations:
[LIST=1]
[*]2d + 6.50s = 836.50
[*]d = 209 - s
[/LIST]
Substitute equation (2) into equation (1) for d:
2(209 - s) + 6.50s = 836.50
Multiply through to remove the parentheses:
418 - 2s + 6.50s = 836.50
To solve this equation for s, we [URL='https://www.mathcelebrity.com/1unk.php?num=418-2s%2B6.50s%3D836.50&pl=Solve']type it into our search engine and we get[/URL]:
s = [B]93[/B]
A fruit basket contains 2 red apples and 2 green apples. What is the ratio of the number of red applA fruit basket contains 2 red apples and 2 green apples. What is the ratio of the number of red apples to the total number of apples?
2:2 = [B]1:1[/B] simplified
A furniture company plans to have 25 employees at its corporate headquarters and 25 employees at eacA furniture company plans to have 25 employees at its corporate headquarters and 25 employees at each store it opens. Let s represent the number of stores and m represent the total number of employees.
There is only one corporate headquarters. So we have the number of employees (m) as:
m = Store Employees + Corporate Employees
Each store has 25 employees. Total store employees equal 25 per store times the number of stores (s).
[B]m = 25s + 25[/B]
A giant tortoise can live 175 years in captivity. The gastrotrich, which is a small aquatic animal,A giant tortoise can live 175 years in captivity. The gastrotrich, which is a small aquatic animal, has a life-span of only 3 days (72 hours). If a gastrotrich died after 36 hours, a giant tortoise that lived 87.5 yeas would live proportionally the same because they both would have died halfway through their life-span.
How long would a giant tortoise live if it lived proportionally the same as a gastrotrich that died after 50 hours?
Set up a proportion of hours lived to lifespan where n is the number of years the giant tortoise lives:
50/72 = n/175
Using our [URL='https://www.mathcelebrity.com/proportion-calculator.php?num1=50&num2=n&den1=72&den2=175&propsign=%3D&pl=Calculate+missing+proportion+value']proportion calculator[/URL], we get:
n = [B]121.5[/B]
A group of 30 students from your school is part of the audience for a TV game show. The total numberA group of 30 students from your school is part of the audience for a TV game show. The total number of people in the audience is 120. What theoretical probability of 5 students from your school being selected as contestants out of 9 possible contestant spots?
We want the probability a student from your school is chosen out of total students times total ways to choose students from your school:
[U]a) P(5 students being selected):[/U]
5/30 * 4/(120 - 30)
5/30 * 4/90
20/2700
[URL='https://www.mathcelebrity.com/fraction.php?frac1=20%2F2700&frac2=3%2F8&pl=Simplify']Simplifying this fraction[/URL], we get:
1/135
[U]b) Total Ways 9 students can be picked from your school:[/U]
9/120
[URL='https://www.mathcelebrity.com/fraction.php?frac1=9%2F120&frac2=3%2F8&pl=Simplify']Simplifying this fraction[/URL], we get:
3/40
Divide a by b:
1/135 / 3/40
40/405
[URL='https://www.mathcelebrity.com/fraction.php?frac1=40%2F405&frac2=3%2F8&pl=Simplify']Simplifying[/URL], we get:
[B]8/81[/B]
A group of campers have 250 pounds of food. They plan to eat 12 pounds a day. How many days will itA group of campers have 250 pounds of food. They plan to eat 12 pounds a day. How many days will it take them to eat the food. Write your answer in a linear equation.
Let the number of days be d. We have the following equation:
12d = 250
To solve for d, we [URL='https://www.mathcelebrity.com/1unk.php?num=12d%3D250&pl=Solve']type this equation in our search engine[/URL] and we get:
d = [B]20.833[/B]
A group of scientists studied the effect of a chemical on various strains of bacteria. Strain A starA group of scientists studied the effect of a chemical on various strains of bacteria. Strain A started with 6000 cells and decreased at a constant rate of 2000 cells per hour after the chemical was applied. Strain B started with 2000 cells and decreased at a constant rate of 1000 cells per hour after the chemical was applied. When will the strains have the same number of cells? Explain.
Set up strain equations where h is the number of hours since time 0:
[LIST]
[*]Strain A: 6000 - 2000h
[*]Strain B: 2000 - 1000h
[/LIST]
Set them equal to each other
6000 - 2000h = 2000 - 1000h
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=6000-2000h%3D2000-1000h&pl=Solve']equation solver[/URL], we see that [B]h = 4[/B]
A gym has yoga classes. Each class has 11 students. If there are c classes, write an equation to repA gym has yoga classes. Each class has 11 students. If there are c classes, write an equation to represent the total number of students s taking yoga.
Total students is the number of classes times the number of students in each class:
[B]s = 11c[/B]
A gym has yoga classes. Each class has 14 students. If there are c classes write an equation to reprA gym has yoga classes. Each class has 14 students. If there are c classes write an equation to represent the total number of students s taking yoga
s = students per class * number of classes
[B]s = 14c[/B]
A gym membership has a $50 joining fee plus charges $17 a month for m monthsA gym membership has a $50 joining fee plus charges $17 a month for m months
Build a cost equation C(m) where m is the number of months of membership.
C(m) = Variable Cost * variable units + Fixed Cost
C(m) = Months of membership * m + Joining Fee
Plugging in our numbers and we get:
[B]C(m) = 17m + 50
[MEDIA=youtube]VGXeqd3ikAI[/MEDIA][/B]
A heating company charges $60 per hour plus $54 for a service call. Let n be the number of hours tA heating company charges $60 per hour plus $54 for a service call. Let n be the number of hours the technician works at your house.
The cost function C(n) where n is the number of hours is:
C(n) = Hourly Rate * hours + Service Call Charge
[B]C(n) = 60n + 54[/B]
A helicopter blade does 3206 full turns in 7 minutes , work out the number of full turns per minuteA helicopter blade does 3206 full turns in 7 minutes , work out the number of full turns per minute
3206 full turns / 7 minutes
[URL='https://www.mathcelebrity.com/fraction.php?frac1=3206%2F7&frac2=3%2F8&pl=Simplify']Divide the fraction by 7 to get turns per minute[/URL]
[B]458 turns per minute[/B]
A hexagon has a total 126 dots and a equal number of dots on each side. how many dots on each side?A hexagon has a total 126 dots and a equal number of dots on each side. how many dots on each side?
Since it has an equal number of dots on each side, each side has:
Number of dots on each side = 126 dots / 6 sides
Number of dots on each side = [B]21 dots per side[/B]
A high school graduating class is made up of 440 students. There are 168 more girls than boys. How mA high school graduating class is made up of 440 students. There are 168 more girls than boys. How many boys are in the class?
Let b be the number of boys and g be the number of girls. We're given 2 equations:
[LIST=1]
[*]b + g = 440
[*]g = b + 168
[/LIST]
Substitute (2) into (1)
b + (b + 168) = 440
Combine like terms:
2b + 168 = 440
[URL='https://www.mathcelebrity.com/1unk.php?num=2b%2B168%3D440&pl=Solve']Type this equation into the search engine[/URL], and we get:
[B]b = 136[/B]
A hot air balloon at 1120 feet descends at a rate of 80 feet per minute. Let y represent the heightA hot air balloon at 1120 feet descends at a rate of 80 feet per minute. Let y represent the height and let x represent the number of minutes the balloon descends.
Descending means we subtract height, so we have:
[B]y = 1120 - 80x[/B]
A hot dog costs $3 and a corn dog costs $1.50. If $201 was collected, write a mathematical sentenceA hot dog costs $3 and a corn dog costs $1.50. If $201 was collected, write a mathematical sentence to represent this information
Assumptions:
[LIST]
[*]Let the number of corn dogs be c
[*]Let the number of hot dogs be h
[/LIST]
Since cost = price * quantity, we have:
[B]1.50c + 3h = 201[/B]
A house painting company charges $376 plus $12 per hour. Another painting company charges $280 plusA house painting company charges $376 plus $12 per hour. Another painting company charges $280 plus $15 per hour. How long is a job for which companies will charge the same amount?
Set up the cost function C(h) where h is the number of hours.
Company 1:
C(h) = 12h + 376
Company 2:
C(h) = 15h + 280
To see when the companies charge the same amount, set both C(h) functions equal to each other.
12h + 376 = 15h + 280
To solve for h, we [URL='https://www.mathcelebrity.com/1unk.php?num=12h%2B376%3D15h%2B280&pl=Solve']type this equation into our search engine[/URL] and we get:
h = [B]32[/B]
A house painting company charges $376 plus $12 per hour. Another painting company charges $280 plusA house painting company charges $376 plus $12 per hour. Another painting company charges $280 plus $15 per hour. How long is a job for which both companies will charge the same amount?
[U]Set up the cost function for the first company C(h) where h is the number of hours:[/U]
C(h) = Hourly Rate * h + flat rate
C(h) = 12h + 376
[U]Set up the cost function for the first company C(h) where h is the number of hours:[/U]
C(h) = Hourly Rate * h + flat rate
C(h) = 15h + 280
The problem asks how many hours will it take for both companies to charge the same. So we set the cost functions equal to each other:
12h + 376 = 15h + 280
Plugging this equation [URL='https://www.mathcelebrity.com/1unk.php?num=12h%2B376%3D15h%2B280&pl=Solve']into our search engine and solving for h[/URL], we get:
h = [B]32[/B]
A house rental company charges a $700 for a week stay plus an additional $4 per night for a roll awaA house rental company charges a $700 for a week stay plus an additional $4 per night for a roll away bed. Your family rents a house for a week and pays $756. How many roll away beds did they rent?
Roll Away Beds = (Total Rental Price - Weekly Charge)/Per night bed fee
Plugging in our numbers, we get:
Roll Away Beds = (756 - 700)/4
Roll Away Beds = 56/4
Roll Away Beds = [B]14[/B]
A house valued at 70,000 in 1989 increased in value to 125,000 in 2000. Find a function which givesA house valued at 70,000 in 1989 increased in value to 125,000 in 2000. Find a function which gives the value of the house, v, as a function of y, the number of years after 1989.
Let's determine the years:
2000 - 1989 = 11
Let's determine the change in value:
125,000 - 70,000 = 55,000
Assuming a linear progression, we have:
55,000/11 = 5,000 per year increase
[B]y = 70,000 + 5,000v[/B] where v is the number of years after 1989
Plug in 11 to check our work
y = 70,000 + 5,000(11)
y = 70,000 + 55,000
y = 125,000
A is 0 and AR=19 what is the midpointA is 0 and AR=19 what is the midpoint
[URL='https://www.mathcelebrity.com/mptnline.php?ept1=0&empt=&ept2=19&pl=Calculate+missing+Number+Line+item']Using our midpoint calculator, with one point at 0, and the other point at 19[/URL], we get the midpoint M:
M = [B]19/2 or 9.5[/B]
A is the set of odd integers between 4 and 12A is the set of odd integers between 4 and 12
Let A be the set of odd numbers between 4 and 12:
[B]A = {5, 7, 9, 11}[/B]
a large fry has 120 more calories than a small. 5 large fries is the same amount of calories as 7 sma large fry has 120 more calories than a small. 5 large fries is the same amount of calories as 7 small. How many calories does each size fry have?
Let the number of calories in large fries be l. Let the number of calories in small fries be s. We're given two equations:
[LIST=1]
[*]l = s + 120
[*]5l = 7s
[/LIST]
Substitute equation (1) into equation (2):
5(s + 120) = 7s
[URL='https://www.mathcelebrity.com/1unk.php?num=5%28s%2B120%29%3D7s&pl=Solve']Type this equation into the search engine[/URL] and we get:
s = [B]300[/B]
Substitute s = 300 into equation (1):
l = 300 + 120
l = [B]420[/B]
A large storage container is filled with 44.9 quarts of water. One quart of water is equivalent to 3A large storage container is filled with 44.9 quarts of water. One quart of water is equivalent to 32 fluid ounces. How many fluid ounces of water are stored in the container? Round your answer to the nearest whole number.
44.9 quarts * 32 fluid ounce / quart = 1,436.8
if we found to the nearest whole number, we round up since 0.8 is greater than 0.5, so we get:
[B]1,437 fluid ounces[/B]
a licence plate that has 3 numbers from 0 to 9 followed by 2 lettersa licence plate that has 3 numbers from 0 to 9 followed by 2 letters
How many license plate combinations can we form?
We multiply as follows:
[LIST]
[*][0-9] = 10 possible digits (D)
[*]A-Z = 26 possible letters (L)
[/LIST]
The problem asks for this:
DDDLL
So we have:
10 * 10 * 10 * 26 * 26 = [B]676,000[/B] plates
a license plate has 3 letters followed by 4 numbersa license plate has 3 letters followed by 4 numbers
There are 26 letters A-Z and 10 numbers 0-9. So we have:
26 * 26 * 26 * 10 * 10 * 10 * 10
[B]175,760,000 different license plate combinations[/B]
A license plate is made up of 2 letter and 3 single digit numbersA license plate is made up of 2 letter and 3 single digit numbers.
There are 26 letters (A-Z). And there are 10 single digit numbers [0-9]. So our total combinations are:
Letter - Letter - Number - Number - Number
26 * 26 * 10 * 10 * 10 = [B]676,000[/B]
A light bulb consumes 17100 watt-hours in 4 days and 18 hours. How many watt-hours does it consume aA light bulb consumes 17100 watt-hours in 4 days and 18 hours. How many watt-hours does it consume a day?
Since one day equals 24 hours, we have:
4 days and 18 hours equals:
4(24) + 18 hours
96 + 18 hours
114 hours
Therefore, we have a proportion, where w is the number of watt-hours in a 24-hour period.
17,100 watt-hours/114 hours = w/24
[URL='https://www.mathcelebrity.com/prop.php?num1=17100&num2=w&den1=114&den2=24&propsign=%3D&pl=Calculate+missing+proportion+value']Typing 1711/114 = w/24 into our calculator[/URL], we get:
[B]w = 3,600[/B]
A light flashes every 2 minutes a, second light flashes every 7 minutes, and a third light flashes eA light flashes every 2 minutes a, second light flashes every 7 minutes, and a third light flashes every 8 minutes. If all lights flash together at 8 P.M., what is the next time of day they will all flash together
[URL='https://www.mathcelebrity.com/gcflcm.php?num1=2&num2=7&num3=8&pl=LCM']We use our least common multiple calculator[/URL] to see when the 3 numbers have a common multiple:
LCM of (2, , 8) = 56 minutes
So this means we add 56 minutes to 8:00 P.M. and we get [B]8:56 P.M.[/B]
a lighthouse blinks every 12 minutes. A second lighthouse blinks every 10 minutes if they both blinka lighthouse blinks every 12 minutes. A second lighthouse blinks every 10 minutes if they both blink at 8:10 P.M at what time will they next blink together
We want the least common multiple of (10, 12). This will be the next time each number times a multiple equals the same number.
[URL='https://www.mathcelebrity.com/gcflcm.php?num1=10&num2=12&num3=&pl=GCF+and+LCM']Typing in LCM 10,12 into our search engine[/URL], we get:
60
So if we start at 8:10, and 60 minutes later is when both lighthouses blink. 60 minutes equals 1 hour.
So we add 1 hour to 8:10, we have [B]9:10[/B]
A limo costs $85 to rent for 3 hours plus a 7% sales tax. What is the total cost to rent the limo foA limo costs $85 to rent for 3 hours plus a 7% sales tax. What is the total cost to rent the limo for 6 hours?
Determine the number of 3 hour blocks:
3 hour blocks = Total Rental Time / 3
3 hour blocks = 6 hours / 3
3 hour blocks = 2
With 7% = 0.07, we have:
Total Cost = $85 * / 3 hours * 2 (3 hour blocks) * 1.07
Total Cost = 85 * 2 * 1.07
Total Cost = [B]181.9[/B]
A local bank charges 19 per month plus 3 cents per check. The credit union charges7 per month plusA local bank charges 19 per month plus 3 cents per check. The credit union charges7 per month plus 7 cents per check. How many checks should be written each month to make the credit union a better deal?
Set up the cost function B(c) for the local bank where c is the number of checks:
B(c) = 0.03c + 19
Set up the cost function B(c) for the credit union where c is the number of checks:
B(c) = 0.07c + 7
We want to find out when:
0.07c + 7 < 0.03c + 19
[URL='https://www.mathcelebrity.com/1unk.php?num=0.07c%2B7%3C0.03c%2B19&pl=Solve']Typing this inequality into our search engine[/URL], we get:
c < 300
A local Dunkin’ Donuts shop reported that its sales have increased exactly 16% per year for the lastA local Dunkin’ Donuts shop reported that its sales have increased exactly 16% per year for the last 2 years. This year’s sales were $80,642. What were Dunkin' Donuts' sales 2 years ago?
Declare variable and convert numbers:
[LIST]
[*]16% = 0.16
[*]let the sales 2 years ago be s.
[/LIST]
s(1 + 0.16)(1 + 0.16) = 80,642
s(1.16)(1.16) = 80,642
1.3456s = 80642
Solve for [I]s[/I] in the equation 1.3456s = 80642
[SIZE=5][B]Step 1: Divide each side of the equation by 1.3456[/B][/SIZE]
1.3456s/1.3456 = 80642/1.3456
s = 59930.142687277
s = [B]59,930.14[/B]
A local radio station sells time slots for programs in 20-minute intervals. If the station operatesA local radio station sells time slots for programs in 20-minute intervals. If the station operates 24 hours per day, what is the total number of 20-minute time slots the radio station can sell for Thursday and Friday?
Thursday and Friday = 2 days
With 24 hours per day, we have 24 * 2 = 48 hours for Thursday and Friday.
Since 20 minutes is 1/3 of an hour, then we have 3 20-minute time slots per hour.
3 20-minute time slots * 48 hours = [B]144[/B] total 20-minute time slots
A local shop sold 499 hamburgers and cheese burgers. There were 51 fewer cheese burgers sold. How maA local shop sold 499 hamburgers and cheese burgers. There were 51 fewer cheese burgers sold. How many hamburgers were sold?
Let h = number of hamburgers sold and c be the number of cheeseburgers sold.
We have two equations:
(1) c = h - 51
(2) c + h = 499
Substitute (1) into (2)
h - 51 + h = 499
Combine like terms
2h - 51 = 499
Add 51 to both sides
2h = 550
Divide each side by 2 to isolate h
[B]h = 275[/B]
A local sports centre charges $8 per visit. For an annual membership fee of$45, the cost per visit iA local sports centre charges $8 per visit. For an annual membership fee of$45, the cost per visit is only $5.50. What is the least number of visits needed in a year in order for the membership to be a better deal?
Set up the cost for the visitors plan C(v) where v is the number of visits:
C(v) = 8v
Set up the cost for the membership plan C(v) where v is the number of visits:
C(v) = 5v + 45
The problem asks for v where:
5v + 45 < 8v
[URL='https://www.mathcelebrity.com/1unk.php?num=5v%2B45%3C8v&pl=Solve']Type this inequality into our search engine[/URL] and get:
v > 15
This means, the least number of visits is 1 more which is [B]16[/B]
A lottery uses a container with 25 identical balls numbered 1 through 25, from which three balls areA lottery uses a container with 25 identical balls numbered 1 through 25, from which three balls are selected. What is the theoretical probability that the number 13 is picked first?
P(1st ball being 13) = [B]1 /25[/B]
A luncheon for 14 guests cost $468.00. What was the average cost per guest?A luncheon for 14 guests cost $468.00. What was the average cost per guest?
Average Cost per Guest = Total Cost / Number of Guests
Average Cost per Guest = $468 / 14
Average Cost per Guest = [B]$33.43[/B]
A machine prints 230 movie posters each hour. Write and solve an equation to find the number of hourA machine prints 230 movie posters each hour. Write and solve an equation to find the number of hours it takes the machine to print 1265 posters.
Let h be the number of hours. We're given the following expression for the printing output of the machine:
230h
The questions asks for how long (h) to print 1265 posters, so we setup the equation:
230h = 1265
To solve for h, we [URL='https://www.mathcelebrity.com/1unk.php?num=230h%3D1265&pl=Solve']type this equation into our math engine[/URL] and we get:
h = [B]5.5 hours[/B]
A mail courier charges a base fee of $4.95 plus $11.90 per package being delivered. If x representsA mail courier charges a base fee of $4.95 plus $11.90 per package being delivered. If x represents the number of packages delivered, which of the following equations could be used to find y, the total cost of mailing packages?
Set up the cost function y = C(x)
[B]C(x) = 4.95 + 11.90x[/B]
A man purchased 20 tickets for a total of $225. The tickets cost $15 for adults and $10 for childrenA man purchased 20 tickets for a total of $225. The tickets cost $15 for adults and $10 for children. What was the cost of each ticket?
Declare variables:
[LIST]
[*]Let a be the number of adult's tickets
[*]Let c be the number of children's tickets
[/LIST]
Cost = Price * Quantity
We're given two equations:
[LIST=1]
[*]a + c = 20
[*]15a + 10c = 225
[/LIST]
Rearrange equation (1) in terms of a:
[LIST=1]
[*]a = 20 - c
[*]15a + 10c = 225
[/LIST]
Now that I have equation (1) in terms of a, we can substitute into equation (2) for a:
15(20 - c) + 10c = 225
Solve for [I]c[/I] in the equation 15(20 - c) + 10c = 225
We first need to simplify the expression removing parentheses
Simplify 15(20 - c): Distribute the 15 to each term in (20-c)
15 * 20 = (15 * 20) = 300
15 * -c = (15 * -1)c = -15c
Our Total expanded term is 300-15c
Our updated term to work with is 300 - 15c + 10c = 225
We first need to simplify the expression removing parentheses
Our updated term to work with is 300 - 15c + 10c = 225
[SIZE=5][B]Step 1: Group the c terms on the left hand side:[/B][/SIZE]
(-15 + 10)c = -5c
[SIZE=5][B]Step 2: Form modified equation[/B][/SIZE]
-5c + 300 = + 225
[SIZE=5][B]Step 3: Group constants:[/B][/SIZE]
We need to group our constants 300 and 225. To do that, we subtract 300 from both sides
-5c + 300 - 300 = 225 - 300
[SIZE=5][B]Step 4: Cancel 300 on the left side:[/B][/SIZE]
-5c = -75
[SIZE=5][B]Step 5: Divide each side of the equation by -5[/B][/SIZE]
-5c/-5 = -75/-5
c = [B]15[/B]
Recall from equation (1) that a = 20 - c. So we substitute c = 15 into this equation to solve for a:
a = 20 - 15
a = [B]5[/B]
A manufacturer has a monthly fixed cost of $100,000 and a production cost of $12 for each unit produA manufacturer has a monthly fixed cost of $100,000 and a production cost of $12 for each unit produced. The product sells for $20/unit
[U]Cost Function C(u) where u is the number of units:[/U]
C(u) = cost per unit * u + fixed cost
C(u) = 12u + 100000
[U]Revenue Function R(u) where u is the number of units:[/U]
R(u) = Sale price * u
R(u) = 20u
Break even point is where C(u) = R(u):
C(u) = R(u)
12u + 100000 = 20u
To solve for u, we [URL='https://www.mathcelebrity.com/1unk.php?num=12u%2B100000%3D20u&pl=Solve']type this equation into our search engine[/URL] and we get:
u = [B]12,500[/B]
A manufacturer has a monthly fixed cost of $100,000 and a production cost of $14 for each unit produA manufacturer has a monthly fixed cost of $100,000 and a production cost of $14 for each unit produced. The product sells for $20/unit.
Let u be the number of units. We have a cost function C(u) as:
C(u) = Variable cost * u + Fixed Cost
C(u) = 14u + 100000
[U]We have a revenue function R(u) with u units as:[/U]
R(u) = Sale Price * u
R(u) = 20u
[U]We have a profit function P(u) with u units as:[/U]
Profit = Revenue - Cost
P(u) = R(u) - C(u)
P(u) = 20u - (14u + 100000)
P(u) = 20u - 14u - 100000
P(u) = 6u - 1000000
A Math Quiz has 5 multiple choice option. Each question has four options. Find the number of possibl[SIZE=6][B]A quiz has 5 questions with 4 answer choices each find the number of possible outcomes[/B]
[B][/B]
[B]We have 4 * 4 * 4 * 4 * 4 = 1024 outcomes[/B][/SIZE]
A math teacher bought 40 calculators at $8.20 each and a number of other calculators costing$2.95 eaA math teacher bought 40 calculators at $8.20 each and a number of other calculators costing$2.95 each. In all she spent $387. How many of the cheaper calculators did she buy
Let the number of cheaters calculators be c. Since amount equals price * quantity, we're given the following equation:
8.20 * 40 + 2.95c = 387
To solve this equation for c, we [URL='https://www.mathcelebrity.com/1unk.php?num=8.20%2A40%2B2.95c%3D387&pl=Solve']type it in our search engine [/URL]and we get:
c = [B]20[/B]
A Math teacher gives one test a week to his class of 31 students. Estimate the number of tests the tA Math teacher gives one test a week to his class of 31 students. Estimate the number of tests the teacher will mark in 39 weeks.
31 students * 1 test per week * 39 weeks = [B]1,209 tests[/B]
A mechanic charges $45 per hour and parts cost $125. Write an expression for the total if the mechanA mechanic charges $45 per hour and parts cost $125. Write an expression for the total if the mechanic works h hours.
Set up the cost function C(h) where h is the number of hours worked:
C(h) = Hourly Rate * h + parts
C(h) = [B]45h + 125[/B]
A mechanic will charge a new customer $45.00 for an initial diagnosis plus $20 an hour of labor. HowA mechanic will charge a new customer $45.00 for an initial diagnosis plus $20 an hour of labor. How long did the mechanic work on a car if he charged the customer $165?
We set up a cost function C(h) where h is the number of hours of labor:
C(h) = Hourly Labor Rate * h + Initial Diagnosis
C(h) = 20h + 45
The problem asks for the number of hours if C(h) = 165. So we set our cost function C(h) above equal to 165:
20h + 45 = 165
To solve for h, [URL='https://www.mathcelebrity.com/1unk.php?num=20h%2B45%3D165&pl=Solve']we plug this equation into our search engine[/URL] and we get:
h = [B]6[/B]
A members-only speaker series allows people to join for $16 and then pay $1 for every event attendedA members-only speaker series allows people to join for $16 and then pay $1 for every event attended. What is the maximum number of events someone can attend for a total cost of $47?
Subtract the join fee from the total cost:
$47 - $16 = $31
Now divide this number by the cost per event:
$31 / $1 = [B]31 events[/B]
A milk booth sells 445 litres of milk in a day. How many litres of milk will it sell in 4 yearsA milk booth sells 445 litres of milk in a day. How many litres of milk will it sell in 4 years
Calculate the number of days in 4 years:
Days in 4 years = Days in 1 year * 4
Days in 4 years = 365 * 4
Days in 4 years = 1,460
Calculate litres of milk sold in 4 years:
Litres of milk sold in 4 years = Litres of milk sold in 1 day * Days in 4 years
Litres of milk sold in 4 years = 445 * 1,460
Litres of milk sold in 4 years = [B]649,700 litres[/B]
A monster energy drink has 164 mg of caffeine. Each hour your system reduces the amount of caffeineA monster energy drink has 164 mg of caffeine. Each hour your system reduces the amount of caffeine by 12%. Write an equation that models the amount of caffeine that remains in your body after you drink an entire monster energy.
Set up a function C(h) where he is the number of hours after you drink the Monster energy drink:
Since 12% as a decimal is 0.12, we have:
C(h) = 164 * (1 - 0.12)^h <-- we subtract 12% since your body flushes it out
[B]C(h) = 164 * (0.88)^h[/B]
A mother gives birth to a 10 pound baby. Every 2 months, the baby gains 5 pounds. If x is the age oA mother gives birth to a 10 pound baby. Every 2 months, the baby gains 5 pounds. If x is the age of the baby in months, then y is the weight of the baby in pounds. Find an equation of a line in the form y = mx + b that describes the baby's weight.
If the baby gains 5 pounds every 2 months, then they gain 5/2 = 2.5 pounds per month. Let x be the number of months old for the baby, we have:
The baby starts at 10 pounds. And every month (x), the baby's weight increases 2.5 pounds. Our equation is:
[B]y = 2.5x + 10[/B]
A mother gives birth to a 6 pound baby. Every 4 months, the baby gains 4 pounds. If x is the age ofA mother gives birth to a 6 pound baby. Every 4 months, the baby gains 4 pounds. If x is the age of the baby in months, then y is the weight of the baby in pounds. Find an equation of a line in the form y = mx b that describes the baby's weight.
The baby gains 4 pounds every month, where x is the number of months since birth. The baby boy starts life (time 0) at 6 pounds. So we have
[B]y = 4x + 6[/B]
A mother gives birth to a 7 pound baby. Every 3 months, the baby gains 2 pounds. If x is the age ofA mother gives birth to a 7 pound baby. Every 3 months, the baby gains 2 pounds. If x is the age of the baby in months, then y is the weight of the baby in pounds. Find an equation of a line in the form y = mx + b that describes the baby's weight.
Every month, the baby gains 2/3 of a pound. So we have:
[B]y = 2/3x + 7
[/B]
The baby starts off with 7 pounds. So we add 7 pounds + 2/3 times the number of months passed since birth.
A motorist pays $4.75 per day in tolls to travel to work. He also has the option to buy a monthly paA motorist pays $4.75 per day in tolls to travel to work. He also has the option to buy a monthly pass for $80. How many days must he work (i.e. pass through the toll) in order to break even?
Let the number of days be d. Break even means both costs are equal. We want to find when:
4.75d = 80
To solve for d, we [URL='https://www.mathcelebrity.com/1unk.php?num=4.75d%3D80&pl=Solve']type this equation into our search engine[/URL] and we get:
d = 16.84 days
We round up to an even [B]17 days[/B].
A movie theater charges $7 for adults and $3 for seniors on a particular day when 324 people paid anA movie theater charges $7 for adults and $3 for seniors on a particular day when 324 people paid an admission the total receipts were 1228 how many were seniors and how many were adults?
Let the number of adult tickets be a. Let the number of senior tickets be s. We're given two equations:
[LIST=1]
[*]a + s = 324
[*]7a + 3s = 1228
[/LIST]
We have a set of simultaneous equations we can solve using 3 methods:
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=a+%2B+s+%3D+324&term2=7a+%2B+3s+%3D+1228&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=a+%2B+s+%3D+324&term2=7a+%2B+3s+%3D+1228&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=a+%2B+s+%3D+324&term2=7a+%2B+3s+%3D+1228&pl=Cramers+Method']Cramer's Rule[/URL]
[/LIST]
No matter what method we choose, we get:
[LIST]
[*][B]a = 64[/B]
[*][B]s = 260[/B]
[/LIST]
A movie theater charges 7.00 for adults and 2.00 for seniors citizens. On a day when 304 people paidA movie theater charges 7.00 for adults and 2.00 for seniors citizens. On a day when 304 people paid for admission, the total receipt were 1118. How many who paid were adults ? How many were senior citizens?
Let a be the number of adult tickets. Let s be the number of senior citizen tickets. We're given two equations:
[LIST=1]
[*]a + s = 304
[*]7a + 2s = 1118
[/LIST]
We can solve this system of equations three ways:
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=a+%2B+s+%3D+304&term2=7a+%2B+2s+%3D+1118&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=a+%2B+s+%3D+304&term2=7a+%2B+2s+%3D+1118&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=a+%2B+s+%3D+304&term2=7a+%2B+2s+%3D+1118&pl=Cramers+Method']Cramer's Method[/URL]
[/LIST]
No matter which way we choose, we end up with the same answer:
[LIST]
[*]a = [B]102[/B]
[*]s = [B]202[/B]
[/LIST]
A movie theater has a seating capacity of 143. The theater charges $5.00 for children, $7.00 for stuA movie theater has a seating capacity of 143. The theater charges $5.00 for children, $7.00 for students, and $12.00 of adults. There are half as many adults as there are children. If the total ticket sales was $ 1030, How many children, students, and adults attended?
Let c be the number of children's tickets, s be the number of student's tickets, and a be the number of adult's tickets. We have 3 equations:
[LIST=1]
[*]a + c + s = 143
[*]a = 0.5c
[*]12a + 5c + 7s =1030
[/LIST]
Substitute (2) into (1)
0.5c + c + s = 143
1.5c + s = 143
Subtract 1.5c from each side
4. s = 143 - 1.5c
Now, take (4) and (2), and plug it into (3)
12(0.5c) + 5c + 7(143 - 1.5c) = 1030
6c + 5c + 1001 - 10.5c = 1030
Combine like terms:
0.5c + 1001 = 1030
Use our [URL='http://www.mathcelebrity.com/1unk.php?num=0.5c%2B1001%3D1030&pl=Solve']equation calculator[/URL] to get [B]c = 58[/B].
Plug this back into (2)
a = 0.5(58)
[B]a = 29
[/B]
Now take the a and c values, and plug it into (1)
29 + 58 + s = 143
s + 87 = 143
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=s%2B87%3D143&pl=Solve']equation calculator[/URL] again, we get [B]s = 56[/B].
To summarize, we have:
[LIST]
[*]29 adults
[*]58 children
[*]56 students
[/LIST]
A music app charges $2 to download the app plus $1.29 per song download. Write and solve a linear eqA music app charges $2 to download the app plus $1.29 per song download. Write and solve a linear equation to find the total cost to download 30 songs
Set up the cost function C(s) where s is the number of songs:
C(s) = cost per song * s + download fee
Plugging in our numbers for s = 30 and a download fee of $2 and s = 1.29, we have:
C(30) = 1.29(30) + 2
C(30) = 38.7 + 2
C(30) = [B]40.7[/B]
A music app charges $2 to download the app plus $1.29 per song downloadedA music app charges $2 to download the app plus $1.29 per song downloaded
Let d be the number of downloads. The cost function C(d) is:
C(d) = cost per download * d + download fee
[B]C(d) = 1.29d + 2[/B]
A music app charges $2 to download the app plus $1.29 per song downloaded. Write and solve a linearA music app charges $2 to download the app plus $1.29 per song downloaded. Write and solve a linear equation to find the total cost to download 30 songs.
Let the number of songs be s. And the cost function be C(s). We have:
C(s) = Price per song downloaded * s + app download charge
C(s) = 1.29s + 2
The problem asks for C(30):
C(3) = 1.29(30) + 2
C(3) = 38.7 +2
C(3) = $[B]40.7[/B]
a music app charges $5 to download the app plus $1.25 per song downloaded. write linear equation toa music app charges $5 to download the app plus $1.25 per song downloaded. write linear equation to calculate the cost for x number of songs
With x songs, our Cost equation C(x) is:
C(x) = cost per download * x downloads + app download fee
[B]C(x) = 1.25x + 5[/B]
A music app charges 2$ to download the app plus 1.29$ per song download. Write and solve linear equaA music app charges 2$ to download the app plus 1.29$ per song download. Write and solve linear equation and a linear equation to find the total cost to download 30 songs
Set up the equation C(d) where d is the number of downloads:
C(d) = cost per download * d + download fee
Plugging in our numbers, we get:
C(d) = 1.29d + 2
The problem asks for C(30):
C(30) = 1.29(30) + 2
C(30) = 38.7 + 2
C(30) = [B]40.70[/B]
A natural number greater than 1 has only itself and 1 as factors is calledA natural number greater than 1 has only itself and 1 as factors is called a [B]prime number.[/B]
A necklace chain costs $15. Beads cost $2.75 each. You spend a total of $28.75 on a necklace and beaA necklace chain costs $15. Beads cost $2.75 each. You spend a total of $28.75 on a necklace and beads before tax. How many beads did you buy in addition to the necklace?
[U]Calculate the amount left to spend on beads:[/U]
Bead Spend = Total Spend - Necklace Cost
Bead Spend = $28.75 - $15
Bead Spend = $13.75
[U]Calculate the number of beads you bought:[/U]
Beads Bought = Bead Spend / Cost Per Bead
Beads Bought = $13.75 / $2.75
Beads Bought = [B]$5[/B]
A new car worth $24,000 is depreciating in value by $3,000 per year , how many years till the cars vA new car worth $24,000 is depreciating in value by $3,000 per year , how many years till the cars value will be $9,000
We have a flat rate depreciation each year. Set up the function D(t) where t is the number of years of depreciation:
D(t) = 24000 - 3000t
The problem asks for the time (t) when D(t) = 9000. So we set D(t) = 9000
24000 - 3000 t = 9000
To solve for t, [URL='https://www.mathcelebrity.com/1unk.php?num=24000-3000t%3D9000&pl=Solve']we plug this function into our search engine[/URL] and we get:
t = [B]5[/B]
A new car worth $30,000 is depreciating in value by $3,000 per year. After how many years will the cA new car worth $30,000 is depreciating in value by $3,000 per year. After how many years will the cars value be $9,000
Step 1, the question asks for Book Value. Let y be the number of years since purchase.
We setup an equation B(y) which is the Book Value at time y.
B(y) = Sale Price - Depreciation Amount * y
We're given Sale price = $30,000, depreciation amount = 3,000, and B(y) = 9000
30000 - 3000y = 9000
To solve for y, we [URL='https://www.mathcelebrity.com/1unk.php?num=30000-3000y%3D9000&pl=Solve']type this in our math engine[/URL] and we get:
y = [B]7
[/B]
To check our work, substitute y = 7 into B(y)
B(7) = 30000 - 3000(7)
B(7) = 30000 - 21000
B(7) = 9000
[MEDIA=youtube]oCpBBS7fRYs[/MEDIA]
A new company is projecting its profits over a number of weeks. They predict that their profits eachA new company is projecting its profits over a number of weeks. They predict that their profits each week can be modeled by a geometric sequence.
Three weeks after they started, the company's projected profit is $10,985.00
Four weeks after they started, the company's projected profit is $14,280.50
Let Pn be the projected profit, in dollars, n weeks after the company started tracking their profits.
a. What is the common ratio of the sequence?
b. Calculate the initial value
c. Construct a recurrence relation that can be used to model the value of Pn
a. 14,280.50/10,985.00 = [B]1.3[/B]
b. 3 weeks ago, the Initial value is 10,985/1.3^3 = [B]$5,000
c. Pn = 5000 * 1.3^n[/B]
a number added to 5 minus pa number added to 5 minus p
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
We add 5 minus p to this number x:
[B]x + 5 - p[/B]
a number added to the product of y and xa number added to the product of y and x
Since we're already using the variables x and y, we choose another arbitrary variable for the phrase [I]a number.[/I]
a
The product of y and x isL
xy
Then add a:
[B]a + xy[/B]
A number cube is rolled and a coin is tossed. The number cube and the coin are fair. What is the proA number cube is rolled and a coin is tossed. The number cube and the coin are fair. What is the probability that the number rolled is greater than 3 and the coin toss is heads? Write your answer as a fraction in simplest form
Let's review the vitals of this question:
[LIST]
[*]The probability of heads on a fair coin is 1/2.
[*]On a fair die, greater than 3 means either 4, 5, or 6. Any die roll face is a 1/6 probability.
[*]So we have a combination of outcomes below:
[/LIST]
Outcomes
[LIST=1]
[*]Heads and 4
[*]Heads and 5
[*]Heads and 6
[/LIST]
For each of the outcomes, we assign a probability. Since the coin flip and die roll are independent, we multiply the probabilities:
[LIST=1]
[*]P(Heads and 4) = 1/2 * 1/6 = 1/12
[*]P(Heads and 5) = 1/2 * 1/6 = 1/12
[*]P(Heads and 6) = 1/2 * 1/6 = 1/12
[/LIST]
Since we want any of those events, we add all three probabilities
1/12 + 1/12 + 1/12 = 3/12
This fraction is not simplified. S[URL='https://www.mathcelebrity.com/fraction.php?frac1=3%2F12&frac2=3%2F8&pl=Simplify']o we type this fraction into our search engine, and choose Simplify[/URL].
We get a probability of [B]1/4[/B].
By the way, if you need a decimal answer or percentage answer instead of a fraction, we type in the following phrase into our search engine:
[URL='https://www.mathcelebrity.com/perc.php?num=1&den=4&pcheck=1&num1=+16&pct1=+80&pct2=+35&den1=+90&pct=+82&decimal=+65.236&astart=+12&aend=+20&wp1=20&wp2=30&pl=Calculate']1/4 to decimal[/URL]
Alternative Answers:
[LIST]
[*]For a decimal, we get [B]0.25[/B]
[*]For a percentage, we get [B]25%[/B]
[/LIST]
a number increased by 6The phrase [I]a number[/I] means an arbitrary variable. We can pick any letter a-z except for i and e.
Let's choose x.
The phrase [I]increased by[/I] means we add 6 to x
[B]x +6[/B]
a number increased by 8 and then tripleda number increased by 8 and then tripled
The phrase [I]a number[/I] means an arbitrary variable, let's call it x:
x
Increased by 8 means we add 8 to x:
x + 8
Then tripled means we multiply the expression x + 8 by 3:
[B]3(x + 8)[/B]
a number is twice another numbera number is twice another number
The phrase [I]a number[/I] means an arbitrary variable, let's call it x
The phrase [I]another number [/I]means another arbitrary variable, let's call it y
Twice means we multiply y by 2:
2y
The phrase [I]is [/I]means an equation, so we set x equal to 2y:
[B]x = 2y[/B]
A number K is doubled and then increased by 3A number K is doubled and then increased by 3
K is doubled means we multiply K by 2:
2K
Increased by 3 means we add:
[B]2K + 3[/B]
A number m is no less than -8 and fewer than 9.A number m is no less than -8 and fewer than 9.
No less than means greater than or equal to:
m >= -8
Fewer than 9 means less than 9:
m < 9
Combine these two inequalities to get
[B]-8 <= m < 9[/B]
A number multiplied by 6 and divided by 5 give four more than a number?A number multiplied by 6 and divided by 5 give four more than a number?
A number is represented by an arbitrary variable, let's call it x.
Multiply by 6:
6x
Divide by 5
6x/5
The word "gives" means equals, so we set this equal to 4 more than a number, which is x + 4.
6x/5 = x + 4
Now, multiply each side of the equation by 5, to eliminate the fraction on the left hand side:
6x(5)/5 = 5(x + 4)
The 5's cancel on the left side, giving us:
6x = 5x + 20
Subtract 5x from each side
[B]x = 20[/B]
Check our work from our original equation:
6x/5 = x + 4
6(20)/5 ? 20 + 4
120/5 ?24
24 = 24 <-- Yes, we verified our answer
A number n diminished by 8 gives 12A number n diminished by 8 gives 12
A number n can be written as n:
n
Diminished by means we subtract, so we subtract 8 from n:
n - 8
The word [I]gives[/I] means an equation, so we set n - 8 equal to 12:
[B]n - 8 = 12[/B]
A number n is no less than 2 and no more than 49.A number n is no less than 2 and no more than 49.
This is a compound inequality. Let's break it into parts.
Step 1: No more than 49 means 49 or less. Or, less than or equal to 49
<= 49
Step 2: no less than 2 means 2 or greater. Or, greater than or equal to 2
>=2
Writing this in terms of the number n, we have:
[B]2 <= n <= 49[/B]
a number of bacteria b tripleda number of bacteria b tripled
The word [I]tripled[/I] means we multiply by 3, so we have:
[B]3b[/B]
A number of dogs are to equally share a bag of dog food. If there are n dogs in the group and one doA number of dogs are to equally share a bag of dog food. If there are [I]n[/I] dogs in the group and one dog eats its share, what percent of the bag is left?
Fraction of the bag left is:
(n - 1)/n
Multiply by 100 to get a percentage:
[B]100(n - 1)/n[/B]
a number of pennies splits into 4 equal groupsa number of pennies splits into 4 equal groups
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
We take x and divide it by 4 to get 4 equal groups:
[B]x/4[/B]
a number of seconds in 50 minutesa number of seconds in 50 minutes
60 seconds / minute * 50 minutes = 60 * 50 seconds = [B]3,000 seconds[/B]
A number p subtracted by its double is 10A number p subtracted by its double is 10
The double of a number means we multiply p by 2:
2p
A number p is subtracted by its double
p - 2p
The phrase [I]is[/I] means equal to, so we set p - 2p equal to 10:
[B]p - 2p = 10[/B]
A number t is no less than 30 and fewer than 40.A number t is no less than 30 and fewer than 40.
This is a compound inequality. Take it in 3 parts:
Step 1: fewer than 40 means less than (does not include 40)
t < 40
Step 2: no less than 30 means greater than or equal to
t >= 30
Step 3: Combine these 2 statements into one compound inequality:
[B]30 <= t < 40[/B]
A number y increased by itselfA number y increased by itself
increased by itself means we add the variable y to itself to get our final algebraic expression of:
[B]y + y
[/B]
[I]If[/I] the problem asks you to simplify, we group like terms and get:
[B]2y[/B]
A numerical pass code is required to open a car door. The pass code is five digits long and uses theA numerical pass code is required to open a car door. The pass code is five digits long and uses the digits 0-9. Numbers may be repeated in the pass code. How many different pass codes exist?
0-9 is 10 digits. Since digits can repeat, we use the fundamental rule of counting to get:
10 * 10 * 10 * 10 * 10 = [B]100,000 different pass codes[/B]
a package of soccer accessories costs $25 for cleats, $14 for shin guards , and $12 for a ball. Writa package of soccer accessories costs $25 for cleats, $14 for shin guards , and $12 for a ball. Write two equivalent expressions for the total cost of 9 accessory package. Then find the cost.
Let c be the number of cleats, s be the number of shin guards, and b be the number of balls. We have the following cost function for 9 accessory packages:
[B]9(25c + 14s + 12b)[/B]
But if we multiply through, we get an equivalent expression:
[B]225c + 126s + 108b[/B]
A package that is heavier than 11 lbs and 8 oz will have a label that says HEAVY on it. Gloria packeA package that is heavier than 11 lbs and 8 oz will have a label that says HEAVY on it. Gloria packed 6 flowerpots to send to her customers. Each of the flowerpots weighs 1 lb and 12 oz. The packing material weighs 5 oz. Will her package be labeled as HEAVY?
Calculate weight of flowerpots:
Flowerpot weight = Weight per flowerpot * number of flowerpots
Flowerpot weight = 1 lb 12 oz * 6
Flowerpot weight = 6 lb and 72 oz
Since 72oz = 72/16 = 4 lbs and 8 oz, we have:
Flowerpot weight = 6 lb 8 oz + 4 lbs and 8 oz = 12 lb 16 oz
Since 16oz = 1 lb, we have:
13lb
Add in the 5 oz of packing material, we have:
13lb 5 oz
Since this is greater than 11lb 8oz, the package [B]will be labeled as HEAVY[/B]
A packing machine can package 236 first aid kit each hour. At this rate, find the number of first aiA packing machine can package 236 first aid kit each hour. At this rate, find the number of first aid kit package in 24 hours
Total First Aid Kits = Kits Per Hour * Number of Hours
Total First Aid Kits = 236 * 24
Total First Aid Kits = [B]5,664[/B]
A pair of numbers has an HCF (Highest Common Factor) of 3, and an LCM (Lowest Common Multiple) ofA pair of numbers has an HCF (Highest Common Factor) of 3, and an LCM (Lowest Common Multiple) of 45 . If one of the numbers in the pair is 15 , what is the other number?
[LIST=1]
[*]Prime Factorization for 15 is 3 * 5
[*]Prime Factorization for 9 is 3 * 3
[*]LCM of (9, 15) = 35
[/LIST]
[URL='https://www.mathcelebrity.com/gcflcm.php?num1=9&num2=15&num3=&pl=GCF+and+LCM']Check out this link here to see the details[/URL]
A pair of standard dice is rolled, how many possible outcomes are thereA pair of standard dice is rolled, how many possible outcomes are there?
We want the number of outcomes in the sample space.
The first die has 6 possibilities 1-6.
The second die has 6 possibilities 1-6.
Our sample space count is 6 x 6 = [B]36 different outcomes
[/B]
[LIST=1]
[*](1, 1)
[*](1, 2)
[*](1, 3)
[*](1, 4)
[*](1, 5)
[*](1, 6)
[*](2, 1)
[*](2, 2)
[*](2, 3)
[*](2, 4)
[*](2, 5)
[*](2, 6)
[*](3, 1)
[*](3, 2)
[*](3, 3)
[*](3, 4)
[*](3, 5)
[*](3, 6)
[*](4, 1)
[*](4, 2)
[*](4, 3)
[*](4, 4)
[*](4, 5)
[*](4, 6)
[*](5, 1)
[*](5, 2)
[*](5, 3)
[*](5, 4)
[*](5, 5)
[*](5, 6)
[*](6, 1)
[*](6, 2)
[*](6, 3)
[*](6, 4)
[*](6, 5)
[*](6, 6)
[/LIST]
a paper boy delivers thirteen paper to an apartment complex. if these deliveries compose one-seventha paper boy delivers thirteen paper to an apartment complex. if these deliveries compose one-seventh of his route, how many papers does he deliver
Let d be the total number of deliveries the paper boy makes on the route.
d
We're given, d/7 = 13
d = 13 * 7
d = [B]91
[MEDIA=youtube]HRviz-3fn5c[/MEDIA][/B]
A parking lot has seventy-one parking spaces numbered from 1 to 71. There are no cars in the parkingA parking lot has seventy-one parking spaces numbered from 1 to 71. There are no cars in the parking lot when Jillian pulls in and randomly parks. What is the probability that the number on the parking space where she parks is greater than or equal to 31?
Greater than or equal to means including 31 all the way through 71
31-71 is 40 spaces
P(s>=31) = [B]40/71[/B]
A parking lot has sixty-eight parking spaces numbered from 1 to 68. There are no cars in the parkingA parking lot has sixty-eight parking spaces numbered from 1 to 68. There are no cars in the parking lot when Jillian pulls in and randomly parks. What is the probability that the number on the parking space where she parks is greater than or equal to 21?
We want P(X>=21). This is also found by taking 1 - P(X <= 20).
P(X<=20) = 20/68. Reduced using a [URL='http://www.mathcelebrity.com/gcflcm.php?num1=20&num2=68&num3=&pl=GCF']GCF of 4[/URL], we get 5/17.
P(X >=21) = 1 - 5/17 = [B]12/17[/B]
A parking meter contains 27.05 in quarters and dimes. All together there are 146 coins. How many ofA parking meter contains 27.05 in quarters and dimes. All together there are 146 coins. How many of each coin are there?
Let d = the number of dimes and q = the number of quarters. We have two equations:
(1) d + q = 146
(2) 0.1d + 0.25q = 27.05
Rearrange (1) into (3) solving for d
(3) d = 146 - q
Substitute (3) into (2)
0.1(146 - q) + 0.25q = 27.05
14.6 - 0.1q + 0.25q = 27.05
Combine q's
0.15q + 14.6 = 27.05
Subtract 14.6 from each side
0.15q = 12.45
Divide each side by 0.15
[B]q = 83[/B]
Plugging that into (3), we have:
d = 146 - 83
[B]d = 63[/B]
A peanut vendor has initial start up costs of $7600 and variable costs of $0.70 per bag of peanuts.A peanut vendor has initial start up costs of $7600 and variable costs of $0.70 per bag of peanuts. What is the cost function?
We set up the cost function C(b) where b is the number of bags:
C(b) = Cost per bag * b + Start up costs
Plugging in our numbers, we get:
[B]C(b) = 0.70b + 7600[/B]
A person has $13,000 invested in stock A and stock B. Stock A currently sells for $20 a share andA person has $13,000 invested in stock A and stock B. Stock A currently sells for $20 a share and stock B sells for $90 a share. If stock B triples in value and stock A goes up 50%, his stock will be worth $33,000. How many shares of each stock does he own?
Set up the given equations, where A is the number of shares for Stock A, and B is the number of shares for Stock B
[LIST=1]
[*]90A + 20B = 13000
[*]3(90A) + 1.5(20B) = 33000 <-- [I]Triple means multiply by 3, and 50% gain means multiply by 1.5[/I]
[/LIST]
Rewrite (2) by multiplying through:
270A + 30B = 33000
Using our simultaneous equations calculator, we get [B]A = 100 and B = 200[/B]. Click the links below to solve using each method:
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=90A+%2B+20B+%3D+13000&term2=270A+%2B+30B+%3D+33000&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=90A+%2B+20B+%3D+13000&term2=270A+%2B+30B+%3D+33000&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=90A+%2B+20B+%3D+13000&term2=270A+%2B+30B+%3D+33000&pl=Cramers+Method']Cramers Method[/URL]
[/LIST]
Check our work using equation (1)
90(100) + 20(200) ? 13,000
9000 + 4000 ? 13,000
13000 = 13000
A person is earning 600 per day to do a certain job. Express the total salary as a function of the nA person is earning 600 per day to do a certain job. Express the total salary as a function of the number of days that the person works.
Set up the salary function S(d) where d is the number of days that the person works:
S(d) = Daily Rate * d
[B]S(d) = 600d[/B]
A person places $96300 in an investment account earning an annual rate of 2.8%, compounded continuouA person places $96300 in an investment account earning an annual rate of 2.8%, compounded continuously. Using the formula V=PertV = Pe^{rt} V=Pe rt , where V is the value of the account in t years, P is the principal initially invested, e is the base of a natural logarithm, and r is the rate of interest, determine the amount of money, to the nearest cent, in the account after 7 years.
Substituting our given numbers in where P = 96,300, r = 0.028, and t = 7, we get:
V = 96,300 * e^(0.028 * 7)
V = 96,300 * e^0.196
V = 96,300 * 1.21652690533
V = [B]$117,151.54[/B]
A person that runs for 15 minutes burns 180 calories. If someone burns 300 calories, how long did tgA person that runs for 15 minutes burns 180 calories. If someone burns 300 calories, how long did tgey run for
Set up a proportion of minutes to calories where m is the number of minutes per 300 calories:
15/180 = m/300
To solve for m, [URL='https://www.mathcelebrity.com/prop.php?num1=15&num2=m&den1=180&den2=300&propsign=%3D&pl=Calculate+missing+proportion+value']we type this proportion into our search engine[/URL] and we get:
m = [B]25[/B]
A person will devote 31 years to be sleeping and watching tv. The number of years sleeping will exceA person will devote 31 years to be sleeping and watching tv. The number of years sleeping will exceed the number of years watching tv by 19. How many years will the person spend on each of these activities
Let s be sleeping years and t be tv years, we have two equations:
[LIST=1]
[*]s + t = 31
[*]s = t + 19
[/LIST]
Substitute (2) into (1)
(t + 19) + t = 31
Combine like terms:
2t + 19 = 31
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=2t%2B19%3D31&pl=Solve']equation solver[/URL], we get [B]t = 6[/B]. Using equation (2), we have
s = 6 + 19
s = [B]25[/B]
A Petri dish contains 2000. The number of bacteria triples every 6 hours. How many bacteria will exiA Petri dish contains 2000. The number of bacteria triples every 6 hours. How many bacteria will exist after 3 days?
Determine the amount of tripling periods:
[LIST]
[*]There are 24 hours in a day.
[*]24 hours in a day * 3 days = 72 hours
[*]72 hours / 6 hours tripling period = 12 tripling periods
[/LIST]
Our bacteria population function B(t) where t is the amount of tripling periods. Tripling means we multiply by 3, so we have:
B(t) = 2000 * 3^t
with t = 12 tripling periods, we have:
B(12) = 2000 * 3^12
B(12) = 2000 * 531441
B(12) = [B]1,062,882,000[/B]
A photographer snapped 224 photos over a period of 15 days. At this rate, how many would he take inA photographer snapped 224 photos over a period of 15 days. At this rate, how many would he take in 45 days?
Set up a proportion of photos to days where p is the number of photos snapped in 45 days:
224/15 = p/45
To solve this proportion for p, we [URL='https://www.mathcelebrity.com/prop.php?num1=224&num2=p&den1=15&den2=45&propsign=%3D&pl=Calculate+missing+proportion+value']type it in our search engine[/URL] and we get;
p = [B]672[/B]
A piggy bank contains $90.25 in dimes and quarters. Which equation represents this scenario? Let x rA piggy bank contains $90.25 in dimes and quarters. Which equation represents this scenario? Let x represent the number of dimes, and let y represent the number of quarters.
Since amount = cost * quantity, we have:
[B]0.1d + 0.25q = 90.25[/B]
A pile of coins, consisting of quarters and half dollars, is worth 11.75. If there are 2 more quarteA pile of coins, consisting of quarters and half dollars, is worth 11.75. If there are 2 more quarters than half dollars, how many of each are there?
Let h be the number of half-dollars and q be the number of quarters. Set up two equations:
(1) q = h + 2
(2) 0.25q + 0.5h = 11.75
[U]Substitute (1) into (2)[/U]
0.25(h + 2) + 0.5h = 11.75
0.25h + 0.5 + 0.5h = 11.75
[U]Group h terms[/U]
0.75h + 0.5 = 11.75
[U]Subtract 0.5 from each side[/U]
0.75h = 11.25
[U]Divide each side by h[/U]
[B]h = 15[/B]
[U]Substitute h = 15 into (1)[/U]
q = 15 + 2
[B]q = 17[/B]
A plant is 15 cm high and grows 4.5 cm every month. How many months will it take until the plant isA plant is 15 cm high and grows 4.5 cm every month. How many months will it take until the plant is 27.5 cm
We set up the height function H(m) where m is the number of months since now. We have:
H(m) = 4.5m + 15
We want to know when H(m) = 27.5, so we set our H(m) function equal to 27.5:
4.5m + 15 = 27.5
To solve for m, we [URL='https://www.mathcelebrity.com/1unk.php?num=4.5m%2B15%3D27.5&pl=Solve']type this equation into our search engine[/URL] and we get:
m = 2.78
So we round up to [B]3 whole months[/B]
A playground requires 2,459 pounds of sand to cover the ground. If the sand comes in 60-pound bags,A playground requires 2,459 pounds of sand to cover the ground. If the sand comes in 60-pound bags, how many bags are needed
Number of bags = Total Weight of Sand / Pounds per bag
Number of bags = 2459/60
Number of bags = 40.9833
A plumber charges $45 for a house call plus $25 for each hour worked.Let h represent the number of hA plumber charges $45 for a house call plus $25 for each hour worked.Let h represent the number of hours worked. Write the expression that shows how much a plumber charges for a job. Then find how much the plumbers charges for a job lasting 4 hours
[U]Set up the cost function C(h) where h is the number of hours:[/U]
C(h) = Hours worked * hourly rate + house call fee
[B]C(h) = 25h + 45 <-- This is the expression for how much the plumber charges for a job
[/B]
[U]Now determine how much the plumber charges for a job lasting 4 hours[/U]
We want C(4)
C(4) = 25(4) + 45
C(4) = 100 + 45
C(4) = [B]$145[/B]
A plumber makes a starting $36,000 a year. They get paid semimonthly. They have a health insurance pA plumber makes a starting $36,000 a year. They get paid semimonthly. They have a health insurance premium of $74.28 and $25 in union dues each paycheck. 1. What is their semimonthly salary?
Calculate the number of semi-monthly periods per year:
Semi-monthly periods per year = 12 Months per year * 2
Semi-monthly periods per year = 24
Calculate semi-monthly salary amount:
Semi-monthly salary amount = Annual Salary / Semi-monthly periods per year
Semi-monthly salary amount = $36,000 / 24
Semi-monthly salary amount = $1,500
Now, calculate the net pay each semimonthly period:
Net pay = Semi-monthly salary amount - Health Insurance Premium - Union Dues
Net pay = $1,500 - $74.28 - $25
Net pay = [B]$1,400.72[/B]
A pot of soup, currently 66°C above room temperature, is left out to cool. If that temperature diffeA pot of soup, currently 66°C above room temperature, is left out to cool. If that temperature difference decreases by 10% per minute, then what will the difference be in 17 minutes?
We set up the temperature function T(m), where m is the number of minutes of cooling. With 10% = 0.1, we have:
T(m) = 66 * (1 - 0.10)^m
The problem asks for T(17) [U]and[/U] the difference temperature:
T(17) = 66 * 0.9^17
T(17) = 66 * 0.16677181699
T(17) = [B]11.01C[/B]
[B][/B]
[U]Calculate the difference in temperature[/U]
Difference = Starting Temperature - Ending Temperature
Difference = 66 - 11.01
Difference = 66 - 11.01 = [B]54.99 ~ 55[/B]
A pound of chocolate costs 7 dollars. Hong buys p pounds . Write an equation to represent the totalA pound of chocolate costs 7 dollars. Hong buys p pounds . Write an equation to represent the total cost c that Hong pays
Our equation is the cost of chocolate multiplied by the number of pounds:
[B]c = 7p[/B]
A pretzel factory has daily fixed costs of $1100. In addition, it costs 70 cents to produce each bagA pretzel factory has daily fixed costs of $1100. In addition, it costs 70 cents to produce each bag of pretzels. A bag of pretzels sells for $1.80.
[U]Build the cost function C(b) where b is the number of bags of pretzels:[/U]
C(b) = Cost per bag * b + Fixed Costs
C(b) = 0.70b + 1100
[U]Build the revenue function R(b) where b is the number of bags of pretzels:[/U]
R(b) = Sale price * b
R(b) = 1.80b
[U]Build the revenue function P(b) where b is the number of bags of pretzels:[/U]
P(b) = Revenue - Cost
P(b) = R(b) - C(b)
P(b) = 1.80b - (0.70b + 1100)
P(b) = 1.80b = 0.70b - 1100
P(b) = 1.10b - 1100
A printer can print 25 pages per minute. At this rate, how long will it take to print 2000 pages?A printer can print 25 pages per minute. At this rate, how long will it take to print 2000 pages?
Let m be the number of minutes it takes to print 2,000 pages. We have the equation:
25m = 2000
[URL='https://www.mathcelebrity.com/1unk.php?num=25m%3D2000&pl=Solve']Type this equation into our search engine[/URL], and we get:
m = 80
A printer prints 2 photos each minute. Let P be the number of photos printed in M minutes. Write anA printer prints 2 photos each minute. Let P be the number of photos printed in M minutes. Write an equation relating P to M.
Set up the equation P(M).
[B]P(M) = 2M[/B]
Read this as for every minute that goes by, 2 photos are printed.
A private high school charges $36,400 for tuition, but this figure is expected to rise 10% per year.A private high school charges $36,400 for tuition, but this figure is expected to rise 10% per year. What will tuition be in 10 years?
Let the tuition be T(y) where y is the number of years from now. We've got:
T(y) = 36400 * (1.1)^y
The problem asks for T(10)
T(10) = 36400 * (1.1)^10
T(10) = 36400 * 2.5937424601
T(10) = [B]94,412.23[/B]
A private high school charges $52,200 for tuition, but this figure is expected to rise 7% per year.A private high school charges $52,200 for tuition, but this figure is expected to rise 7% per year. What will tuition be in 3 years?
We have the following appreciation equation A(y) where y is the number of years:
A(y) = Initial Balance * (1 + appreciation percentage)^ years
Appreciation percentage of 7% is written as 0.07, so we have:
A(3) = 52,200 * (1 + 0.07)^3
A(3) = 52,200 * (1.07)^3
A(3) = 52,200 * 1.225043
A(3) = [B]63,947.25[/B]
A problem states: "There are 9 more children than parents in a room. There are 25 people in the roomA problem states: "There are 9 more children than parents in a room. There are 25 people in the room in all. How many children are there in the room?"
Let the number of children be c. Let the number of parents be p
We're given:
[LIST=1]
[*]c = p + 9 [I](9 more children than parents)[/I]
[*]c + p = 25
[/LIST]
to solve this system of equations, we plug equation (1) into equation (2) for c:
(p + 9) + p = 25
Group like terms:
2p + 9 = 25
To solve this equation for p, we [URL='https://www.mathcelebrity.com/1unk.php?num=2p%2B9%3D25&pl=Solve']type it in our search engine[/URL] and we get:
p = [B]8[/B]
A promotional deal for long distance phone service charges a $15 basic fee plus $0.05 per minute forA promotional deal for long distance phone service charges a $15 basic fee plus $0.05 per minute for all calls. If Joe's phone bill was $60 under this promotional deal, how many minutes of phone calls did he make? Round to the nearest integer if necessary.
Let m be the number of minutes Joe used. We have a cost function of:
C(m) = 0.05m + 15
If C(m) = 60, then we have:
0.05m + 15 = 60
[URL='https://www.mathcelebrity.com/1unk.php?num=0.05m%2B15%3D60&pl=Solve']Typing this equation into our search engine[/URL], we get:
m = [B]900[/B]
A quarter of a number is greater than or equal to 38A quarter of a number is greater than or equal to 38.
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
A quarter of a number means 1/4, so we have:
x/4
The phrase [I]is greater than or equal to[/I] means an inequality, so we use the >= sign in relation to 38:
[B]x/4 >= 38 <-- This is our algebraic expression
[/B]
If you want to solve this inequality, [URL='https://www.mathcelebrity.com/prop.php?num1=x&num2=38&propsign=%3E%3D&den1=4&den2=1&pl=Calculate+missing+proportion+value']we type it in the search engine[/URL] to get:
x >= [B]152[/B]
A quarter of the learners in a class have blond hair and two thirds have brown hair. The rest of theA quarter of the learners in a class have blond hair and two thirds have brown hair. The rest of the learners in the class have black hair. How many learners in the class if 9 of them have blonde hair?
Total learners = Blond + Brown + Black
Total Learners = 1/4 + 2/3 + Black
Total Learners will be 1, the sum of all fractions
1/4 + 2/3 + Black = 1
Using common denominators of 12, we have:
3/12 + 8/12 + Black = 12/12
11/12 + Black = 12/12
Subtract 11/12 from each side:
Black = 1/12
Let t be the total number of people in class. We are given for blondes:
1/4t = 9
Multiply each side by 4
[B]t = 36[/B]
Brown Hair
2/3(36) = 24
Black Hair
1/12(36) = 3
A random sample of 40 adults with no children under the age of 18 years results in a mean daily leisA random sample of 40 adults with no children under the age of 18 years results in a mean daily leisure time of 5.22 hours, with a standard deviation of 2.31 hours. A random sample of 40 adults with children under the age of 18 results in a mean daily leisure time of 4.29 hours, with a standard deviation of 1.58 hours. Construct and interpret a 90% confidence interval for the mean difference in leisure time between adults with no children and adults with children (u1 - u2)
What is the interpretation of this confidence interval?
A. There is 90% confidence that the difference of the means is in the interval. Conclude that there is insufficient evidence of a significant difference in the number of leisure hours
B. There is a 90% probability that the difference of the means is in the interval. Conclude that there is a significant difference in the number of leisure hours
C. There is 90% confidence that the difference of the means is in the interval. Conclude that there is a significant difference in the number of leisure hours
D. There is a 90% probability that the difference of the means is in the interval. Conclude that there is insufficient evidence of a significant difference in the number of leisure hours
0.2021 < u1 - u2 < 1.6579 using our [URL='http://www.mathcelebrity.com/meandiffconf.php?n1=+40&xbar1=+5.22&stdev1=2.31&n2=40&xbar2=4.29&stdev2=1.58&conf=+90&pl=Mean+Diff+Conf.+Interval+%28Large+Sample%29']difference of means confidence interval calculator[/URL]
[B]Choice D
There is a 90% probability that the difference of the means is in the interval. Conclude that there is insufficient evidence of a significant difference in the number of leisure hours[/B]
A random sample of STAT200 weekly study times in hours is as follows: 2 15 15 18 30 Find the samA random sample of STAT200 weekly study times in hours is as follows: 2 15 15 18 30 Find the sample standard deviation. (Round the answer to two decimal places. Show all work.)
[B]9.98[/B] using [URL='http://www.mathcelebrity.com/statbasic.php?num1=+2,15,15,18,30&num2=+0.2,0.4,0.6,0.8,0.9&pl=Number+Set+Basics']our standard deviation calculator[/URL]
A rational number is such that when you multiply it by 7/3 and subtract 3/2 from the product, you geA rational number is such that when you multiply it by 7/3 and subtract 3/2 from the product, you get 92. What is the number?
Let the rational number be x. We're given:
7x/3 - 3/2 = 92
Using a common denominator of 3*2 = 6, we rewrite this as:
14x/6 - 9/6 = 92
(14x - 9)/6 = 92
Cross multiply:
14x - 9 = 92 * 6
14x - 9 = 552
To solve for x, we [URL='https://www.mathcelebrity.com/1unk.php?num=14x-9%3D552&pl=Solve']type this equation into our search engine [/URL]and we get:
x = [B]40.07[/B]
A recipe that makes 25 oatmeal cookies calls for 2.5 cups of oats and one cup of sugar. Jerry needsA recipe that makes 25 oatmeal cookies calls for 2.5 cups of oats and one cup of sugar. Jerry needs to make 195 cookies for his school party. How many cups of oats will he need?
Set up a proportion of oats to cookies where c is the number of cups needed to make 195 cookies
2.5/25 = c/195
Using our [URL='https://www.mathcelebrity.com/proportion-calculator.php?num1=2.5&num2=c&den1=25&den2=195&propsign=%3D&pl=Calculate+missing+proportion+value']proportion calculator,[/URL] we get:
c = [B]19.5[/B]
A recipie calls for 2 tablespoons of olive oil for every 3 servings. How much olive oil will be neeA recipe calls for 2 tablespoons of olive oil for every 3 servings. How much olive oil will be needed for 6 servings?
Set up a proportion of tablespoons to servings:
2/3 = o/6 where o is the number of tablespoons per 6 servings.
[URL='https://www.mathcelebrity.com/prop.php?num1=2&num2=o&den1=3&den2=6&propsign=%3D&pl=Calculate+missing+proportion+value']Type 2/3 = o/6 into our search engine[/URL], and we get [B]o = 4[/B].
A rental truck costs $49.95+$0.59 per mile and another costs $39.95 plus $0.99, set up an equation tA rental truck costs $49.95+$0.59 per mile and another costs $39.95 plus $0.99, set up an equation to determine the break even point?
Set up the cost functions for Rental Truck 1 (R1) and Rental Truck 2 (R2) where m is the number of miles
R1(m) = 0.59m + 49.95
R2(m) = 0.99m + 39.95
Break even is when we set the cost functions equal to one another:
0.59m + 49.95 = 0.99m + 39.95
[URL='https://www.mathcelebrity.com/1unk.php?num=0.59m%2B49.95%3D0.99m%2B39.95&pl=Solve']Typing this equation into the search engine[/URL], we get [B]m = 25[/B].
A repair bill for a car is $648.45. The parts cost $265.95. The labor cost is $85 per hour. Write anA repair bill for a car is $648.45. The parts cost $265.95. The labor cost is $85 per hour. Write and solve an equation to find the number of hours spent repairing the car.
Let h be the number of hours spent repairing the car. We set up the cost function C(h):
C(h) = Labor Cost per hour * h + Parts Cost
We're given C(h) = 648.85, parts cost = 265.95, and labor cost per hour of 85, so we have:
85h + 265.95 = 648.85
To solve this equation, we [URL='https://www.mathcelebrity.com/1unk.php?num=85h%2B265.95%3D648.85&pl=Solve']type this into our search engine[/URL] and we get:
h = [B]4.5[/B]
A repair bill for your car is $553. The parts cost $265. The labor cost is $48 per hour. Write and sA repair bill for your car is $553. The parts cost $265. The labor cost is $48 per hour. Write and solve an equation to find the number of hours of labor spent repairing the car
Set up the cost equation C(h) where h is the number of labor hours:
C(h) = Labor Cost per hour * h + Parts Cost
We're given C(h) = 553, Parts Cost = 265, and Labor Cost per Hour = 48. So we plug these in:
48h + 265 = 553
To solve this equation for h, we [URL='https://www.mathcelebrity.com/1unk.php?num=48h%2B265%3D553&pl=Solve']type it in our math engine[/URL] and we get:
h = [B]6 hours[/B]
A river is rising at a rate of 3 inches per hour. If the river rises more than 2 feet, it will exceeA river is rising at a rate of 3 inches per hour. If the river rises more than 2 feet, it will exceed flood stage. How long can the river rise at this rate without exceeding flood stage?
Let the number of inches be i. Remember 12 inches to a foot, so we have 2 feet = 12*2 = 24 inches.
[LIST]
[*]Inequality: 3i <= 24. (since more than means the river can go [U]up to[/U] 2 feet or 24 inches
[/LIST]
To solve the inequality for I, we [URL='https://www.mathcelebrity.com/interval-notation-calculator.php?num=3i%3C%3D24&pl=Show+Interval+Notation']type it in our search engine[/URL] and we get:
[B]I <= 8
This means after 8 hours, the river will flood[/B]
a roller coaster has 6 trains. each train has 3 cars, and each car seats 4 people. write and simplifa roller coaster has 6 trains. each train has 3 cars, and each car seats 4 people. write and simplify an expression including units to find the total number of people that can ride the roller coaster at one time
6 trains * 3 cars per train * 4 people per car = [B]72 people[/B]
A salesperson drove 9 hours. How long will he have driven t hours later?Set up a function where t is the number of hours driven, and f(t) is the distance driven after t hours:
[B]f(t) = 9t[/B]
A school conducts 27 tests in 36 weeks. Assume the school conducts tests at a constant rate. What isA school conducts 27 tests in 36 weeks. Assume the school conducts tests at a constant rate. What is the slope of the line that represents the number of tests on the y-axis and the time in weeks on the x-axis?
Slope is y/x,so we have 27/36.
[URL='https://www.mathcelebrity.com/fraction.php?frac1=27%2F36&frac2=3%2F8&pl=Simplify']Using our fraction simplifier[/URL], we can reduce 27/36 to 3/4. So this is our slope.
[B]3/4[/B]
A school conducts 27 tests in 36 weeks. Assume the school conducts tests at a constant rate. What isA school conducts 27 tests in 36 weeks. Assume the school conducts tests at a constant rate. What is the slope of the line that represents the number of tests on the y-axis and the time in weeks on the x-axis?
Slope = Rise/Run or y/x
Since tests are on the y-axis and time is on the x-axis, we have:
Slope = 27/36
We can simplify this, so we [URL='https://www.mathcelebrity.com/fraction.php?frac1=27%2F36&frac2=3%2F8&pl=Simplify']type in 27/36 into our search engine[/URL], and get:
[B]Slope = 3/4[/B]
A school dance committee is to consist of 2 freshmen, 3 sophomores, 4 juniors, and 5 seniors. If 6 fA school dance committee is to consist of 2 freshmen, 3 sophomores, 4 juniors, and 5 seniors. If 6 freshmen, 9 sophomores, 7 juniors, and 7 seniors are eligible to be on the committee, in how many ways can the committee be chosen?
We want combinations for freshmen, sophomores, juniors, and seniors.
[LIST]
[*]Freshmen choices: [URL='https://www.mathcelebrity.com/permutation.php?num=6&den=2&pl=Combinations']6 C 2[/URL] = 15
[*]Sophomore choices: [URL='https://www.mathcelebrity.com/permutation.php?num=9&den=3&pl=Combinations']9 C 3[/URL] = 84
[*]Junior choices: [URL='https://www.mathcelebrity.com/permutation.php?num=7&den=4&pl=Combinations']7 C 4[/URL] = 35
[*]Senior choices: [URL='https://www.mathcelebrity.com/permutation.php?num=7&den=5&pl=Combinations']7 C 5 [/URL]= 21
[/LIST]
The number of committees we can choose is the product of combinations of freshmen, sophomores, juniors, and seniors.
Total Committees = Freshmen choices * Sophomore choices * Junior choices * Senior choices
Total Committees = 15 * 84 * 35 * 21
Total Committees = [B]926,100[/B]
A school spent $150 on advertising for a breakfast fundraiser. Each plate of food was sold for $8.00A school spent $150 on advertising for a breakfast fundraiser. Each plate of food was sold for $8.00 but cost the school $2.00 to prepare. After all expenses were paid, the school raised $2,400 at the fundraiser. Which equation can be used to find x, the number of plates that were sold?
Set up the cost equation C(x) where x is the number of plates sold:
C(x) = Cost per plate * x plates
C(x) = 2x
Set up the revenue equation R(x) where x is the number of plates sold:
R(x) = Sales price per plate * x plates
C(x) = 8x
Set up the profit equation P(x) where x is the number of plates sold:
P(x) = R(x) - C(x)
P(x) = 8x - 2x
P(x) = 6x
We're told the profits P(x) for the fundraiser were $2,400, so we set 6x equal to 2400 and solve for x:
6x = 2400
To solve this equation for x, we [URL='https://www.mathcelebrity.com/1unk.php?num=6x%3D2400&pl=Solve']type it in our math engine[/URL] and we get:
x =[B]400 plates[/B]
A school theater group is selling candy to raise funds in order to put on their next performance. ThA school theater group is selling candy to raise funds in order to put on their next performance. The candy cost the group $0.20 per piece. Plus, there was a $9 shipping and handling fee. The group is going to sell the candy for $0.50 per piece. How many pieces of candy must the group sell in order to break even?
[U]Set up the cost function C(p) where p is the number of pieces of candy.[/U]
C(p) = Cost per piece * p + shipping and handling fee
C(p) = 0.2p + 9
[U]Set up the Revenue function R(p) where p is the number of pieces of candy.[/U]
R(p) = Sale price * p
R(p) = 0.5p
Break-even means zero profit or loss, so we set the Cost Function equal to the Revenue Function
0.2p + 9 = 0.5p
To solve this equation for p, we [URL='https://www.mathcelebrity.com/1unk.php?num=0.2p%2B9%3D0.5p&pl=Solve']type it in our math engine[/URL] and we get:
p = [B]30[/B]
A secret number is added to 6. The total is multiplied by 5 to get 50. What is the secret number?A secret number is added to 6. The total is multiplied by 5 to get 50. What is the secret number?
Take this algebraic expression in pieces:
[LIST]
[*]Let the secret number be n.
[*]Added to means we add 6 to n: n + 6
[*]The total is multiplied by 5: 5(n + 6)
[*]The phrase [I]to get[/I] means equal to, so we set 5(n + 6) equal to 50
[/LIST]
5(n + 6) = 50
To solve this equation for n, we type it in our search engine and we get:
n = [B]4[/B]
A segment has an endpoint at (2, 1). The midpoint is at (5, 1). What are the coordinates of the otheA segment has an endpoint at (2, 1). The midpoint is at (5, 1). What are the coordinates of the other endpoint?
The other endpoint is (8,1) using our [URL='http://www.mathcelebrity.com/mptnline.php?ept1=2&empt=5&ept2=&pl=Calculate+missing+Number+Line+item']midpoint calculator.[/URL]
A service charges a $1.95 flat rate plus $0.05 per mile . Jason only has $12 to spend on a a rideA service charges a $1.95 flat rate plus $0.05 per mile. Jason only has $12 to spend on a a ride.
Set up the cost equation C(m) where m is the number of miles:
C(m) = 0.05m + 1.95
The problems asks for the number of miles (m) when C(m) = 12:
0.05m + 1.95 = 12
[URL='https://www.mathcelebrity.com/1unk.php?num=0.05m%2B1.95%3D12&pl=Solve']Typing this equation into our search engine[/URL], we get:
m = [B]201[/B]
A set of 19 scores has a mean of 6.3. A new score of 8 is then included in the data set. What is thA set of 19 scores has a mean of 6.3. A new score of 8 is then included in the data set. What is the new mean?
We know the mean formula is:
Sum of scores / Number of Scores = Mean
We're given mean = 6.3 and number of scores = 19, so we have:
Sum of scores / 19 = 6.3
Cross multiply:
Sum of scores = 19 * 6.3
Sum of scores = 119.7
Now a new score is added of 8, so we have:
Sum of scores = 119.7 + 8 = 127.7
Number of scores = 19 + 1 = 20
So our new mean is:
Mean = Sum of scores / Number of Scores
Mean = 127.7/20
Mean = [B]6.385[/B]
[COLOR=rgb(0, 0, 0)][SIZE=5][FONT=arial][B][/B][/FONT][/SIZE][/COLOR]
A sewing class has 205 yards off a bric to make quilts. Each quilt requires 7 yards off a bric. HowA sewing class has 205 yards off a bric to make quilts. Each quilt requires 7 yards off a bric. How much will remain after all the quilts are made?
Calculate the number of full quilts:
205/7 = 29.2857 so 29 full quilts.
29 * 7 = 203
205 - 203 = [B]2 yards remaining[/B].
You can also use the [URL='http://www.mathcelebrity.com/modulus.php?num=205mod7&pl=Calculate+Modulus']modulus calculator[/URL]
A shipping service charges $0.43 for the first ounce and $0.29 for each additional ounce of packageA shipping service charges $0.43 for the first ounce and $0.29 for each additional ounce of package weight. Write an equation to represent the price P of shipping a package that weighs x ounces, for any whole number of ounces greater than or equal to 1.
Set up the price function P(x)
[B]P(x) = 0.43 + 0.29(x - 1)[/B]
A shopkeeper buys a box of 20 cans of cola for $10. He sells the cans for 65 cents each. Work out hiA shopkeeper buys a box of 20 cans of cola for $10. He sells the cans for 65 cents each. Work out his percentage profit.
[U]Calculate Revenue[/U]
Revenue = Sale price per can * number of cans
Revenue = 0.65 * 20
Revenue = 13
[U]Calculate Profit given a cost of $10:[/U]
Profit = Revenue - Cost
Profit = 13 - 10
Profit = 3
[U]Calculate Percentage Profit:[/U]
Percentage Profit = Profit/Revenue * 100%
Percentage Profit = 3/13 * 100%
Percentage Profit = 0.23076923076 * 100%
Percentage Profit = [B]23.08%[/B]
A skier is trying to decide whether or not to buy a season ski pass. A daily pass costs $75. A seasA skier is trying to decide whether or not to buy a season ski pass. A daily pass costs $75. A season ski pass costs $350. The skier would have to rent skis with either pass for $20 per day. How many days would the skier have to go skiing in order to make the season pass less expensive than the daily passes?
Let d be the number of days:
Daily Plan cost: 75d + 20d = 95d
Season Pass: 350 + 20d
We want to find d such that
350 + 20d < 95d
Subtract 20d from each side
75d > 350
Divide each side by 75
d > 4.66667
[B]d = 5[/B]
A soccer team is buying T-shirts to sell as a fundraiser. The team pays a flat fee of $35 for a logoA soccer team is buying T-shirts to sell as a fundraiser. The team pays a flat fee of $35 for a logo design plus $7.00 per T-shirt.
Set up the cost function C(t) where t is the number of t-shirts:
C(t) = Cost per t-shirt * number of t-shirts + Flat Fee
[B]C(t) = 7t + 35[/B]
A social networking site currently has 38,000 active members per month, but that figure is droppingA social networking site currently has 38,000 active members per month, but that figure is dropping by 5% with every month that passes. How many active members can the site expect to have in 7 months?
Setup an equation S(m) where m is the number of months that pass:
S(m) = 38000 * (1 - 0.05)^t
S(m) = 38000 * (0.95)^t
The problem asks for S(7):
S(7) = 38000 * (0.95)^7
S(7) = 38000 * (0.69833729609)
S(7) = 26,536.82
We round down to a full person and get:
S(7) = [B]26,536[/B]
A spinner has 3 equal sections labelled A, B, C. A bag contains 3 marbles: 1 grey, 1 black, and 1 wA spinner has 3 equal sections labelled A, B, C. A bag contains 3 marbles: 1 grey, 1 black, and 1 white. The pointer is spun and a marble is picked at random.
a) Use a tree diagram to list the possible outcomes.
[LIST=1]
[*][B]A, Grey[/B]
[*][B]A, Black[/B]
[*][B]A, White[/B]
[*][B]B, Grey[/B]
[*][B]B, Black[/B]
[*][B]B, White[/B]
[*][B]C, Grey[/B]
[*][B]C, Black[/B]
[*][B]C, White[/B]
[/LIST]
b) What is the probability of:
i) spinning A?
P(A) = Number of A sections on spinner / Total Sections
P(A) = [B]1/3[/B]
---------------------------------
ii) picking a grey marble?
P(A) = Number of grey marbles / Total Marbles
P(A) = [B]1/3[/B]
---------------------------------
iii) spinning A and picking a white marble?
Since they're independent events, we multiply to get:
P(A AND White) = P(A) * P(White)
P(A) was found in i) as 1/3
Find P(White):
P(White) = Number of white marbles / Total Marbles
P(White) = 1/3
[B][/B]
Therefore, we have:
P(A AND White) = 1/3 * 1/3
P(A AND White) = [B]1/9[/B]
---------------------------------
iv) spinning C and picking a pink marble?
Since they're independent events, we multiply to get:
P(C AND Pink) = P(C) * P(Pink)
Find P(C):
P(C) = Number of C sections on spinner / Total Sections
P(C) = 1/3
[B][/B]
Find P(Pink):
P(Pink) = Number of pink marbles / Total Marbles
P(Pink) = 0/3
[B][/B]
Therefore, we have:
P(C AND Pink) = 1/3 * 0
P(C AND Pink) = [B]0[/B]
A spinner has 6 equal sections, of which 2 are green. If you spin the spinner once, what is the probA spinner has 6 equal sections, of which 2 are green. If you spin the spinner once, what is the probability that it will land on a green section? Write your answer as a fraction or whole number.
P(green) = Total Green / Total spaces
P(green) = 2/6
We can simplify this fraction. So we [URL='https://www.mathcelebrity.com/fraction.php?frac1=2%2F6&frac2=3%2F8&pl=Simplify']type 2/6 into our search engine[/URL], choose Simplify, and we get:
P(green) = [B]1/3[/B]
A spinner is divided into 4 equal sections numbered 1 to 4. The theoretical probability of the spinnA spinner is divided into 4 equal sections numbered 1 to 4. The theoretical probability of the spinner stopping on 3 is 25%. Which of the following is most likely the number of 3s spun in 10,000 spins?
We want Expected Value of s spins. Set up the expected value formula for any number 1-4
E(s) = 0.25 * n where n is the number of spins.
Using s = 3, n = 10,000, we have:
E(10,000) = 0.25 * 10,000
E(10,000) = [B]2,500[/B]
A sports tournament has c teams. Each team has 17 players. Using c, writeA sports tournament has c teams. Each team has 17 players. Using c, write an expression for the total number of players in the tournament.
Total Players = Total Teams * Players Per Team
Total Players =[B] 17c[/B]
A sports tournament has d teams. Each team has 14 players. Using d, write an expression for the totaA sports tournament has d teams. Each team has 14 players. Using d, write an expression for the total number of players in the tournament.
Tournament Players = Players per team * Number of Teams
Tournament Players = [B]14d[/B]
A standard die is rolled. Find the probability that the number rolled is greater than 3A standard die is rolled. Find the probability that the number rolled is greater than 3.
Using our [URL='http://www.mathcelebrity.com/1dice.php?gl=2&pl=3&opdice=1&rolist=+2%2C3%2C4&dby=+2%2C3%2C5&montect=+100']dice calculator[/URL], the probability is [B]1/2 or 0.5[/B]
a stone mason builds 7 houses in 3 days. How many days does it take to build 11 houses?a stone mason builds 7 houses in 3 days. How many days does it take to build 11 houses?
The build rate of houses per days is proportional. Set up a proportion of [I]houses to days[/I] where d is the number of days it takes to build 11 houses:
7/3 = 11/d
Cross multiply:
Numerator 1 * Denominator 2 = Denominator 1 * Numerator 2
7d = 11 * 3
7d = 33
Divide each side of the equation by 7:
7d/7 = 33/7
d = [B]4.7142857142857[/B]
A store manager must calculate the total number of winter hats available to sell in the store from aA store manager must calculate the total number of winter hats available to sell in the store from a starting number of 293. In the past month, the store sold 43 blue hats, 96 black hats, 28 red hats, and 61 pink hats. The store received a shipment of 48 blue hats, 60 black hats, 18 red hats, and 24 pink hats. How many total hats does the store have for sale?
[LIST=1]
[*]We start with 293 hats
[*]We calculate the hats sold: (43 + 96 + 28 + 61) = 228
[*]We subtract Step 2 from Step 1 to get remaining hats before the shipment: 293 - 228 = 65
[*]Now we calculate the number of hats received in the shipment: (48 + 60 + 18 + 24) = 150
[*]We add Step 4 to Step 3: 65 + 150 = [B]215 hats for sale[/B]
[/LIST]
a student has $50 in saving and earns $40 per week. How long would it take them to save $450a student has $50 in saving and earns $40 per week. How long would it take them to save $450
Set up the savings function S(w), where w is the number of weeks. The balance, S(w) is:
S(w) = Savings Per week * w + Initial Savings
S(w) = 40w + 50
The problems asks for how many weeks for S(w) = 450. So we have;
40w + 50 = 450
To solve for w, we[URL='https://www.mathcelebrity.com/1unk.php?num=40w%2B50%3D450&pl=Solve'] type this equation in our search engine[/URL] and we get:
w = [B]10[/B]
A submarine dove 132.58 meters to reach a resting depth of 700 meter below sea level. What was it'sA submarine dove 132.58 meters to reach a resting depth of 700 meter below sea level. What was it's original depth
Below sea level is a negative amount. So they end up at -700.
To go back up toward sea level, we'd be at:
-700 + 132.58 = -567.42
Negative numbers mean below sea level, so the original depth was [B]567.42 meters below sea level[/B]
A submarine hovers at 240 meters below sea level. If it descends 160 meters and then ascends 390 metA submarine hovers at 240 meters below sea level. If it descends 160 meters and then ascends 390 meters, what is its new position?
240 meters below sea level means a negative number, so we start with:
-240
Descending 160 meters means our depth decreases, so we subtract:
-240 - 160 = -400
Ascends means our depth increases, so we add:
-400 + 390 = [B]-10 or 10 feet below sea level
[MEDIA=youtube]ngToCpLBgH4[/MEDIA][/B]
A submarine is 75 feet below sea level. It descends another 25 feet every 10 seconds for 3 minutes.A submarine is 75 feet below sea level. It descends another 25 feet every 10 seconds for 3 minutes. What integer represents the submarines current location?
Assumptions and givens:
[LIST]
[*]Let m be the number of minutes
[*]10 seconds is 1/6 of a minute, 6 (10) seconds blocks per minute * 3 minutes = 18 (10 second blocks)
[*]Below sea level is a negative number
[/LIST]
[U]Current depth:[/U]
-25(18) - 75
-450 - 75
[B]-525[/B]
A suitcase contains nickels, dimes and quarters. There are 2&1/2 times as many dimes as nickels andA suitcase contains nickels, dimes and quarters. There are 2&1/2 times as many dimes as nickels and 5 times the number of quarters as the number of nickels. If the coins have a value of $24.80, how many nickels are there in the suitcase?
Setup number of coins:
[LIST]
[*]Number of nickels = n
[*]Number of dimes = 2.5n
[*]Number of quarters = 5n
[/LIST]
Setup value of coins:
[LIST]
[*]Value of nickels = 0.05n
[*]Value of dimes = 2.5 * 0.1n = 0.25n
[*]Value of quarters = 5 * 0.25n = 1.25n
[/LIST]
Add them up:
0.05n + 0.25n + 1.25n = 24.80
Solve for [I]n[/I] in the equation 0.05n + 0.25n + 1.25n = 24.80
[SIZE=5][B]Step 1: Group the n terms on the left hand side:[/B][/SIZE]
(0.05 + 0.25 + 1.25)n = 1.55n
[SIZE=5][B]Step 2: Form modified equation[/B][/SIZE]
1.55n = + 24.8
[SIZE=5][B]Step 3: Divide each side of the equation by 1.55[/B][/SIZE]
1.55n/1.55 = 24.80/1.55
n = [B]16[/B]
[B]
[URL='https://www.mathcelebrity.com/1unk.php?num=0.05n%2B0.25n%2B1.25n%3D24.80&pl=Solve']Source[/URL][/B]
A super deadly strain of bacteria is causing the zombie population to double every day. Currently, tA super deadly strain of bacteria is causing the zombie population to double every day. Currently, there are 25 zombies. After how many days will there be over 25,000 zombies?
We set up our exponential function where n is the number of days after today:
Z(n) = 25 * 2^n
We want to know n where Z(n) = 25,000.
25 * 2^n = 25,000
Divide each side of the equation by 25, to isolate 2^n:
25 * 2^n / 25 = 25,000 / 25
The 25's cancel on the left side, so we have:
2^n = 1,000
Take the natural log of each side to isolate n:
Ln(2^n) = Ln(1000)
There exists a logarithmic identity which states: Ln(a^n) = n * Ln(a). In this case, a = 2, so we have:
n * Ln(2) = Ln(1,000)
0.69315n = 6.9077
[URL='https://www.mathcelebrity.com/1unk.php?num=0.69315n%3D6.9077&pl=Solve']Type this equation into our search engine[/URL], we get:
[B]n = 9.9657 days ~ 10 days[/B]
A survey of 950 college students found that 85% of the men and 90% of the women identified math as tA survey of 950 college students found that 85% of the men and 90% of the women identified math as their favorite subject. If altogether 834 students reported math to be their favorite subject how many men and women participated in the survey
Let m be the number of men and w be the number of women. We are given 2 equations
[LIST=1]
[*]m + w = 950
[*]0.85m + 0.90w = 834
[/LIST]
Using our [URL='http://www.mathcelebrity.com/simultaneous-equations.php?term1=m+%2B+w+%3D+950&term2=0.85m+%2B+0.90w+%3D+834&pl=Cramers+Method']simultaneous equations calculator[/URL], we get:
[LIST]
[*]m = [B]420[/B]
[*]w = [B]530[/B]
[/LIST]
A survey was conducted that asked 1007 people how many books they had read in the past year. ResultsA survey was conducted that asked 1007 people how many books they had read in the past year. Results indicated that x overbarequals11.3 books and sequals16.6 books. Construct a 90% confidence interval for the mean number of books people read. Interpret the interval.
x bar = 11.3
s = 16.6
n = 1007
[URL='https://www.mathcelebrity.com/normconf.php?n=1007&xbar=11.3&stdev=16.6&conf=90&rdig=4&pl=Not+Sure']We use our confidence interval calculator[/URL] and get [B]10.4395 < u < 12.1605[/B].
[B][I]We interpret this as:
If we repeated experiments, the proportion of such intervals containing u would be 90%[/I][/B]
A tank has 800 liters of water. 12ml of water leaks from the tank every second.how long does it takeA tank has 800 liters of water. 12ml of water leaks from the tank every second.how long does it take for the tank to be empty
Assumptions and givens:
[LIST]
[*]Let the number of seconds be s.
[*]An empty tank means 0 liters of water.
[*]Leaks mean we subtract from the starting volume.
[/LIST]
We have the following relation:
800 - 12s = 0
To solve this equation for s, we [URL='https://www.mathcelebrity.com/1unk.php?num=800-12s%3D0&pl=Solve']type it in our search engine[/URL] and we get:
s = 66.67 seconds
A taxi cab in Chicago charges $3 per mile and $1 for every person. If the taxi cab ride for two peopA taxi cab in Chicago charges $3 per mile and $1 for every person. If the taxi cab ride for two people costs $20. How far did the taxi cab travel.
Set up a cost function C(m) where m is the number of miles driven:
C(m) = cost per mile * m + per person fee
[U]Calculate per person fee:[/U]
per person fee = $1 per person * 2 people
per person fee = $2
[U]With a cost per mile of $3 and per person fee of $2, we have:[/U]
C(m) = cost per mile * m + per person fee
C(m) = 3m + 2
The problem asks for m when C(m) = 20, so we set 3m + 2 equal to 20:
3m + 2 = 20
To solve this equation for m, we [URL='https://www.mathcelebrity.com/1unk.php?num=3m%2B2%3D20&pl=Solve']plug it in our search engine[/URL] and we get:
m = [B]6[/B]
A taxi cab in nyc charges a pick up fee of $5.00 . The customer must also pay $2.59 for each mile thA taxi cab in nyc charges a pick up fee of $5.00 . The customer must also pay $2.59 for each mile that the taxi must drive to reach their destination. Write an equation
Set up a cost function C(m) where m is the number of miles:
C(m) = Mileage Charge * m + pick up fee
[B]C(m) = 2.59m + 5[/B]
A taxi charges a flat rate of $1.50 with an additional charge of $0.80 per mile. Samantha wants to sA taxi charges a flat rate of $1.50 with an additional charge of $0.80 per mile. Samantha wants to spend less than $12 on a ride. Which inequality can be used to find the distance Samantha can travel?
Set up the travel cost equation where m is the number of miles:
C(m) = 0.8m + 1.50
If Samantha wants to spend less than 12 per ride, we have an inequality where C(m) < 12:
[B]0.8m + 1.50 < 12[/B]
A taxi charges a flat rate of $1.50 with an additional charge of $0.80 per mile. Samantha wants to sA taxi charges a flat rate of $1.50 with an additional charge of $0.80 per mile. Samantha wants to spend less than $12 on a ride. Which inequality can be used to find the distance Samantha can travel?
[LIST]
[*]Each ride will cost 1.50 + 0.8x where x is the number of miles per trip.
[*]This expression must be less than 12.
[/LIST]
[U]Setup the inequality:[/U]
1.5 + 0.8x < 12
[U]Subtracting 1.5 from each side of the inequality[/U]
0.8x < 10.5
[U]Simplifying even more by dividing each side of the inequality by 0.8, we have:[/U]
[B]x < 13.125[/B]
A taxi charges a flat rate of $1.75, plus an additional $0.65 per mile. If Erica has at most $10 toA taxi charges a flat rate of $1.75, plus an additional $0.65 per mile. If Erica has at most $10 to spend on the cab ride, how far could she travel?
Set up a cost function C(m), where m is the number of miles:
C(m) = Cost per mile * m + flat rate
C(m) = 0.65m + 1.75
The problem asks for m when C(m) = 10
0.65m + 1.75 = 10
[URL='https://www.mathcelebrity.com/1unk.php?num=0.65m%2B1.75%3D10&pl=Solve']Typing this equation into the search engine[/URL], we get:
m = [B]12.692 miles[/B]
A taxi charges a flat rate of $1.75, plus an additional $0.65 per mile. If Erica has at most 10$ toA taxi charges a flat rate of $1.75, plus an additional $0.65 per mile. If Erica has at most 10$ to spend on the cab ride, how far could she travel
Set up a cost function C(m), where m is the number of miles Erica can travel. We have:
C(m) = 0.65m + 1.75
If C(m) = 10, we have:
0.65m + 1.75 = 10
[URL='https://www.mathcelebrity.com/1unk.php?num=0.65m%2B1.75%3D10&pl=Solve']Typing this equation into our search engine[/URL], we get:
m = 12.69 miles
If the problem asks for complete miles, we round down to 12 miles.
A taxi charges a flat rate of $1.75, plus an additional $0.65 per mile. If Erica has at most 10$ toA taxi charges a flat rate of $1.75, plus an additional $0.65 per mile. If Erica has at most 10$ to spend on the cab ride, how far could she travel?
Set up the cost function C(m) where m is the number of miles:
C(m) = 0.65m + 1.75
If Erica has $10, then C(m) = 10, so we have:
0.65m + 1.75 = 10
[URL='https://www.mathcelebrity.com/1unk.php?num=0.65m%2B1.75%3D10&pl=Solve']Typing this equation into the search engine[/URL], we get
m = 12.69
if the answer asks for whole number, then we round down to m = 12
A taxi charges a flat rate of 1.75, plus an additional 0.65 per mile. If Erica has at most 10 to speA taxi charges a flat rate of 1.75, plus an additional 0.65 per mile. If Erica has at most 10 to spend on the cab ride, how far could she travel?
Setup an equation where x is the number of miles traveled:
0.65x + 1.75 = 10
Subtract 1.75 from each side:
0.65x = 8.25
Divide each side by 0.65
[B]x = 12.69 miles[/B]
If we do full miles, we round down to 12.
[MEDIA=youtube]mFqUe2mjX-w[/MEDIA]
a teacher puts 1125 marbles into 9 containers to put the same number of marbles into each containera teacher puts 1125 marbles into 9 containers to put the same number of marbles into each container how many marbles does the teacher put into each container
marbles per container = Total marbles / total containers
marbles per container = 1125/9
marbles per container = [B]125[/B]
A test has three true-false questions. Find the total number of ways you can answer the three questiA test has three true-false questions. Find the total number of ways you can answer the three questions
We can either choose T or F. So we have:
Question 1: 2 choies
Question 2: 2 choices
Question 3: 2 choices
2 * 2 * 2 = [B]8 choices
[/B]
[LIST=1]
[*][B]TTT[/B]
[*][B]TTF[/B]
[*][B]TFT[/B]
[*][B]FTT[/B]
[*][B]FTF[/B]
[*][B]FFT[/B]
[*][B]TFF[/B]
[*][B]FFF[/B]
[/LIST]
A test has twenty questions worth 100 points total. the test consists of true/false questions worthA test has twenty questions worth 100 points total. the test consists of true/false questions worth 3 points each and multiple choice questions worth 11 points each. How many true/false questions are on the test?
Let m be the number of multiple choice questions and t be the number of true/false questions. We're given:
[LIST=1]
[*]m + t = 20
[*]11m + 3t = 100
[/LIST]
We can solve this system of equations 3 ways below:
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=m+%2B+t+%3D+20&term2=11m+%2B+3t+%3D+100&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=m+%2B+t+%3D+20&term2=11m+%2B+3t+%3D+100&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=m+%2B+t+%3D+20&term2=11m+%2B+3t+%3D+100&pl=Cramers+Method']Cramer's Rule[/URL]
[/LIST]
No matter which method we choose, we get the following answers:
[LIST]
[*][B]m = 5[/B]
[*][B]t = 15[/B]
[/LIST]
Check our work in equation 1:
5 + 15 ? 20
[I]20 = 20[/I]
Check our work in equation 2:
11(5) + 3(15) ? 100
55 + 45 ? 100
[I]100 = 100[/I]
A test has twenty questions worth 100 points. The test consists of True/False questions worth 3 poinA test has twenty questions worth 100 points. The test consists of True/False questions worth 3 points each and multiple choice questions worth 11 points each. How many multiple choice questions are on the test?
Let the number of true/false questions be t. Let the number of multiple choice questions be m. We're given two equations:
[LIST=1]
[*]m + t = 20
[*]11m + 3t = 100
[/LIST]
We have a set of simultaneous equations. We can solve this using 3 methods:
[LIST=1]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=1m+%2B+t+%3D+20&term2=11m+%2B+3t+%3D+100&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=1m+%2B+t+%3D+20&term2=11m+%2B+3t+%3D+100&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=1m+%2B+t+%3D+20&term2=11m+%2B+3t+%3D+100&pl=Cramers+Method']Cramer's Rule[/URL]
[/LIST]
No matter which method we pick, we get the same answer:
[LIST]
[*][B]m = 5[/B]
[*][B]t = 15[/B]
[/LIST]
A text message plan costs $7 per month plus $0.28 per text. Find the monthly cost for x text messageA text message plan costs $7 per month plus $0.28 per text. Find the monthly cost for x text messages.
We set up the cost function C(x) where x is the number of text messages per month:
C(x) = Cost per text * x + Monthly cost
Plugging in our given numbers, we get:
[B]C(x) = 0.28x + 7[/B]
a textbook store sold a combined total of 296 sociology and history text books in a week. the numbera textbook store sold a combined total of 296 sociology and history text books in a week. the number of history textbooks sold was 42 less than the number of sociology textbooks sold. how many text books of each type were sold?
Let h = history book and s = sociology books. We have 2 equations:
(1) h = s - 42
(2) h + s = 296
Substitute (1) to (2)
s - 42 + s = 296
Combine variables
2s - 42 = 296
Add 42 to each side
2s = 338
Divide each side by 2
s = 169
So h = 169 - 42 = 127
A textbook store sold a combined total of 307 biology and chemistry textbooks in a week. The numberA textbook store sold a combined total of 307 biology and chemistry textbooks in a week. The number of chemistry textbooks sold was 71 less than the number of biology textbooks sold. How many textbooks of each type were sold?
Let b be the number of biology books and c be the number of chemistry books. We have two equations:
[LIST=1]
[*]b + c = 307
[*]c = b - 71
[/LIST]
Substitute (2) into (1) for c
b + (b - 71) = 307
Combine like terms:
2b - 71 = 307
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=2b-71%3D307&pl=Solve']equation solver[/URL], we get:
[B]b = 189[/B]
Now substitute that into (2):
c = 189 - 71
[B]c = 118[/B]
A theater has 1200 seats. Each row has 20 seats. Write and solve an equation to find the number x ofA theater has 1200 seats. Each row has 20 seats. Write and solve an equation to find the number x of rows in the theater.
Let x be the number of rows in the theater:
x = Total Seats / Seats per row
x = 1200/20
x = [B]60[/B]
A theatre contains 459 seats and the ticket prices for a recent play were $53 for adults and $16 forA theatre contains 459 seats and the ticket prices for a recent play were $53 for adults and $16 for children. If the total proceeds were $13,930 for a sold- out matinee, how many of each type of ticket were sold?
Let a be the number of adult tickets and c be the number of children tickets. We have the following equations:
[LIST=1]
[*]a + c =459
[*]53a + 16c = 13930
[/LIST]
Using our [URL='http://www.mathcelebrity.com/simultaneous-equations.php?term1=a%2Bc%3D459&term2=53a+%2B+16c+%3D+13930&pl=Cramers+Method']simultaneous equation calculator[/URL], we have:
[B]a = 178
c = 281[/B]
A third of a pizza is 400 calories. How many calories in the whole pizza?A third of a pizza is 400 calories. How many calories in the whole pizza?
Let c be the number of calories in the whole pizza. WE have:
c/3 = 400
To solve this proportion for c, we [URL='https://www.mathcelebrity.com/prop.php?num1=c&num2=400&den1=3&den2=1&propsign=%3D&pl=Calculate+missing+proportion+value']type it in our search engine[/URL] and get:
c = [B]1,200[/B]
A three digit number, if the digits are uniqueA three digit number, if the digits are unique
[LIST=1]
[*]For our first digit, we can start with anything but 0. So we have 9 options
[*]For our second digit, we can use anything but 9 since we want to be unique. So we have 9 options
[*]For our last digit, we can use anything but the first and second digit. So we have 10 - 2 = 8 options
[/LIST]
Our total 3 digit numbers with all digits unique is found by the fundamental rule of counting:
9 * 9 * 8 = [B]648 possible 3 digit numbers[/B]
A toffee jar contains 225 toffees . How many toffees will be there in 62 such toffee jars ?A toffee jar contains 225 toffees . How many toffees will be there in 62 such toffee jars ?
Total Toffees = Toffee per jar * number of jars
Total Toffees = 225 * 62
Total Toffees = [B]13,950 toffees[/B]
A tow truck charges a service fee of $50 and an additional fee of $1.75 per mile. What distance wasA tow truck charges a service fee of $50 and an additional fee of $1.75 per mile. What distance was Marcos car towed if he received a bill for $71
Set up a cost equation C(m) where m is the number of miles:
C(m) = Cost per mile * m + Service Fee
Plugging in the service fee of 50 and cost per mile of 1.75, we get:
C(m) = 1.75m + 50
The question asks for what m is C(m) = 71. So we set C(m) = 71 and solve for m:
1.75m + 50 = 71
Solve for [I]m[/I] in the equation 1.75m + 50 = 71
[SIZE=5][B]Step 1: Group constants:[/B][/SIZE]
We need to group our constants 50 and 71. To do that, we subtract 50 from both sides
1.75m + 50 - 50 = 71 - 50
[SIZE=5][B]Step 2: Cancel 50 on the left side:[/B][/SIZE]
1.75m = 21
[SIZE=5][B]Step 3: Divide each side of the equation by 1.75[/B][/SIZE]
1.75m/1.75 = 21/1.75
m = [B]12[/B]
A town has a population of 12000 and grows at 5% every year. What will be the population after 12 yeA town has a population of 12000 and grows at 5% every year. What will be the population after 12 years, to the nearest whole number?
We calculate the population of the town as P(t) where t is the time in years since now.
P(t) = 12000(1.05)^t
The problem asks for P(12)
P(12) = 12000(1.05)^12
P(12) = 12000(1.79585632602)
P(12) = [B]21550[/B] <- nearest whole number
A towns population is currently 500. If the population doubles every 30 years, what will the populatA towns population is currently 500. If the population doubles every 30 years, what will the population be 120 years from now?
Find the number of doubling times:
120 years / 30 years per doubling = 4 doubling times
Set up our growth function P(n) where n is the number of doubling times:
P(n) = 500 * 2^n
Since we have 4 doubling times, we want P(4):
P(4) = 500 * 2^4
P(4) = 500 * 16
P(4) = [B]8,000[/B]
A toy company makes "Teddy Bears". The company spends $1500 for factory expenses plus $8 per bear. TA toy company makes "Teddy Bears". The company spends $1500 for factory expenses plus $8 per bear. The company sells each bear for $12.00 each. How many bears must this company sell in order to break even?
[U]Set up the cost function C(b) where b is the number of bears:[/U]
C(b) = Cost per bear * b + factory expenses
C(b) = 8b + 1500
[U]Set up the revenue function R(b) where b is the number of bears:[/U]
R(b) = Sale Price per bear * b
R(b) = 12b
[U]Break-even is where cost equals revenue, so we set C(b) equal to R(b) and solve for b:[/U]
C(b) = R(b)
8b + 1500 = 12b
To solve for b, we [URL='https://www.mathcelebrity.com/1unk.php?num=8b%2B1500%3D12b&pl=Solve']type this equation into our search engine[/URL] and we get:
b = [B]375[/B]
A train ticket is 8 centimeters tall and 10 centimeters long. What is its area?A train ticket is 8 centimeters tall and 10 centimeters long. What is its area?
The ticket is a rectangle. The area is:
A = lw
Plugging in our numbers, we get:
A = (8)(10)
A = 80
A tree grows 35 cm in 2 years. If it continues to grow at the same rate determine how long it wouldA tree grows 35 cm in 2 years. If it continues to grow at the same rate determine how long it would take to grow 85 cm
We set up a proportion of cm to years where y is the number of years it takes to grow 85 cm:
35/2 = 85/y
To solve this proportion for y, [URL='https://www.mathcelebrity.com/prop.php?num1=35&num2=85&den1=2&den2=y&propsign=%3D&pl=Calculate+missing+proportion+value']we type it in our search engine[/URL] and we get:
[B]y = 4.86[/B]
A triangular garden has base of 6 meters amd height of 8 meters. Find its areaA triangular garden has base of 6 meters amd height of 8 meters. Find its area
Area (A) of a triangle is:
A = bh/2
Plugging in our numbers, we get:
A = 6*8/2
A = [B]24 square meters[/B]
A used book store also started selling used CDs and videos. In the first week, the store sold a combA used book store also started selling used CDs and videos. In the first week, the store sold a combination of 40 CDs and videos. They charged $4 per CD and $6 per video and the total sales were $180. Determine the total number of CDs and videos sold.
Let the number of cd's be c and number of videos be v. We're given two equations:
[LIST=1]
[*]c + v = 40
[*]4c + 6v = 180
[/LIST]
We can solve this system of equations using 3 methods:
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=c+%2B+v+%3D+40&term2=4c+%2B+6v+%3D+180&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=c+%2B+v+%3D+40&term2=4c+%2B+6v+%3D+180&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=c+%2B+v+%3D+40&term2=4c+%2B+6v+%3D+180&pl=Cramers+Method']Cramer's Rule[/URL]
[/LIST]
No matter which method we choose, we get the same answer:
[B]c = 30
v = 10[/B]
A used book store also started selling used CDs and videos. In the first week, the store sold a combA used book store also started selling used CDs and videos. In the first week, the store sold a combination of 40 CDs and videos. They charged $4 per CD and $6 per video and the total sales were $180. Determine the total number of CDs and videos sold
Let c be the number of CDs sold, and v be the number of videos sold. We're given 2 equations:
[LIST=1]
[*]c + v = 40
[*]4c + 6v = 180
[/LIST]
You can solve this system of equations three ways:
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=c+%2B+v+%3D+40&term2=4c+%2B+6v+%3D+180&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=c+%2B+v+%3D+40&term2=4c+%2B+6v+%3D+180&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=c+%2B+v+%3D+40&term2=4c+%2B+6v+%3D+180&pl=Cramers+Method']Cramers Rule[/URL]
[/LIST]
No matter what method we choose, we get [B]c = 30, v = 10[/B].
Now let's check our work for both given equations for c = 30 and v = 10:
[LIST=1]
[*]30 + 10 = 40 <-- This checks out
[*]4c + 6v = 180 --> 4(30) + 6(10) --> 120 + 60 = 180 <-- This checks out
[/LIST]
A video store charges a monthly membership fee of $7.50, but the charge to rent each movie is only $A video store charges a monthly membership fee of $7.50, but the charge to rent each movie is only $1.00 per movie. Another store has no membership fee, but it costs $2.50 to rent each movie. How many movies need to be rented each month for the total fees to be the same from either company?
Set up a cost function C(m) where m is the number of movies you rent:
C(m) = Rental cost per movie * m + Membership Fee
[U]Video Store 1 cost function[/U]
C(m) = 1m + 7.5
Video Store 2 cost function:
C(m) = 2.50m
We want to know when the costs are the same. So we set each C(m) equal to each other:
m + 7.5 = 2.50m
To solve this equation for m, [URL='https://www.mathcelebrity.com/1unk.php?num=m%2B7.5%3D2.50m&pl=Solve']we type it in our search engine[/URL] and we get:
m = [B]5[/B]
A virus is spreading exponentially. The initial amount of people infected is 40 and is increasing atA virus is spreading exponentially. The initial amount of people infected is 40 and is increasing at a rate of 5% per day. How many people will be infected with the virus after 12 days?
We have an exponential growth equation below V(d) where d is the amount of days, g is the growth percentage, and V(0) is the initial infected people:
V(d) = V(0) * (1 + g/100)^d
Plugging in our numbers, we get:
V(12) = 40 * (1 + 5/100)^12
V(12) = 40 * 1.05^12
V(12) = 40 * 1.79585632602
V(12) = 71.8342530409 or [B]71[/B]
A water tank holds 236 gallons but is leaking at a rate of 3 gallons per week. A second water tank hA water tank holds 236 gallons but is leaking at a rate of 3 gallons per week. A second water tank holds 354 gallons but is leaking at a rate if 5 gallons per week. After how many weeks will the amount of water in the two tanks be the same
Let w be the number of weeks of leaking. We're given two Leak equations L(w):
[LIST=1]
[*]L(w) = 236 - 3w
[*]L(w) = 354 - 5w
[/LIST]
When the water in both tanks is the same, we can set both L(w) equations equal to each other:
236 - 3w = 354 - 5w
To solve this equation for w, we [URL='https://www.mathcelebrity.com/1unk.php?num=236-3w%3D354-5w&pl=Solve']type it in our search engine[/URL] and we get:
w = [B]59[/B]
a well driller charges $9.00 per foot for the first 10 feet, 9.10 per foot for the next 10 feet, $9.a well driller charges $9.00 per foot for the first 10 feet, 9.10 per foot for the next 10 feet, $9.20 per foot for the next 10 feet, and so on, at a price increase of $0.10 per foot for succeeding intervals of 10 feet. How much does it cost to drill a well to a depth of 150 feet?
Set up the cost function C(f) where f is the number of feet:
Cost = 9(10) + 9.1(10) + 9.2(10) + 9.3(10) + 9.4(10) + 9.5(10) + 9.6(10) + 9.7(10) + 9.8(10) + 9.9(10) + 10(10) + 10.1(10) + 10.2(10) + 10.3(10) + 10.4(10)
Cost = [B]1,455[/B]
a writer can write a novel at a rate of 3 pages per 5 hour work. if he wants to finish the novel ina writer can write a novel at a rate of 3 pages per 5 hour work. if he wants to finish the novel in x number of pages, determine a function model that will represent the accumulated writing hours to finish his novel
if 3 pages = 5 hours, then we divide each side by 3 to get:
1 page = 5/3 hours per page
So x pages takes:
5x/3 hours
Our function for number of pages x is:
[B]f(x) = 5x/3[/B]
A zoo has 15 Emperor penguins. The Emperor penguins make up 30% percent of all the penguins at the zA zoo has 15 Emperor penguins. The Emperor penguins make up 30% percent of all the penguins at the zoo. How many penguins live at the zoo?
Let p be the total number penguins at the zoo.
We're told:
30% of p = 15
Since 30% = 0.3, we have:
0.3p = 15
Solve for [I]p[/I] in the equation 0.3p = 15
[SIZE=5][B]Step 1: Divide each side of the equation by 0.3[/B][/SIZE]
0.3p/0.3 = 15/0.3
p = [B]50[/B]
a ^5 x a ^2 without exponentsa ^5 x a ^2 without exponents
When we multiply the same variable or number, we add exponents, so we have:
a^(5 + 2)
a^7
To write a variable raised to an exponent without exponents, we break it up. The formula to do this is:
a^n = a times itself n times
a^7 = [B]a * a * a * a * a * a * a[/B]
Aaron bought a bagel and 3 muffins for $7.25. Bea bought a bagel and 2 muffins for $6. How much is bAaron bought a bagel and 3 muffins for $7.25. Bea bought a bagel and 2 muffins for $6. How much is bagel and how much is a muffin?
Let b be the number of bagels and m be the number of muffins. We have two equations:
[LIST=1]
[*]b + 3m = 7.25
[*]b + 2m = 6
[/LIST]
Subtract (2) from (1)
[B]m = 1.25
[/B]
Plug this into (2), we have:
b + 2(1.25) = 6
b + 2.5 = 6
Subtract 2.5 from each side
[B]b = 3.5[/B]
Aaron is staying at a hotel that charges $99.95 per night plus tax for a room. A tax of 8% is applieAaron is staying at a hotel that charges $99.95 per night plus tax for a room. A tax of 8% is applied to the room rate, and an additional onetime untaxed fee of $5.00 is charged by the hotel. Which of the following represents Aaron’s total charge, in dollars, for staying [I]x[/I] nights?
[LIST]
[*]The Room cost equals 99.95 times x where x is the number of rooms
[*]We express an 8% tax by multiplying the room cost by 1.08
[*]Finally, we add on $5, which is [I]untaxed[/I]
[/LIST]
[I][/I]
Take this in pieces:
Room Cost: 99.95x
Tax on Room 1.08(99.95x)
Add on $5 which is untaxed: [B]1.08(99.95x) + 5[/B]
Abbey knew that the combination for her locker had the numbers 36, 12, 8, and 40, but she couldn't rAbbey knew that the combination for her locker had the numbers 36, 12, 8, and 40, but she couldn't remember the right order of the numbers. How many different possibilities are there for the lock combination using the four numbers?
First number could be 4 choices, then 3, then 2, then 1. So we have:
4! = 4 x 3 x 2 x 1 = [B]24 possibilities[/B]
About 3/5th of the registered voters participated in 2016 election. California has 25 million registAbout 3/5th of the registered voters participated in 2016 election. California has 25 million registered voters. Find the number of registered voters who participated in 2016 election.
3[URL='https://www.mathcelebrity.com/fraction.php?frac1=25000000&frac2=3/5&pl=Multiply']/5 of 25000000[/URL] = [B]15,000,000[/B]
Absolute DifferenceFree Absolute Difference Calculator - Calculates the absolute difference between 2 numbers. Also known as positive difference
Absolute ValueFree Absolute Value Calculator - Add, subtract, multiply or divide any two numbers with absolute value signs.
Absolute value of x less than 8These are now available as shortcuts. You can type any number or variable in the following forms:
[LIST]
[*]Absolute value of x less than 8
[*]Absolute value of x less than or equal to 8
[*]Absolute value of x greater than 8
[*]Absolute value of x greater than or equal to 8
[*]Absolute value of x equal to 8
[/LIST]
According to the American Bureau of Labor Statistics, you will devote 32 years to sleeping and eatinAccording to the American Bureau of Labor Statistics, you will devote 32 years to sleeping and eating. The number of years sleeping will exceed the number of years eating by 24. Over your lifetime, how many years will you spend on each of these activities?
Assumptions:
[LIST]
[*]Let years eating be e
[*]Let years sleeping be s
[/LIST]
We're given:
[LIST=1]
[*]s = e + 24
[*]e + s = 32
[/LIST]
To solve this system of equations, we substitute equation (1) into equation (2) for s:
e + e + 24 = 32
To solve this equation for e, we [URL='https://www.mathcelebrity.com/1unk.php?num=e%2Be%2B24%3D32&pl=Solve']type it in our math engine[/URL] and we get:
e = [B]4
[/B]
Now, we take e = 4 and substitute it into equation (1) to solve for s:
s = 4 + 24
s = [B]28[/B]
Add 5 to p, then divide the sum by 4Add 5 to p, then divide the sum by 4
Add 5 to p:
p + 5
Divide the sum by 4:
[B](p + 5)/4
[/B]
note: B[I]ecause this is a sum, we wrap it in parentheses to divide the sum by a number[/I]
Add all the whole numbers 1 through 100Add all the whole numbers 1 through 100
[URL='https://www.mathcelebrity.com/inclusnumwp.php?num1=1&num2=100&pl=Sum']Using our inclusive number word problem calculator[/URL], we get:
5,050
Addition and Multiplication Tables (Times Tables)Free Addition and Multiplication Tables (Times Tables) Calculator - Shows the color coded addition or multiplication table entries and answer for any 2 numbers 1-15.
Addition of 3 or more numbersFree Addition of 3 or more numbers Calculator - This calculator performs addition with carrying and an addition grid for 3 or more numbers.
Additive Inverse PropertyFree Additive Inverse Property Calculator - Demonstrates the Additive Inverse property using a number. A + (-A) = 0
Numerical Properties
Admission to a baseball game is $2.00 for general admission and $5.50 for reserved seats. The receiAdmission to a baseball game is $2.00 for general admission and $5.50 for reserved seats. The receipts were $3577.00 for 1197 paid admissions. How many of each ticket were sold?
Let g be the number of tickets for general admission
Let r be the number of tickets for reserved seats
We have two equations:
[LIST=1]
[*]g + r = 1197
[*]2g + 5.50r = 3577
[/LIST]
We can solve this a few ways, but let's use substitution using our [URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=g+%2B+r+%3D+1197&term2=2g+%2B+5.50r+%3D+3577&pl=Substitution']simultaneous equations calculator[/URL]:
[LIST]
[*][B]r = 338[/B]
[*][B]g = 859[/B]
[/LIST]
admission to the school fair is $2.50 for students and $3.75 for others. if 2848 admissions were coladmission to the school fair is $2.50 for students and $3.75 for others. if 2848 admissions were collected for a total of 10,078.75, how many students attended the fair
Let the number of students be s and the others be o. We're given two equations:
[LIST=1]
[*]o + s = 2848
[*]3.75o + 2.50s = 10078.75
[/LIST]
Since we have no coefficients for equation 1, let's solve this the fast way using substitution. Rearrange equation 1 by subtracting o from each side to isolate s
[LIST=1]
[*]o = 2848 - s
[*]3.75o + 2.50s = 10078.75
[/LIST]
Now substitute equation 1 into equation 2:
3.75(2848 - s) + 2.50s =10078.75
To solve for s, we [URL='https://www.mathcelebrity.com/1unk.php?num=3.75%282848-s%29%2B2.50s%3D10078.75&pl=Solve']type this equation into our search engine[/URL] and we get:
s = [B]481[/B]
After 5 years, a car is worth $22,000. It’s value decreases by $1,500 a year, which of the followingAfter 5 years, a car is worth $22,000. It’s value decreases by $1,500 a year, which of the following equations could represent this situation? Group of answer choices
Let y be the number of years since 5 years. Our Book value B(y) is:
[B]B(y) = 22,000 - 1500y[/B]
Ahmad has a jar containing only 5-cent and 20-cent coins. In total there are 31 coins with a total vAhmad has a jar containing only 5-cent and 20-cent coins. In total there are 31 coins with a total value of $3.50. How many of each type of coin does Ahmad have?
Let the number of 5-cent coins be f.
Let the number of 20-cent coins be t.
We're given two equations:
[LIST=1]
[*]f + t = 31
[*]0.05f + 0.2t = 3.50
[/LIST]
We can solve this simultaneous system of equations 3 ways:
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=f+%2B+t+%3D+31&term2=0.05f+%2B+0.2t+%3D+3.50&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=f+%2B+t+%3D+31&term2=0.05f+%2B+0.2t+%3D+3.50&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=f+%2B+t+%3D+31&term2=0.05f+%2B+0.2t+%3D+3.50&pl=Cramers+Method']Cramers Rule[/URL]
[/LIST]
No matter which method we choose, we get:
[LIST]
[*][B]f = 18[/B]
[*][B]t = 13[/B]
[/LIST]
Al's Rentals charges $25 per hour to rent a sailboard and a wetsuit. Wendy's Rentals charges $20 perAl's Rentals charges $25 per hour to rent a sailboard and a wetsuit. Wendy's Rentals charges $20 per hour plus $15 extra for a wetsuit. Find the number of hours for which the total charges for both companies would be the same.
Al's Rentals Cost Equation C(h) where h is the number of hours you rent a sailboard and wetsuit:
C(h) = 25h
Wendy's Rentals Cost Equation C(h) where h is the number of hours you rent a sailboard and wetsuit:
C(h) = 20h + 15
We want to set both cost equation equal to each other, and solve for h:
20h + 15 = 25h
[URL='https://www.mathcelebrity.com/1unk.php?num=20h%2B15%3D25h&pl=Solve']Typing this equation into our search engine[/URL], we get:
h = [B]3[/B]
Alec had c caramels. Then, Alecs sister took 85 of the caramels. Choose the expression that shows thAlec had c caramels. Then, Alecs sister took 85 of the caramels. Choose the expression that shows the number of caramels Alec has left.
Alec starts with c caramels. His sister took 85. The word [I]took[/I] means subtract, so we have:
[B]c - 85[/B]
Algebraic ExpressionsFree Algebraic Expressions Calculator - This calculator builds algebraic expressions based on word representations of numbers using the four operators and the words that represent them(increased,product,decreased,divided,times)
Also known as Mathematical phrases
algexpress: letthefirstnumberequalx.thesecondnumberis3morethantwicethefirstnumber.expressthesecondnuLet the first number equal x. The second number is 3 more than twice the first number. Express the second number in terms of the first number x.
[LIST]
[*]Let the second number be y.
[*]Twice means multiply by 2
[*]3 more than means we add 3
[/LIST]
So we have the following algebraic expression:
[B]y = 2x + 3[/B]
Ali runs each lap in 6 minutes. He will run at least 11 laps today. What are the possible numbers ofAli runs each lap in 6 minutes. He will run at least 11 laps today. What are the possible numbers of minutes he will run today?
Let m be the number of minutes. The phrase [I]at least[/I] means an inequality, also known as greater than or equal to. So we have:
m >= 11*6
[B]m >= 66
You can read this as Ali will run 66 or more minutes today. Or at least 66 minutes. Or greater than or equal to 66 minutes[/B]
Aliyah had $24 to spend on seven pencils after buying them she had $10 how much did each pencil costAliyah had $24 to spend on seven pencils after buying them she had $10 how much did each pencil cost?
If Aliyah had $24 to spend, and $10 left over, then she spent $24 - $10 = $14 on pencils
Find the cost per pencil:
Cost per pencil = Pencil Spend / Number of Pencils
Cost per pencil = 14/7
Cost per pencil = [B]$2[/B]
Aliyah had $24 to spend on seven pencils. After buying them she had $10. How much did each pencil coAliyah had $24 to spend on seven pencils. After buying them she had $10. How much did each pencil cost?
Let p be the number of pencils. We're given the following equation:
7p + 10 = 24
To solve this equation for p, we [URL='https://www.mathcelebrity.com/1unk.php?num=7p%2B10%3D24&pl=Solve']type it in our math engine[/URL] and we get:
p = [B]2
[/B]
Aliyah had $24 to spend on seven pencils. After buying them she had $10. How much did each pencil coAliyah had $24 to spend on seven pencils. After buying them she had $10. How much did each pencil cost?
Let the number of pencils be p. We have:
7p + 10 = 24
To solve this equation for p, we [URL='https://www.mathcelebrity.com/1unk.php?num=7p%2B10%3D24&pl=Solve']type it in our math engine[/URL] and we get:
p = [B]2[/B]
All real numbers that are less than equal to -1 or greater than 5We have two expressions here, so we need a union since we have the word [U]or[/U].
First, All real numbers less than or equal to -1 is x <= -1.
All real numbers greater than 5 is x > 5
So we have x <= -1 U x > 5
[MEDIA=youtube]boOueZTCSuU[/MEDIA]
all real numbers y greater than or equal to 12all real numbers y greater than or equal to 12
Greater than or equal to means we use the sign >=
[B]y >= 12[/B]
Alonzo runs each lap in 4 minutes. He will run at most 32 minutes today. What are the possible numbeAlonzo runs each lap in 4 minutes. He will run at most 32 minutes today. What are the possible numbers of laps he will run today?
32 minutes / 4 minutes per lap =[B] 8 laps maximum[/B]. He can also run less than 8 laps if his lap time gets slower.
Alorah joins a fitness center. She pays for a year plus a joining fee of $35. If the cost for the enAlorah joins a fitness center. She pays for a year plus a joining fee of $35. If the cost for the entire year is $299, how much will she pay each month?
We set up the cost function C(m) where m is the number of months of membership:
C(m) = cost per month * m + joining fee
Plugging in our numbers from the problem with 12 months in a year, we get:
12c + 35 = 299
To solve this equation for c, we [URL='https://www.mathcelebrity.com/1unk.php?num=12c%2B35%3D299&pl=Solve']type it in our search engine [/URL]and we get:
c = [B]22[/B]
Alya loves to read. She reads 90 pages in half an hour. How many pages does she read per minute?Alya loves to read. She reads 90 pages in half an hour. How many pages does she read per minute?
Set up a proportion of pages to minutes. Since 30 minutes is a half hour, we have the number of pages (p) for 1 minute as:
90/30 = p/1
To solve this proportion for p, [URL='https://www.mathcelebrity.com/prop.php?num1=90&num2=p&den1=30&den2=1&propsign=%3D&pl=Calculate+missing+proportion+value']we type it in our search engine[/URL] and we get:
p = [B]3[/B]
Amanda runs each lap in 4 minutes. She will run less than 44 minutes today. What are the possible nuAmanda runs each lap in 4 minutes. She will run less than 44 minutes today. What are the possible number of laps she will run today?
Notes for this problem:
[LIST]
[*]Let laps be l.
[*]Lap time = Time per lap * number of laps (l)
[*]Less than means we have an inequality using the < sign
[/LIST]
We have the inequality:
4l < 44
To solve this inequality for l, we [URL='https://www.mathcelebrity.com/interval-notation-calculator.php?num=4l%3C44&pl=Show+Interval+Notation']type it in our math engine[/URL] and we get:
[B]l < 11[/B]
Amara currently sells televisions for company A at a salary of $17,000 plus a $100 commission for eaAmara currently sells televisions for company A at a salary of $17,000 plus a $100 commission for each television she sells. Company B offers her a position with a salary of $29,000 plus a $20 commission for each television she sells. How many televisions would Amara need to sell for the options to be equal?
Let the number of tv's be t. Set up the salary function S(t):
S(t) = Commision * tv's sold + Salary
Company A:
S(t) = 100t + 17,000
Company B:
S(t) = 20t + 29,000
The problem asks for how many tv's it takes to make both company salaries equal. So we set the S(t) functions equal to each other:
100t + 17000 = 20t + 29000
[URL='https://www.mathcelebrity.com/1unk.php?num=100t%2B17000%3D20t%2B29000&pl=Solve']Type this equation into our search engine[/URL] and we get:
t = [B]150[/B]
Amy and ryan operate a car dealing and repair service. For a car detailing (full wash outside and inAmy and ryan operate a car dealing and repair service. For a car detailing (full wash outside and inside. Amy charges 40$ and Ryan charges 50$ . In addition they charge a hourly rate. Amy charges $35/h and ryan charges $30/h. How many hours does amy and ryan have to work to make the same amount of money?
Set up the cost functions C(h) where h is the number of hours.
[U]Amy:[/U]
C(h) = 35h + 40
[U]Ryan:[/U]
C(h) = 30h + 50
To make the same amount of money, we set both C(h) functions equal to each other:
35h + 40 = 30h + 50
To solve for h, we [URL='https://www.mathcelebrity.com/1unk.php?num=35h%2B40%3D30h%2B50&pl=Solve']type this equation into our search engine[/URL] and we get:
h = [B]2[/B]
Amy has n decks of cards. Each deck has 52 cards in it. Using n, write an expression for the totalAmy has n decks of cards. Each deck has 52 cards in it. Using n, write an expression for the total number of cards Amy has.
[B]52n[/B]
An airplane carries 500 passengers 45% are men, 20% are children. The number of women in the airplanAn airplane carries 500 passengers 45% are men, 20% are children. The number of women in the airplane is
If we assume the sample space is either men, women, or children to get 100% of the passengers, we have:
PercentWomen = 100% - Men - Children
PercentWomen = 100% - 45% - 20%
PercentWomen = 35%
Calculate Women passengers
Women passengers = Total passengers * Percent Women
Women passengers = 500 * 35%
Women passengers = [B]175[/B]
An airplane is flying at 38,800 feet above sea level. The airplane starts to descend at a rate of 18An airplane is flying at 38,800 feet above sea level. The airplane starts to descend at a rate of 1800 feet per minute. Let m be the number of minutes. Which of the following expressions describe the height of the airplane after any given number of minutes?
Let m be the number of minutes. Since a descent equals a [U]drop[/U] in altitude, we subtract this in our Altitude function A(m):
[B]A(m) = 38,800 - 1800m[/B]
An auto repair bill is $126 for parts and $35 for each hour of labor. If h is the number of hours ofAn auto repair bill is $126 for parts and $35 for each hour of labor. If h is the number of hours of labor, express the amount of the repair bill in terms of number of hours of labor.
Set up cost function, where h is the number of hours of labor:
[B]C(h) = 35h + 136[/B]
An auto repair bill was $563. This includes $188 for parts and $75 for each hour of labor. Find theAn auto repair bill was $563. This includes $188 for parts and $75 for each hour of labor. Find the number of hours of labor
Let the number of hours of labor be h. We have the cost function C(h):
C(h) = Hourly Labor Rate * h + parts
Given 188 for parts, 75 for hourly labor rate, and 563 for C(h), we have:
75h + 188 = 563
To solve this equation for h, we [URL='https://www.mathcelebrity.com/1unk.php?num=75h%2B188%3D563&pl=Solve']type it in our search engine[/URL] and we get:
h = [B]5[/B]
An eccentric millionaire has 5 golden hooks from which to hang her expensive artwork. She wants to hAn eccentric millionaire has 5 golden hooks from which to hang her expensive artwork. She wants to have enough paintings so she can change the order of the arrangement each day for the next 41 years. (The same five paintings are okay as long as the hanging order is different.) What is the fewest number of paintings she can buy and still have a different arrangement every day for the next 41 years?
365 days * 41 years + 10 leap year days = 14,975 days
what is the lowest permutations count of n such that nP5 >= 14,975
W[URL='https://www.mathcelebrity.com/permutation.php?num=9&den=5&pl=Permutations']e see that 9P5[/URL] = 15,120, so the answer is [B]9 paintings[/B]
An elevator can hold less than 2700 pounds of extra weight. If an average person weighs 150 pounds,An elevator can hold less than 2700 pounds of extra weight. If an average person weighs 150 pounds, what is the maximum number of people (p) that can be on the elevator at one time?
Total weight = average weight per person * Number of people
Total weight = 150p
We know from the problem that:
150p < 2700
We want to solve this inequality for p. Divide each side of the inequality by 150:
150p/150 < 2700/150
Cancel the 150's on the left side and we get:
p < [B]18[/B]
An elevator can safely lift at most 4400 1bs. A concrete block has an average weight of 41 lbs. WhatAn elevator can safely lift at most 4400 1bs. A concrete block has an average weight of 41 lbs. What is the maximum number of concrete blocks that the elevator can lift?
Total blocks liftable = Lift Max / Weight per block
Total blocks liftable = 4400 / 41
Total blocks liftable = 107.31
We round down to whole blocks and we get [B]107[/B]
An elevator has a maximum weight of 3000 pounds. How many 150-pound people can safely ride the elevaAn elevator has a maximum weight of 3000 pounds. How many 150-pound people can safely ride the elevator? (Use "p" to represent the number of people)
Maximum means less than or equal to. We have the inequality:
150p <= 3000
To solve this inequality for p, we [URL='https://www.mathcelebrity.com/interval-notation-calculator.php?num=150p%3C%3D3000&pl=Show+Interval+Notation']type it in our search engine[/URL] and we get:
[B]p <= 20[/B]
An estate has 6 houses and each house has x lighting fittings which need 1 lamp each, and y fittingsAn estate has 6 houses and each house has x lighting fittings which need 1 lamp each, and y fittings which need 3 lamps each. Write a formula to find z, the total number of lamps needed on the estate.
z = 6(x * 1 + 3 * y)
z = [B]6(x + 3y)[/B]
An interior designer charges $100 to visit a site, plus $55 to design each room. Identify a functionAn interior designer charges $100 to visit a site, plus $55 to design each room. Identify a function that represents the total amount he charges for designing a certain number of rooms. What is the value of the function for an input of 6, and what does it represent?
[U]Set up the cost function C(r) where r is the number of room to design:[/U]
C(r) = Cost per room * r + Site Visit Fee
C(r) = 55r + 100
[U]Now, the problem asks for an input of 6, which is [I]the number of rooms[/I]. So we want C(6) which is the [I]cost to design 6 rooms[/I]:[/U]
C(6) = 55(6) + 100
C(6) = 330 + 100
C(6) = [B]430[/B]
An international long distance phone call costs $0.79 per minute. How much will a 22 minute call cosAn international long distance phone call costs $0.79 per minute. How much will a 22 minute call cost?
[U]Calculate total cost:[/U]
Total cost = Cost per minute * number of minutes
Total cost = $0.79 * 22
Total cost = [B]$17.38[/B]
An orchard has 378 orange trees. The number of rows exceeds the number of trees per row by 3. How maAn orchard has 378 orange trees. The number of rows exceeds the number of trees per row by 3. How many trees are there in each row?
We have r rows and t trees per row. We're give two equations:
[LIST=1]
[*]rt = 378
[*]r = t + 3
[/LIST]
Substitute equation (2) into equation (1) for r:
(t + 3)t = 378
Multiply through:
t^2 + 3t = 378
We have a quadratic equation. To solve this equation, we [URL='https://www.mathcelebrity.com/quadratic.php?num=t%5E2%2B3t%3D378&pl=Solve+Quadratic+Equation&hintnum=+0']type it in our search engine [/URL]and we get:
t = 18 and t = -21
Since t cannot be negative, we get trees per row (t):
[B]t = 18[/B]
An orchard has 816 apple trees. The number of rows exceeds the number of trees per row by 10. How maAn orchard has 816 apple trees. The number of rows exceeds the number of trees per row by 10. How many trees are there in each row?
Let the rows be r and the trees per row be t. We're given two equations:
[LIST=1]
[*]rt = 816
[*]r = t + 10
[/LIST]
Substitute equation (2) into equation (1) for r:
(t + 10)t = 816
t^2 + 10t = 816
Subtract 816 from each side of the equation:
t^2 + 10t - 816 = 816 - 816
t^2 + 10t - 816 = 0
We have a quadratic equation. To solve this, we [URL='https://www.mathcelebrity.com/quadratic.php?num=t%5E2%2B10t-816%3D0&pl=Solve+Quadratic+Equation&hintnum=+0']type it in our search engine [/URL]and we get:
t = (24, -34)
Since the number of trees per row can't be negative, we choose [B]24[/B] as our answer
Ana has 24 carrots, 12 cucumbers, and 36 radishes. She wants to make identical vegetable baskets usiAna has 24 carrots, 12 cucumbers, and 36 radishes. She wants to make identical vegetable baskets using all of the vegetables. What is the greatest number of baskets she can make
The key to solving this problem is asking what is the common factor between the 3 numbers. We want the greatest common factor or GCF
[URL='https://www.mathcelebrity.com/gcflcm.php?num1=12&num2=24&num3=36&pl=GCF']GCF(12, 24, 36) [/URL]= [B]12[/B]
We divide up our 12 baskets into carrots, cucumbers, and radishes. Each basket of the 12 baskets has the following:
[LIST=1]
[*]12 cucumbers / GCF of 12 = [B]1 cucumber per basket[/B]
[*]24 carrots / GCF of 12 = [B]2 carrots per basket[/B]
[*]36 radishes / GCF of 12 = [B]3 radishes per basket[/B]
[/LIST]
[B][MEDIA=youtube]D1KTOP0h2P4[/MEDIA][/B]
Angad was thinking of a number. Angad adds 20 to it, then doubles it and gets an answer of 53. WhatAngad was thinking of a number. Angad adds 20 to it, then doubles it and gets an answer of 53. What was the original number?
The phrase [I]a number[/I] means an arbitrary variable, let's call it n.
[LIST]
[*]Start with n
[*]Add 20 to it: n + 20
[*]Double it means we multiply the expression by 2: 2(n + 20)
[*]Get an answer of 53: means an equation, so we set 2(n + 20) equal to 53
[/LIST]
2(n + 20) = 53
To solve for n, we [URL='https://www.mathcelebrity.com/1unk.php?num=2%28n%2B20%29%3D53&pl=Solve']type this equation into our search engine[/URL] and we get:
n = [B]6.5[/B]
Angelica’s financial aid stipulates that her tuition cannot exceed $1000. If her local community colAngelica’s financial aid stipulates that her tuition cannot exceed $1000. If her local community college charges a $35 registration fee plus $375 per course, what is the greatest number of courses for which Angelica can register?
We set up the Tuition function T(c), where c is the number of courses:
T(c) = Cost per course * c + Registration Fee
T(c) = 35c + 375
The problem asks for the number of courses (c) where her tuition [I]cannot exceed[/I] $1000. The phrase [I]cannot exceed[/I] means less than or equal to, or no more than. So we setup the inequality for T(c) <= 1000 below:
35c + 375 <= 1000
To solve this inequality for c, we [URL='https://www.mathcelebrity.com/1unk.php?num=35c%2B375%3C%3D1000&pl=Solve']type it in our search engine and we get[/URL]:
c <= 17.85
Since we cannot have fractional courses, we round down and get:
c[B] <= 17[/B]
Ann took a taxi home from the airport. The taxi fare was $2.10 per mile, and she gave the driver a tAnn took a taxi home from the airport. The taxi fare was $2.10 per mile, and she gave the driver a tip of $5 Ann paid a total of $49.10.
Set up the cost function C(m) where m is the number of miles:
C(m) = Mileage Rate x m + Tip
2.10m + 5 = 49.10
[URL='https://www.mathcelebrity.com/1unk.php?num=2.10m%2B5%3D49.10&pl=Solve']Type 2.10m + 5 = 49.10 into the search engine[/URL], and we get [B]m = 21[/B].
Anna has 50 coins in her piggy bank. She notices that she only has dimes and pennies. If she has exaAnna has 50 coins in her piggy bank. She notices that she only has dimes and pennies. If she has exactly four times as many pennies as dimes, how many pennies are in her piggy bank?
Let d be the number of dimes, and p be the number of pennies. We're given:
[LIST=1]
[*]d + p = 50
[*]p = 4d
[/LIST]
Substitute (2) into (1)
d + 4d = 50
[URL='https://www.mathcelebrity.com/1unk.php?num=d%2B4d%3D50&pl=Solve']Type that equation into our search engine[/URL]. We get:
d = 10
Now substitute this into Equation (2):
p = 4(10)
[B]p = 40[/B]
Anna paints a fence in 4 hours wile her brother paints it in 5 hours. If they work together, how lonAnna paints a fence in 4 hours wile her brother paints it in 5 hours. If they work together, how long will it take them to paint the fence?
Set up unit rates per hour:
[LIST]
[*]Anna paints 1/4 of a fence per hour
[*]Brother paints 1/5 of a fence per hour
[*]Combined, they paint [URL='https://www.mathcelebrity.com/fraction.php?frac1=1%2F4&frac2=1%2F5&pl=Add']1/4 + 1/5[/URL] = 9/20 of a fence per hour
[/LIST]
Setup a proportion of time to hours where h is the number of hours needed to paint the fence
9/20 of a fence the first hour
18/20 of a fence the second hour
2/20 is left. Each 1/20 of the fence takes 60/9 = 6 & 2/3 minutes
6 & 2/3 minutes * 2 = 13 & 1/3 minutes
Final time is:
[B]2 hours and 13 & 1/3 minutes[/B]
Anne wants to make a platform that is 7 feet wide and 10 feet long. If she uses boards that measureAnne wants to make a platform that is 7 feet wide and 10 feet long. If she uses boards that measure 6 inches wide by 2 feet long, how many boards will she need to complete the job?
Area of platform which is a rectangle:
A = lw
A = 10 * 7
A = 70
Area of boards which are rectangles:
A = lw
A = 2 * 6
A = 12
We divide our platform area by our board area to get the number of boards needed:
Boards needed = Platform Area / Board Area
Boards needed = 70/12
Boards needed = 5.83333
We round up if we want full boards to be [B]6[/B]
AntilogFree Antilog Calculator - Calculates the antilog of a number using a base.
April, May and June have 90 sweets between them. May has three-quarters of the number of sweets thatApril, May and June have 90 sweets between them. May has three-quarters of the number of sweets that June has. April has two-thirds of the number of sweets that May has. How many sweets does June have?
Let the April sweets be a.
Let the May sweets be m.
Let the June sweets be j.
We're given the following equations:
[LIST=1]
[*]m = 3j/4
[*]a = 2m/3
[*]a + j + m = 90
[/LIST]
Cross multiply #2;
3a = 2m
Dividing each side by 2, we get;
m = 3a/2
Since m = 3j/4 from equation #1, we have:
3j/4 = 3a/2
Cross multiply:
6j = 12a
Divide each side by 12:
a = j/2
So we have:
[LIST=1]
[*]m = 3j/4
[*]a = j/2
[*]a + j + m = 90
[/LIST]
Now substitute equation 1 and 2 into equation 3:
j/2 + j + 3j/4 = 90
Multiply each side by 4 to eliminate fractions:
2j + 4j + 3j = 360
To solve this equation for j, we [URL='https://www.mathcelebrity.com/1unk.php?num=2j%2B4j%2B3j%3D360&pl=Solve']type it in our search engine[/URL] and we get:
j = [B]40[/B]
are all integers whole numbers true or falseare all integers whole numbers true or false
[B]False
[/B]
[LIST]
[*]All whole numbers are integers but not all integers are whole numbers.
[*]Whole numbers are positive integers. Which means negative integers are not whole numbers
[*]-1 for instance is an integer, but not a whole number
[/LIST]
Arnie bought some bagels at 20 cents each. He ate 4, and sold the rest at 30 cents each. His profitArnie bought some bagels at 20 cents each. He ate 4, and sold the rest at 30 cents each. His profit was $2.40. How many bagels did he buy?
Let x be the number of bagels Arnie sold. We have the following equation:
0.30(x - 4) - 0.20(4) = 2.40
Distribute and simplify:
0.30x - 1.20 - 0.8 = 2.40
Combine like terms:
0.30x - 2 = 2.40
Add 2 to each side:
0.30x = 4.40
Divide each side by 0.3
[B]x = 14.67 ~ 15[/B]
Aryion has 3 sets of hair ties. Each set contains 2 hair ties. How many hair ties does Aryion have?Aryion has 3 sets of hair ties. Each set contains 2 hair ties. How many hair ties does Aryion have?
Total hair ties = Sets of hair ties * number of hair ties per set
Total hair ties = 3 * 2
Total hair ties = [B]6[/B]
As a salesperson, you are paid $50 per week plus $2 per sale. This week you want your pay to be at lAs a salesperson, you are paid $50 per week plus $2 per sale. This week you want your pay to be at least $100. What is the minimum number of sales you must make to earn at least $100?
Set up the inequality where s is the amount of sales you make:
50 + 2s >= 100
We use >= because the phrase [I]at least[/I] 100 means 100 or more
Subtract 50 from each side:
2s >= 50
Divide each side by 2
[B]s >= 25[/B]
Ashley deposited $4000 into an account with 2.5% interest, compounded semiannually. Assuming that noAshley deposited $4000 into an account with 2.5% interest, compounded semiannually. Assuming that no withdrawals are made, how much will she have in the account after 10 years?
Semiannual means twice a year, so 10 years * 2 times per year = 20 periods. We use this and [URL='https://www.mathcelebrity.com/compoundint.php?bal=4000&nval=20&int=2.50&pl=Semi-Annually']plug the numbers into our compound interest calculator[/URL] to get:
[B]$5,128.15[/B]
Associative PropertyFree Associative Property Calculator - Demonstrates the associative property using 3 numbers. Covers the Associative Property of Addition and Associative Property of Multiplication. Also known as the Associative Law of Addition and Associative Law of Multiplication
Numerical Properties
At 1:00 pm you have 24 megabytes of a movie and at 1:15 pm you have 96 megabytes of a movie. What isAt 1:00 pm you have 24 megabytes of a movie and at 1:15 pm you have 96 megabytes of a movie. What is the download rate in megabytes per minute?
First, find the number of minutes:
1:15 - 1:00 = 15 minutes
Next, determine the difference in megabytes
96 - 24 = 72
Finally, determine the download rate:
72 megabytes / 15 minutes = [B]4.8 megabytes per minute
[MEDIA=youtube]RCvs3TQMzdM[/MEDIA][/B]
at a bakery the cost of one cupcake and 2 slices of pie is $12.40. the cost of 2 cupcakes and 3 slicat a bakery the cost of one cupcake and 2 slices of pie is $12.40. the cost of 2 cupcakes and 3 slices of pie costs $20.20. what is the cost of one cupcake?
Let the number of cupcakes be c
Let the number of pie slices be p
Total Cost = Unit cost * quantity
So we're given two equations:
[LIST=1]
[*]1c + 2p = 12.40
[*]2c + 3p = 20.20
[/LIST]
We can solve this system of equations any one of three ways:
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=1c+%2B+2p+%3D+12.40&term2=2c+%2B+3p+%3D+20.20&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=1c+%2B+2p+%3D+12.40&term2=2c+%2B+3p+%3D+20.20&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=1c+%2B+2p+%3D+12.40&term2=2c+%2B+3p+%3D+20.20&pl=Cramers+Method']Cramer's Rule[/URL]
[/LIST]
No matter which method we choose, we get the same answer:
[LIST]
[*][B]c = 3.2[/B]
[*]p = 4.6
[/LIST]
At a carnival, the price of an adult ticket is $6 while a child ticket is $4. On a certain day, 30 mAt a carnival, the price of an adult ticket is $6 while a child ticket is $4. On a certain day, 30 more child tickets than adult tickets were sold. If a total of $6360 was collected from the total ticket sale that day, how many child tickets were sold?
Let the number of adult tickets be a. Let the number of child tickets be c. We're given two equations:
[LIST=1]
[*]c = a + 30
[*]6a + 4c = 6360
[/LIST]
Substitute equation (1) into equation (2):
6a + 4(a + 30) = 6360
Multiply through to remove parentheses:
6a + 4a + 120 = 6360
T[URL='https://www.mathcelebrity.com/1unk.php?num=6a%2B4a%2B120%3D6360&pl=Solve']ype this equation into our search engine[/URL] to solve for a and we get:
a = 624
Now substitute a = 624 back into equation (1) to solve for c:
c = 124 + 30
c = [B]154[/B]
At a concert there were 25 more women than men. The total number of people at the concert was 139. FAt a concert there were 25 more women than men. The total number of people at the concert was 139. Find the number of women and the number of men at the concert.
Let men be m and women be w. We're given two equations.
[LIST=1]
[*]w = m + 25
[*]m + w = 139
[/LIST]
Substitute equation (1) into equation (2):
m + m + 25 = 139
To solve for m, we [URL='https://www.mathcelebrity.com/1unk.php?num=m%2Bm%2B25%3D139&pl=Solve']type this equation into our search engine[/URL] and we get:
m = [B]57
[/B]
To find w, we substitute m = 57 into equation (1):
w = 57 + 25
w = [B]82[/B]
At a concert, 20% of the audience members were teenagers. If the number of teenagers at the concertAt a concert, 20% of the audience members were teenagers. If the number of teenagers at the concert was 360, what was the total number of audience members?
We're looking for total audience members where [I]20% of what equals 360[/I]?
[URL='https://www.mathcelebrity.com/perc.php?num=+5&den=+8&num1=360&pct1=20&pcheck=2&pct2=+70&den1=+80&pct=+82&decimal=+65.236&astart=+12&aend=+20&wp1=20&wp2=30&pl=Calculate']Type this expression into our search engine[/URL] and we get:
Audience = [B]1,800[/B]
At a football game, a vender sold a combined total of 117 sodas and hot dogs. The number of hot dogsAt a football game, a vender sold a combined total of 117 sodas and hot dogs. The number of hot dogs sold was 59 less than the number of sodas sold. Find the number of sodas sold and the number of hot dogs sold.
[U]Let h = number of hot dogs and s = number of sodas. Set up our given equations:[/U]
[LIST=1]
[*]h + s = 117
[*]h = s - 59
[/LIST]
[U]Substitute (2) into (1)[/U]
(s - 59) + s = 117
[U]Combine s terms[/U]
2s - 59 = 117
[U]Using our [URL='http://www.mathcelebrity.com/1unk.php?num=2s-59%3D117&pl=Solve']equation solver[/URL], we find:[/U]
[B]s = 88
[/B]
[U]Plug s = 88 into (2)[/U]
h = 88 - 59
[B]h = 29[/B]
At a homecoming football game, the senior class sold slices of pizza for $.75 each and hamburgers foAt a homecoming football game, the senior class sold slices of pizza for $.75 each and hamburgers for $1.35 each. They sold 40 more slices of pizza than hamburgers, and sales totaled $292.5. How many slices of pizza did they sell
Let the number of pizza slices be p and the number of hamburgers be h. We're given two equations:
[LIST=1]
[*]p = h + 40
[*]1.35h + 0.75p = 292.50
[/LIST]
[I]Substitute[/I] equation (1) into equation (2) for p:
1.35h + 0.75(h + 40) = 292.50
1.35h + 0.75h + 30 = 292.50
2.10h + 30 = 292.50
To solve for h, we [URL='https://www.mathcelebrity.com/1unk.php?num=2.10h%2B30%3D292.50&pl=Solve']plug this equation into our search engine[/URL] and we get:
h = 125
The problem asks for number of pizza slices sold (p). So we substitute our value above of h = 125 into equation (1):
p = 125 + 40
p = [B]165[/B]
At a light bulb factory 4 out of every 25 light bulbs are defective. How many light bulbs would youAt a light bulb factory 4 out of every 25 light bulbs are defective. How many light bulbs would you excpect to be defective out of 350 light bulbs
Set up a proportion of light bulbs to defects where d is the number of defects per 350 light bulbs:
4/25 = b/350
[URL='https://www.mathcelebrity.com/prop.php?num1=4&num2=b&den1=25&den2=350&propsign=%3D&pl=Calculate+missing+proportion+value']Type this proportion into our search engine[/URL], and we get:
b = [B]56[/B]
At a local fitness center, members pay a $10 membership fee and $3 for each aerobics class. NonmeAt a local fitness center, members pay a $10 membership fee and $3 for each aerobics class. Nonmembers pay $5 for each aerobics class. For what number of aerobics classes will the cost for members and nonmembers be the same?
Set up the cost functions where x is the number of aerobics classes:
[LIST]
[*]Members: C(x) = 10 + 3x
[*]Non-members: C(x) = 5x
[/LIST]
Set them equal to each other
10 + 3x = 5x
Subtract 3x from both sides:
2x = 10
Divide each side by 2
[B]x = 5 classes[/B]
At a local fitness center, members pay an $8 membership fee and $3 for each aerobics class. NonmembeAt a local fitness center, members pay an $8 membership fee and $3 for each aerobics class. Nonmembers pay $5 for each aerobics class. For what number of aerobics classes will the cost for members be equal to nonmembers?
Set up two cost equations C(x):
[LIST=1]
[*]Members: C(x) = 8 + 3x
[*]Nonmembers: C(x) = 5x
[/LIST]
Set the two cost equations equal to each other:
8 + 3x = 5x
Subtract 3x from each side
2x = 8
Divide each side by 2
[B]x = 4[/B]
at a party, there are 72 people. The ratio of men to ladies to kids is 4 to 3 to 2.at a party, there are 72 people. The ratio of men to ladies to kids is 4 to 3 to 2.
[LIST]
[*]How many men at the party?
[*]How many ladies at the party?
[*]How many kids at the party?
[/LIST]
Our total ratio denominator is 4 + 3 + 2 = 9. To find the number of each type of person, we take their ratio divided by their ratio numerator times 72 people at the party
[U]Calculate ratios:[/U]
[LIST]
[*]Men: [URL='https://www.mathcelebrity.com/fraction.php?frac1=4%2F9&frac2=72&pl=Multiply']4/9 * 72[/URL] = [B]32[/B]
[*]Ladies: [URL='https://www.mathcelebrity.com/fraction.php?frac1=3%2F9&frac2=72&pl=Multiply']3/9 * 72[/URL] = [B]24[/B]
[*]Kids: [URL='https://www.mathcelebrity.com/fraction.php?frac1=2%2F9&frac2=72&pl=Multiply']2/9 * 72[/URL] = [B]16[/B]
[/LIST]
[U]Check our work:[/U]
Men + Ladies + Kids = 32 + 24 + 16
Men + Ladies + Kids = 72 <-- This checks out!
At a recent motorcycle rally, the number of men exceeded the number of women by 247. If x representsAt a recent motorcycle rally, the number of men exceeded the number of women by 247. If x represents the number of women, write an expression for the number of men.
[B]m = x + 247[/B]
At Costco, a case of 12 boxes of macaroni and cheese costs $18.00. How much is each box of macaroniAt Costco, a case of 12 boxes of macaroni and cheese costs $18.00. How much is each box of macaroni and cheese worth?
Cost per box = Total price / number of boxes
Cost per box = $18/12
Cost per box = [B]$1.50[/B]
At Sams Club, 32 cans of Coke cost a total of $8.96. What is the cost per can?At Sams Club, 32 cans of Coke cost a total of $8.96. What is the cost per can?
Unit Cost is Total Cost / Number of Units
Unit Cost = $8.96/32
Unit Cost = [B]$0.28[/B]
At the beginning of Jack's diet, he was 257 pounds. If he lost 3 pounds per week, find his weight afAt the beginning of Jack's diet, he was 257 pounds. If he lost 3 pounds per week, find his weight after 12 weeks.
A loss of weight means we subtract from Jack's current weight.
New Weight = Current Weight - Weight Loss per week * number of weeks
New Weight =257 - 3*12
New Weight =257 - 36
New Weight =[B] 221[/B]
At the end of the 2021 NBA season, the NY Knicks had 10 more wins than losses. This NBA season the NAt the end of the 2021 NBA season, the NY Knicks had 10 more wins than losses. This NBA season the NY Knicks played a total of 72 times. Find a solution to this problem and explain.
Let w be the number of wins
Let l be the number of losses
We're given two equations:
[LIST=1]
[*]w = l + 10
[*]l + w = 72
[/LIST]
To solve this system of equations, substitute equation (1) into equation (2) for w:
l + l + 10 = 72
To solve this equation for l, we [URL='https://www.mathcelebrity.com/1unk.php?num=l%2Bl%2B10%3D72&pl=Solve']type it in our math engine[/URL] and we get:
l = [B]31
[/B]
To solve for w, we substitute l = 31 into equation (1):
w = 31 + 10
w = [B]41[/B]
At the movie theater, Celeste bought 2 large drinks and 2 large popcorns for $8.50. She paid with aAt the movie theater, Celeste bought 2 large drinks and 2 large popcorns for $8.50. She paid with a twenty-dollar bill. What is the fewest number of bills and coins that she could have received as change?r of bills and coins that she could have received as change?
Calculate change:
Change = Amount Paid - Bill
Change = $20.00 - $8.50
Change = $11.50
Largest bill we can start with is a 10 dollar bill:
$11.50 - 10 = $1.50
Next largest bill is a $1 bill
$1.50 - $1 = 0.50
Now we're down to coins. Largest coin(s) we can use are quarters (assuming no half-dollars)
2 quarters equals 0.50
0.50 - 0.50 = 0
[U]Therefore, our answer is:[/U]
[B]Ten dollar Bill, 1 dollar bill, and 2 quarters[/B]
Austin has 15 CDs, which is 3 less than his sister has. How many CDs does his sister have?Austin has 15 CDs, which is 3 less than his sister has. How many CDs does his sister have?
Let s be the number of CD's his sister has and a be the number Austin has
[LIST=1]
[*]a = 15
[*]a = s - 3
[/LIST]
Substitute (1) into (2)
15 = s - 3
Add 3 to each side
[B]s = 18[/B]
Austin needs $240 to buy a new bike if he can save $16 per week and how many weeks can you purchaseAustin needs $240 to buy a new bike if he can save $16 per week and how many weeks can you purchase the bike?
Set up the equation, where w equals the number of weeks needed. We have:
16w = 240
[URL='https://www.mathcelebrity.com/1unk.php?num=16w%3D240&pl=Solve']Typing this into our search engine[/URL], we get [B]w = 15[/B].
Automorphic NumberFree Automorphic Number Calculator - This calculator determines the nth automorphic number
b more points than 75b more points than 75
Let b be the number of points
b + 75
Babylonian MethodFree Babylonian Method Calculator - Determines the square root of a number using the Babylonian Method.
Bacteria in a petra dish doubles every hour. If there were 34 bacteria when the experiment began, wrBacteria in a petra dish doubles every hour. If there were 34 bacteria when the experiment began, write an equation to model this.
Let h be the number of hours since the experiment began. Our equation is:
[B]B(h) = 34(2^h)[/B]
Balancing EquationsFree Balancing Equations Calculator - Given 4 numbers, this will use the four operations: addition, subtraction, multiplication, or division to balance the equations if possible.
Balls numbered 1 to 10 are placed in a bag. Two of the balls are drawn out at random. Find the probaBalls numbered 1 to 10 are placed in a bag. Two of the balls are drawn out at random. Find the probability that the numbers on the balls are consecutive.
Build our sample set:
[LIST]
[*](1, 2)
[*](2, 3)
[*](3, 4)
[*](4, 5)
[*](5, 6)
[*](6, 7)
[*](7, 8)
[*](8, 9)
[*](9, 10)
[/LIST]
Each of these 9 possibilities has a probability of:
1/10 * 1/9
This is because we draw without replacement. To start, the bag has 10 balls. On the second draw, it only has 9. We multiply each event because each draw is independent.
We have 9 possibilities, so we have:
9 * 1/10 * 1/9
Cancelling, the 9's, we have [B]1/10[/B]
Barbara bought a piece of rope that was 7 1/3 meters long. She cut the rope into 3 equal pieces. HowBarbara bought a piece of rope that was 7 1/3 meters long. She cut the rope into 3 equal pieces. How long is each piece of rope?
Using our mixed number converter, we see that:
[URL='https://www.mathcelebrity.com/fraction.php?frac1=7%261%2F3&frac2=3%2F8&pl=Simplify']7&1/3[/URL] = 22/3
Split into [URL='https://www.mathcelebrity.com/fraction.php?frac1=22%2F9&frac2=3&pl=Simplify']3 equal pieces[/URL], we have:
22/3 / 3 = 22/9 or 2&4/9
Barbra is buying plants for her garden. She notes that potato plants cost $3 each and corn plants coBarbra is buying plants for her garden. She notes that potato plants cost $3 each and corn plants cost $4 each. If she plans to spend at least $20 and purchase less than 15 plants in total, create a system of equations or inequalities that model the situation. Define the variables you use.
[U]Define variables[/U]
[LIST]
[*]Let c be the number of corn plants
[*]Let p be the number of potato plants
[/LIST]
Since cost = price * quantity, we're given two inequalities:
[LIST=1]
[*][B]3p + 4c >= 20 (the phrase [I]at least[/I] means greater than or equal to)[/B]
[*][B]c + p < 15[/B]
[/LIST]
Barney has $450 and spends $3 each week. Betty has $120 and saves $8 each week. How many weeks willBarney has $450 and spends $3 each week. Betty has $120 and saves $8 each week. How many weeks will it take for them to have the same amount of money?
Let w be the number of weeks that go by for saving/spending.
Set up Barney's balance equation, B(w). Spending means we [U]subtract[/U]
B(w) = Initial Amount - spend per week * w weeks
B(w) = 450 - 3w
Set up Betty's balance equation, B(w). Saving means we [U]add[/U]
B(w) = Initial Amount + savings per week * w weeks
B(w) = 120 + 8w
The same amount of money means both of their balance equations B(w) are equal. So we set Barney's balance equal to Betty's balance and solve for w:
450 - 3w = 120 + 8w
Add 3w to each side to isolate w:
450 - 3w + 3w = 120 + 8w + 3w
Cancelling the 3w on the left side, we get:
450 = 120 + 11w
Rewrite to have constant on the right side:
11w + 120 = 450
Subtract 120 from each side:
11w + 120 - 120 = 450 - 120
Cancelling the 120's on the left side, we get:
11w = 330
To solve for w, we divide each side by 11
11w/11 = 330/11
Cancelling the 11's on the left side, we get:
w = [B]30
[MEDIA=youtube]ifG_q-utgJI[/MEDIA][/B]
Base Conversion OperationsFree Base Conversion Operations Calculator - This calculator allows you to add, subtract, multiply, and divide two numbers with different bases.
Basic Math OperationsFree Basic Math Operations Calculator - Given 2 numbers, this performs the following arithmetic operations:
* Addition (Adding) (+)
* Subtraction (Subtracting) (-)
* Multiplication (Multiplying) (x)
* Long division (Dividing) with a remainder (÷)
* Long division to decimal places (÷)
* Partial Sums (Shortcut Sums)
* Short Division
* Duplication and Mediation
Basic StatisticsFree Basic Statistics Calculator - Given a number set, and an optional probability set, this calculates the following statistical items:
Expected Value
Mean = μ
Variance = σ2
Standard Deviation = σ
Standard Error of the Mean
Skewness
Mid-Range
Average Deviation (Mean Absolute Deviation)
Median
Mode
Range
Pearsons Skewness Coefficients
Entropy
Upper Quartile (hinge) (75th Percentile)
Lower Quartile (hinge) (25th Percentile)
InnerQuartile Range
Inner Fences (Lower Inner Fence and Upper Inner Fence)
Outer Fences (Lower Outer Fence and Upper Outer Fence)
Suspect Outliers
Highly Suspect Outliers
Stem and Leaf Plot
Ranked Data Set
Central Tendency Items such as Harmonic Mean and
Geometric Mean and Mid-Range
Root Mean Square
Weighted Average (Weighted Mean)
Frequency Distribution
Successive Ratio
Bawi solves a problem that has an answer of x = -4. He first added 7 to both sides of the equal signBawi solves a problem that has an answer of x = -4. He first added 7 to both sides of the equal sign, then divided by 3. What was the original equation
[LIST=1]
[*]If we added 7 to both sides, that means we had a minus 7 (-7) to start with as a constant. Since subtraction undoes addition.
[*]If we divided by 3, this means we multiplied x by 3 to begin with. Since division undoes multiplication
[/LIST]
So we have the start equation:
3x - 7
If the answer was x = -4, then we plug this in to get our number on the right side of the equation:
3(-4) - 7
-12 - 7
-19
This means our original equation was:
[B]3x - 7 = -19[/B]
And if we want to solve this to prove our answer, we [URL='https://www.mathcelebrity.com/1unk.php?num=3x-7%3D-19&pl=Solve']type the equation into our search engine [/URL]and we get:
x = -4
Before Barry Bonds, Mark McGwire, and Sammy Sosa, Roger Maris held the record for the most home runsBefore Barry Bonds, Mark McGwire, and Sammy Sosa, Roger Maris held the record for the most home runs in one season. Just behind Maris was Babe Ruth. The numbers of home runs hit by these two athletes in their record-breaking seasons form consecutive integers. Combined, the two athletes hit 121 home runs. Determine the number of home runs hit by Maris and Ruth in their record-breaking seasons.
We want [URL='https://www.mathcelebrity.com/consecintwp.php?num=121&pl=Sum']the sum of 2 consecutive integers equals 121[/URL].
[B]We get Maris at 61 and Ruth at 60[/B]
Belen can make 15 necklaces in 3 1/2 hours. How many can she make in one hour?Belen can make 15 necklaces in 3 1/2 hours. How many can she make in one hour?
We set up a proportion of necklaces to time, where n is the number of necklaces Belen can make in 1 hour:
3 & 1/2 = 3.5, so we have:
15/3.5 = n/1
[SIZE=3][FONT=Helvetica][COLOR=rgb(34, 34, 34)]
To solve this proportion, we [URL='https://www.mathcelebrity.com/prop.php?num1=15&num2=n&den1=3.5&den2=1&propsign=%3D&pl=Calculate+missing+proportion+value']type it in our search engine and we ge[/URL]t:
n = [B]4.29 hours[/B][/COLOR][/FONT][/SIZE]
Belle bought 30 pencils for $1560. She made a profit of $180. How much profit did she make on each pBelle bought 30 pencils for $1560. She made a profit of $180. How much profit did she make on each pencil
The cost per pencil is:
1560/30 = 52
Build revenue function:
Revenue = Number of Pencils * Sales Price (s)
Revenue = 30s
The profit equation is:
Profit = Revenue - Cost
Given profit is 180 and cost is 1560, we have:
30s - 1560 = 180
To solve for s, we [URL='https://www.mathcelebrity.com/1unk.php?num=30s-1560%3D180&pl=Solve']type this equation into our search engine[/URL] and we get:
s = 58
This is sales for total profit. The question asks profit per pencil.
Profit per pencil = Revenue per pencil - Cost per pencil
Profit per pencil = 58 - 52
Profit per pencil = [B]6[/B]
Ben can write 153 letters in 3 minutes. At this rate, how many letters can he write in 10 minutes?Ben can write 153 letters in 3 minutes. At this rate, how many letters can he write in 10 minutes?
We set up a proportion of letters to minutes where the number of letters in 10 minutes is l:
153/3 = l/10
We [URL='https://www.mathcelebrity.com/prop.php?num1=153&num2=l&den1=3&den2=10&propsign=%3D&pl=Calculate+missing+proportion+value']type this proportion into a search engine[/URL] and we get:
l =[B] 510[/B]
Ben has $4.50 in quarters(Q) and dimes(D). a)Write an equation expressing the total amount of moneyBen has $4.50 in quarters(Q) and dimes(D). a)Write an equation expressing the total amount of money in terms of the number of quarters and dimes. b)Rearrange the equation to isolate for the number of dimes (D)
a) The equation is:
[B]0.1d + 0.25q = 4.5[/B]
b) Isolate the equation for d. We subtract 0.25q from each side of the equation:
0.1d + 0.25q - 0.25q = 4.5 - 0.25q
Cancel the 0.25q on the left side, and we get:
0.1d = 4.5 - 0.25q
Divide each side of the equation by 0.1 to isolate d:
0.1d/0.1 = (4.5 - 0.25q)/0.1
d = [B]45 - 2.5q[/B]
Benny bought 8 new baseball trading cards to add to his collection. The next day his dog ate half ofBenny bought 8 new baseball trading cards to add to his collection. The next day his dog ate half of his collection. There are now only 47 cards left. How many cards did Benny start with?
Let b be the number of baseball trading cards Benny started with. We have the following events:
[LIST=1]
[*]Benny buys 8 new cards, so we add 8 to get b + 8
[*]The dog ate half of his cards the next day, so Benny has (b + 8)/2
[*]We're told he has 47 cards left, so we set (b + 8)/2 equal to 47
[/LIST]
(b + 8)/2 = 47
[B][U]Cross multiply:[/U][/B]
b + 8 = 47 * 2
b + 8 = 94
[URL='https://www.mathcelebrity.com/1unk.php?num=b%2B8%3D94&pl=Solve']Type this equation into the search engine[/URL], we get [B]b = 86[/B].
Bernoulli TrialsFree Bernoulli Trials Calculator - Given a success probability p and a number of trials (n), this will simulate Bernoulli Trials and offer analysis using the Bernoulli Distribution. Also calculates the skewness, kurtosis, and entropy
Beverly has $50 to spend at an amusement park. She plans to spend $10 for food, and $15 for admissioBeverly has $50 to spend at an amusement park. She plans to spend $10 for food, and $15 for admission to the park. Each ride costs $1.50 to ride. Write an inequality to represent the possible number of rides she can ride?
First, we subtract the food and admission cost from Beverly's starting balance of $50:
Cost available for rides = Starting Balance - Food - Admission
Cost available for rides = 50 - 10 - 15
Cost available for rides = 25
Now we set up an inequality for the number of rides (r) that Beverly can ride with the remaining balance:
1.50r <= 25
To solve for r, we [URL='https://www.mathcelebrity.com/interval-notation-calculator.php?num=1.50r%3C%3D25&pl=Show+Interval+Notation']type this inequality into our search engine[/URL] and we get:
[B]r <=[/B] [B]16.67[/B]
Big John weighs 300 pounds and is going on a diet where he'll lose 3 pounds per week. Write an equatBig John weighs 300 pounds and is going on a diet where he'll lose 3 pounds per week. Write an equation in slope-intercept form to represent this situation.
[LIST]
[*]The slope intercept form is y = mx + b
[*]y is John's weight
[*]x is the number of weeks
[*]A 3 pound per week weight loss means -3 as the coefficient m
[*]b = 300, John's starting weight
[/LIST]
[B]y = -3x + 300[/B]
Bike rental shop A charges $20 per kilometre travelled with no additional fee. Bike rental shop B chBike rental shop A charges $20 per kilometre travelled with no additional fee. Bike rental shop B charges only $8 per kilometre travelled, but has a starting charge of $35. If Bob plans to travel 7km by bike, which rental shop should he choose for a better price
[U]Shop A Cost function C(k) where k is the number of kilometers used[/U]
C(k) = Cost per kilometer * k + Starting Charge
C(k) = 20k
With k = 7, we have:
C(7) = 20 * 7
C(7) = 140
[U]Shop B Cost function C(k) where k is the number of kilometers used[/U]
C(k) = Cost per kilometer * k + Starting Charge
C(k) = 8k + 35
With k = 7, we have:
C(7) = 8 * 7 + 35
C(7) = 56 + 35
C(7) = 91
Bog should choose [B]Shop B[/B] since they have the better price for 7km
Bills car rental charges a base fee of 50$ and then $0.20 per mileBills car rental charges a base fee of 50$ and then $0.20 per mile.
Set up the cost function C(m) where m is the number of miles driven:
[B]C(m) = 50 + 0.20m[/B]
Binomial DistributionFree Binomial Distribution Calculator - Calculates the probability of 3 separate events that follow a binomial distribution. It calculates the probability of exactly k successes, no more than k successes, and greater than k successes as well as the mean, variance, standard deviation, skewness and kurtosis.
Also calculates the normal approximation to the binomial distribution with and without the continuity correction factor
Calculates moment number t using the moment generating function
Bit ShiftingFree Bit Shifting Calculator - Performs a bit shift left or a bit shift right on a decimal or binary number
Bitwise OperationsFree Bitwise Operations Calculator - Performs bitwise operations between two decimal or binary numbers:
* Bitwise OR
* Bitwise AND
* Bitwise XOR
Also performs Bitwise NOT on 1 number
Blackjack Card CountingFree Blackjack Card Counting Calculator - This calculator allows you to enter a number of players with one deck of cards by simulating an opening blackjack deal using card counting methods.
Blake and Tatsu are each assigned a paper for a class they share. Blake decides to write 4 pages atBlake and Tatsu are each assigned a paper for a class they share. Blake decides to write 4 pages at a time while Tatsu decides to write 7 pages at a time. If they end up writing the same number of pages, what is the smallest number of pages that the papers could have had?
We want the least common multiple of 4 and 7, written as LCM(4, 7). Using our [URL='http://www.mathcelebrity.com/gcflcm.php?num1=4&num2=7&num3=&pl=LCM']LCM Calculator[/URL], we get:
LCM(4, 7) = [B]28 pages[/B]
Blake writes 4 pages per hour. How many hours will Blake have to spend writing this week in order toBlake writes 4 pages per hour. How many hours will Blake have to spend writing this week in order to have written a total of 16 pages?
[U]Let x = the number of hours Blake needs to write[/U]
4 pages per hour * x hours = 16
[U]Divide each side by 4[/U]
[B]x = 4 hours[/B]
Bob fenced in his backyard. The perimeter of the yard is 22 feet, and the length of his yard is 5 feBob fenced in his backyard. The perimeter of the yard is 22 feet, and the length of his yard is 5 feet. Use the perimeter formula to find the width of the rectangular yard in inches: P = 2L + 2W.
Plugging our numbers in for P = 22 and L = 5, we get:
22 = 2(5) + 2W
22 = 10 + 2w
Rewritten, we have:
10 + 2w = 22
[URL='https://www.mathcelebrity.com/1unk.php?num=10%2B2w%3D22&pl=Solve']Plug this equation into the search engine[/URL], we get:
[B]w = 6[/B]
Bob finished reading his book in x days. Each day, he read 4 pages. His book has 28 pagesBob finished reading his book in x days. Each day, he read 4 pages. His book has 28 pages
Our equation for this is found by multiplying pages per day times number of days;
4x = 28
To solve for x, [URL='https://www.mathcelebrity.com/1unk.php?num=4x%3D28&pl=Solve']we type the equation into our search engine[/URL] and we get:
x = [B]7[/B]
Bob has a bookcase with 4 shelves. There are k books on each shelf. Using k, write an expression forBob has a bookcase with 4 shelves. There are k books on each shelf. Using k, write an expression for the total number of books.
Total Books = Bookcases * shelves per bookcase * books per shelf
Total Books = 1 * 4 * k
Total Books = [B]4k[/B]
Bob has half as many quarters as dimes. He has $3.60. How many of each coin does he have?Bob has half as many quarters as dimes. He has $3.60. How many of each coin does he have?
Let q be the number of quarters. Let d be the number of dimes. We're given:
[LIST=1]
[*]q = 0.5d
[*]0.25q + 0.10d = 3.60
[/LIST]
Substitute (1) into (2):
0.25(0.5d) + 0.10d = 3.60
0.125d + 0.1d = 3.6
Combine like terms:
0.225d = 3.6
[URL='https://www.mathcelebrity.com/1unk.php?num=0.225d%3D3.6&pl=Solve']Typing this equation into our search engine[/URL], we're given:
[B]d = 16[/B]
Substitute d = 16 into Equation (1):
q = 0.5(16)
[B]q = 8[/B]
Braille TranslatorFree Braille Translator Calculator - Given a phrase with letters, numbers, and most punctuation symbols, the calculator will perform the following duties:
1) Translate that phrase to Braille
2) Calculate the number of dots in the message
3) Calculate the number of empty spaces in the message
Bridget can grow 6 flowers with every seed packet. With 4 seed packets, how many total flowers can BBridget can grow 6 flowers with every seed packet. With 4 seed packets, how many total flowers can Bridget have in her garden?
Set up a proportion of flowers to seed packets where f is the number of flowers for 4 seed packets. We have:
6/1 = f/4
Cross multiply:
f(1) = 24
f = 24
Brighthouse charges $120 a month for their basic plan, plus $2.99 for each on demand movie you buy.Brighthouse charges $120 a month for their basic plan, plus $2.99 for each on demand movie you buy. Write and solve and inequality to find how many on demand movies could you buy if you want your bill to be less than $150 for the month.
Let x equal to the number room movie rentals per month. Our inequality is:
120 + 2.99x < 150
To solve for the number of movies, Add 120 to each side
2.99x < 30
Divide each side by 2.99
x < 10.03, which means 10 since you cannot buy a fraction of a movie
can you continue this pattern 1,5,13,29can you continue this pattern 1,5,13,29
Looking at the numbers, we see a pattern of the next number as the prior number * 2 and then add 3
With each term as t(n), we find t(n + 1) as:
t(n + 1) = [B]2*t(n) + 3[/B]
t(2) = 2(1) + 3 = 2 + 3 = 5
t(3) = 2(5) + 3 = 10 + 3 = 13
t(4) = 2(13) + 3 = 26 + 3 = 29
t(5) = 2(29) + 3 = 58 + 3 = [B]61[/B]
Carly grew 50 plants with 25 seed packets. With 37 seed packets, how many total plants can Carly havCarly grew 50 plants with 25 seed packets. With 37 seed packets, how many total plants can Carly have in her backyard? Solve using unit rates.
Set up a proportion of plants per seed packets where p is the number of plants per 37 seed packets.
50/25 = p/37
Copying and pasting this problem [URL='http://www.mathcelebrity.com/prop.php?num1=50&num2=p&den1=25&den2=37&propsign=%3D&pl=Calculate+missing+proportion+value']into our search engine[/URL], we get [B]p = 74[/B].
Carly has already written 35 of a novel. She plans to write 12 additional pages per month until sheCarly has already written 35 of a novel. She plans to write 12 additional pages per month until she is finished. Write and solve a linear equation to find the total number of pages written at 5 months.
Let m be the number of months. We have the pages written function P(m) as:
P(m) = 12m + 35
The problem asks for P(5):
P(5) = 12(5) + 35
P(5) = 60 + 35
P(5) = [B]95[/B]
Carly has already written 35 pages of a novel. She plans to write 12 additional pages per month untiCarly has already written 35 pages of a novel. She plans to write 12 additional pages per month until she is finished. Write and solve a linear equation to find the total number of pages written at 5 months.
Set up the equation where m is the number of months:
pages per month * m + pages written already
12m + 35
The problems asks for m = 5:
12(5) + 35
60 + 35
[B]95 pages[/B]
Carmen is serving her child french fries and chicken wings for lunch today. Let f be the number of fCarmen is serving her child french fries and chicken wings for lunch today. Let f be the number of french fries in the lunch, and let c be the number of chicken wings. Each french fry has 25 calories, and each chicken wing has 100 calories. Carmen wants the total calorie count from the french fries and chicken wings to be less than 500 calories. Using the values and variables given, write an inequality describing this.
We have:
25f + 100c < 50
Note: We use < and not <= because it states less than in the problem.
Cars and trucks are the most popular vehicles. last year, the number of cars sold was 39,000 more thCars and trucks are the most popular vehicles. last year, the number of cars sold was 39,000 more than 3 times the number of trucks sold. There were 216,000 cars sold last year. Write an equation that can be used to find the number of trucks, t, sold last year.
Let c be the number of cars.
Let t be the number of trucks.
We're given two equations:
[LIST=1]
[*]c = 3t + 39000
[*]c + t = 216000
[/LIST]
Substitute equation (1) into equation (2) for c:
3t + 39000 + t = 216000
To solve this equation for t, [URL='https://www.mathcelebrity.com/1unk.php?num=3t%2B39000%2Bt%3D216000&pl=Solve']we type it in our math engine [/URL]and we get:
t = [B]44,250[/B]
Casey is 26 years old. Her daughter Chloe is 4 years old. In how many years will Casey be double herCasey is 26 years old. Her daughter Chloe is 4 years old. In how many years will Casey be double her daughter's age
Declare variables for each age:
[LIST]
[*]Let Casey's age be c
[*]Let her daughter's age be d
[*]Let n be the number of years from now where Casey will be double her daughter's age
[/LIST]
We're told that:
26 + n = 2(4 + n)
26 + n = 8 + 2n
Solve for [I]n[/I] in the equation 26 + n = 8 + 2n
[SIZE=5][B]Step 1: Group variables:[/B][/SIZE]
We need to group our variables n and 2n. To do that, we subtract 2n from both sides
n + 26 - 2n = 2n + 8 - 2n
[SIZE=5][B]Step 2: Cancel 2n on the right side:[/B][/SIZE]
-n + 26 = 8
[SIZE=5][B]Step 3: Group constants:[/B][/SIZE]
We need to group our constants 26 and 8. To do that, we subtract 26 from both sides
-n + 26 - 26 = 8 - 26
[SIZE=5][B]Step 4: Cancel 26 on the left side:[/B][/SIZE]
-n = -18
[SIZE=5][B]Step 5: Divide each side of the equation by -1[/B][/SIZE]
-1n/-1 = -18/-1
n = [B]18[/B]
Check our work for n = 18:
26 + 18 ? 8 + 2(18)
44 ? 8 + 36
44 = 44
Cassidy is renting a bicycle on the boardwalk. The rental costs a flat fee of $10 plus an additionalCassidy is renting a bicycle on the boardwalk. The rental costs a flat fee of $10 plus an additional $7 per hour. Cassidy paid $45 to rent a bicycle.
We set up the cost equation C(h) where h is the number of hours of rental:
C(h) = hourly rental rate * h + Flat Fee
C(h) = 7h + 10
We're told that Cassidy paid 45 to rent a bicycle, so we set C(h) = 45
7h + 10 = 45
To solve for h, we [URL='https://www.mathcelebrity.com/1unk.php?num=7h%2B10%3D45&pl=Solve']type this equation into our math engine[/URL] and we get:
h = [B]5[/B]
Cathy wants to buy a gym membership. One gym has a $150 joining fee and costs $35 per month. AnotherCathy wants to buy a gym membership. One gym has a $150 joining fee and costs $35 per month. Another gym has no joining fee and costs $60 per month. a. In how many months will both gym memberships cost the same? What will that cost be?
Set up cost equations where m is the number of months enrolled:
[LIST=1]
[*]C(m) = 35m + 150
[*]C(m) = 60m
[/LIST]
Set them equal to each other:
35m + 150 = 60m
[URL='http://www.mathcelebrity.com/1unk.php?num=35m%2B150%3D60m&pl=Solve']Pasting the equation above into our search engine[/URL], we get [B]m = 6[/B].
CeilingFree Ceiling Calculator - Calculates the ceiling of a number
Chang is serving his child french fries and chicken wings for lunch today. Let f be the number of fChang is serving his child french fries and chicken wings for lunch today. Let f be the number of french fries in the lunch, and let c be the number of chicken wings. Each french fry has 25 calories, and each chicken wing has 100 calories. Chang wants the total calorie count from the french fries and chicken wings to be less than 600 calories. Using the values and variables given, write an inequality describing this.
We have [B]25f + 100c < 600[/B] as our inequality.
Change Base 10 number of 25 into base 2Change Base 10 number of 25 into base 2
Using our [URL='https://www.mathcelebrity.com/binary.php?num=25&check1=7&bchoice=2&pl=Convert']base change calculator[/URL], we get:
25 = [B]11001[/B] (in base 2)
Change the base 10 number 100 into base 5Change the base 10 number 100 into base 5
Using our [URL='https://www.mathcelebrity.com/binary.php?num=100&check1=7&bchoice=5&pl=Convert']base change calculator[/URL], we get:
100 = [B]400 (Base 5)[/B]
Change the base 2 number 1000 into base 10Change the base 2 number 1000 into base 10
1 * 2^3 + 0 * 2^2 + 0 * 2^1 + 0 * 2^0
8 + 0 + 0 + 0 = [B]8[/B]
Charlene wants to invest $10,000 long enough for it to grow to at least $20000. The compound interesCharlene wants to invest $10,000 long enough for it to grow to at least $20,000. The compound interest rate is 6% p.a. How many whole number of years does she need to invest the money for so that it grows to her $20,000 target?
We want 10,000(1.06)^n = 20,000.
But what the problem asks for is how long it will take money to double. We can use a shortcut called the Rule of 72. [URL='https://www.mathcelebrity.com/rule72.php?num=6&pl=Calculate']Using the Rule of 72 at 6%[/URL], we get [B]12 years[/B].
Charlie buys a 40 pound bag of cat food. His cat eats a 1/2 pound of food per day.Charlie buys a 40 pound bag of cat food. His cat eats a 1/2 pound of food per day.
Set up an equation:
1/2x = 40 where x is the number of days
Multiply through by 2
[B]x = 80[/B]
Charmaine’s fish tank has 16 liters of water in it. she plans to add 6 liters per minute until the tCharmaine’s fish tank has 16 liters of water in it. she plans to add 6 liters per minute until the tank has at least 58 liters. What are the possible numbers of minutes Charmaine could add water?
This is an algebraic inequality. The phrase [I]at least[/I] means greater than or equal to. So we have:
6m + 16 >= 58 <-- This is our algebraic expression/inequality.
To solve this, [URL='https://www.mathcelebrity.com/1unk.php?num=6m%2B16%3E%3D58&pl=Solve']we type this into our search engine [/URL]and we get:
[B]m >= 7[/B]
Charrie found a piece of 8 meters rope. She cuts it into equal length. She made three cuts. How longCharrie found a piece of 8 meters rope. She cuts it into equal length. She made three cuts. How long is each piece of the rope?
Equal length means we divide the length of the rope by the number of equal cuts
[B]8/3 or 2 & 2/3 meters[/B]
Chicken is on sale for $3.90 per pound. If Ms.Gelllar buys 2.25 pounds of chicken, how much will sheChicken is on sale for $3.90 per pound. If Ms.Gelllar buys 2.25 pounds of chicken, how much will she spend? round to the nearest penny and show your work
Total spend = Cost per pound * Number of pounds
Total spend = $3.90 * 2.25 pounds
Total spend = [B]$8.78[/B] (rounded to 2 digits)
Chuck-a-luck is an old game, played mostly in carnivals and county fairs. To play chuck-a-luck you pChuck-a-luck is an old game, played mostly in carnivals and county fairs. To play chuck-a-luck you place a bet, say $1, on one of the numbers 1 through 6. Say that you bet on the number 4. You then roll three dice (presumably honest). If you roll three 4’s, you win $3.00; If you roll just two 4’s, you win $2; if you roll just one 4, you win $1 (and, in all of these cases you get your original $1 back). If you roll no 4’s, you lose your $1. Compute the expected payoff for chuck-a-luck.
Expected payoff for each event = Event Probability * Event Payoff
Expected payoff for 3 matches:
3(1/6 * 1/6 * 1/6) = 3/216 = 1/72
Expected payoff for 2 matches:
2(1/6 * 1/6 * 5/6) = 10/216 = 5/108
Expected payoff for 1 match:
1(1/6 * 5/6 * 5/6) = 25/216
Expected payoff for 0 matches:
-1(5/6 * 5/6 * 5/6) = 125/216
Add all these up:
(3 + 10 + 25 - 125)/216
-87/216 ~ [B]-0.40[/B]
Circular PermutationFree Circular Permutation Calculator - Calculates the following:
Number of ways to arrange n distinct items arranged on a circle
Claire bought 180 candies and 140 pens for goody bags for her birthday. What is the largest number oClaire bought 180 candies and 140 pens for goody bags for her birthday. What is the largest number of goody bags that Claire can make so that each goody bag has the same number of candies and the same number of pens? (All candies and pens should be used.)
We want the greatest common factor of 180 and 140. When we [URL='https://www.mathcelebrity.com/gcflcm.php?num1=140&num2=180&num3=&pl=GCF+and+LCM']run GCF(180,140) in our calculator[/URL], we get 20.
We divide our total candies and total pens by our GCF. So each bag has the following:
Candies: 180/20 = [B]9 candies[/B]
Pens: 140/20 = [B]7 pens[/B]
Claire makes bracelets using blue and red beads.Each bracelet has 20 red beads and 5 blue beads.WritClaire makes bracelets using blue and red beads.Each bracelet has 20 red beads and 5 blue beads.Write an ordered pair to represent the number of red beads and blue beads Claire will use to make 8 bracelets.
8 bracelets gives you 8 x 20 = 160 red beads and 8 * 5 = 40 blue beads.
The ordered pair is[B] (160, 40)[/B]
Clara can bake 17 cookies with each scoop of flour. With two scoops of flour, how many cookies can CClara can bake 17 cookies with each scoop of flour. With two scoops of flour, how many cookies can Clara bake?
Set up a proportion where x is the number of cookies per 2 scoops of flour
17 cookies/1 scoop = x cookies/2 scoops
[URL='http://www.mathcelebrity.com/prop.php?num1=17&num2=x&den1=1&den2=2&propsign=%3D&pl=Calculate+missing+proportion+value']Running this in the search engine, we get[/URL]:
[B]x = 34 cookies[/B]
Clark wants to give some baseball cards to his friends. If he gives 6 cards to each of his friends,Clark wants to give some baseball cards to his friends. If he gives 6 cards to each of his friends, he will have 5 cards left. If he gives 8 cards to each of his friends, he will need 7 more cards. How many friends is the giving the cards to?
Let the number of friends Clark gives his cards to be f. Let the total amount of cards he gives out be n. We're given 2 equations:
[LIST=1]
[*]6f + 5 = n
[*]8f - 7 = n
[/LIST]
Since both equations equal n, we set these equations equal to each other
6f + 5 = 8f - 7
To solve for f, we [URL='https://www.mathcelebrity.com/1unk.php?num=6f%2B5%3D8f-7&pl=Solve']type this equation into our search engine[/URL] and we get:
f = [B]6
[/B]
To check our work, we plug in f = 6 into each equation:
[LIST=1]
[*]6(6) + 5 = 36 + 5 = 41
[*]8(6) - 7 = 48 - 7 = 41
[/LIST]
So this checks out. Clark has 41 total cards which he gives to 6 friends.
Closest NumberFree Closest Number Calculator - Calculates the closest number of your choice from a given set of numbers
Coach vega orders 30 bats for the team. He orders 7 oak, 7 maple, 12 ash bats, and and some bamboo bCoach vega orders 30 bats for the team. He orders 7 oak, 7 maple, 12 ash bats, and and some bamboo bats. Find b, the number of bamboo bats.
30 bats - 7 maple - 7 oak - 12 ash
30 - 26 = [B]4 bamboo bats[/B]
Colin was thinking of a number. Colin divides by 8, then adds 1 to get an answer of 2. What was theColin was thinking of a number. Colin divides by 8, then adds 1 to get an answer of 2. What was the original number?
Let the number be n.
Divide by 8:
n/8
Then add 1:
n/8 + 1
The phrase [I]get an answer[/I] of means an equation, so we set n/8 + 1 equal to 2:
n/8 + 1 = 2
To solve for n, we subtract 1 from each side to isolate the n term:
n/8 + 1 - 1 = 2 - 1
Cancel the 1's on the left side, we get:
n/8 = 1
Cross multiply:
n = 8*1
n = [B]8[/B]
Collatz ConjectureFree Collatz Conjecture Calculator - Takes any natural number using the Collatz Conjecture and reduces it down to 1.
Commutative PropertyFree Commutative Property Calculator - Demonstrates the commutative property of addition and the commutative property of multiplication using 3 numbers.
Numerical Properties
Company a charges $25 plus $0.10 a mile. Company b charges $20 plus $0.15 per mile. How far would yoCompany a charges $25 plus $0.10 a mile. Company b charges $20 plus $0.15 per mile. How far would you need to travel to get each charge to be the same?
Let x be the number of miles traveled
Company A charge: C = 25 + 0.10x
Company B charge: C = 20 + 0.15x
Set up an equation find out when the charges are the same.
25 + 0.10x = 20 + 0.15x
Combine terms and simplify
0.05x = 5
Divide each side of the equation by 0.05 to isolate x
x = [B]100[/B]
Company A rents copy machines for $300 a month plus $0.05 per copy. Company B charges $600 plus $0.0Company A rents copy machines for $300 a month plus $0.05 per copy. Company B charges $600 plus $0.01 per copy. For which number of copies do the two companies charge the same amount?
With c as the number of copies, we have:
Company A Cost = 300 + 0.05c
Company B Cost = 600 + 0.01c
Set them equal to each other
300 + 0.05c = 600 + 0.01c
Use our [URL='http://www.mathcelebrity.com/1unk.php?num=300%2B0.05c%3D600%2B0.01c&pl=Solve']equation solver[/URL] to get:
[B]c = 7,500[/B]
Comparison of NumbersFree Comparison of Numbers Calculator - Compares two numbers and checks to see if they are equal to one another, if the first number is greater than the second number, or the first number is less than the second number. Minimum and maximum.
Complex Number OperationsFree Complex Number Operations Calculator - Given two numbers in complex number notation, this calculator:
1) Adds (complex number addition), Subtracts (complex number subtraction), Multiplies (complex number multiplication), or Divides (complex number division) any 2 complex numbers in the form a + bi and c + di where i = √-1.
2) Determines the Square Root of a complex number denoted as √a + bi
3) Absolute Value of a Complex Number |a + bi|
4) Conjugate of a complex number a + bi
Composite NumberFree Composite Number Calculator - This calculator determines the nth composite number. Helps you generate composite numbers.
Compound Interest and Annuity TableFree Compound Interest and Annuity Table Calculator - Given an interest rate (i), number of periods to display (n), and number of digits to round (r), this calculator produces a compound interest table. It shows the values for the following 4 compound interest annuity functions from time 1 to (n) rounded to (r) digits:
vn
d
(1 + i)n
an|
sn|
än|i
sn|i
Force of Interest δn
Compute a 75% Chebyshev interval around the mean for x values and also for y values.Compute a 75% Chebyshev interval around the mean for [I]x[/I] values and also for [I]y[/I] values.
[B][U]Grid E: [I]x[/I] variable[/U][/B]
11.92 34.86 26.72 24.50 38.93 8.59 29.31
23.39 24.13 30.05 21.54 35.97 7.48 35.97
[B][U]Grid H: [I]y[/I] variable[/U][/B]
27.86 13.29 33.03 44.31 16.58 42.43
39.61 25.51 39.14 16.58 47.13 14.70 57.47 34.44
According to Chebyshev's Theorem,
[1 - (1/k^2)] proportion of values will fall between Mean +/- (k*SD)
k in this case equal to z
z = (X-Mean)/SD
X = Mean + (z*SD)
1 - 1/k^2 = 0.75
- 1/k^2 = 0.75 - 1= - 0.25
1/k^2 = 0.25
k^2 = 1/0.25
k^2 = 4
k = 2
Therefore, z = k = 2
First, [URL='http://www.mathcelebrity.com/statbasic.php?num1=11.92%2C34.86%2C26.72%2C24.50%2C38.93%2C8.59%2C29.31%2C23.39%2C24.13%2C30.05%2C21.54%2C35.97%2C7.48%2C35.97&num2=+0.2%2C0.4%2C0.6%2C0.8%2C0.9&pl=Number+Set+Basics']determine the mean and standard deviation of x[/URL]
Mean(x) = 25.24
SD(x) = 9.7873
Required Interval for x is:
Mean - (z * SD) < X < Mean + (z * SD)
25.24 - (2 * 9.7873) < X < 25.24 - (2 * 9.7873)
25.24 - 19.5746 < X < 25.24 + 19.5746
5.6654 < X < 44.8146
Next, [URL='http://www.mathcelebrity.com/statbasic.php?num1=27.86%2C13.29%2C33.03%2C44.31%2C16.58%2C42.43%2C39.61%2C25.51%2C39.14%2C16.58%2C47.13%2C14.70%2C57.47%2C34.44&num2=+0.2%2C0.4%2C0.6%2C0.8%2C0.9&pl=Number+Set+Basics']determine the mean and standard deviation of y[/URL]
Mean(y) = 32.29
SD(y) = 9.7873
Required Interval for y is:
Mean - (z * SD) < Y < Mean + (z * SD)
32.29 - (2 * 13.1932) < Y < 32.29 - (2 * 13.1932)
32.29 - 26.3864 < Y < 32.29 + 26.3864
5.9036 < X < 58.6764
Concert tickets cost $14.95 each. Which expression represents the total cost of 25 tickets?Concert tickets cost $14.95 each. Which expression represents the total cost of 25 tickets?
Calculate Total Cost:
Total Cost = Cost Per Ticket * Number of Tickets
Total Cost = $14.95 * 25
Total Cost = [B]$373.75[/B]
Congratulations!! You are hired at Roof and Vinyl Housing Systems. Your starting salary is $45,600 fCongratulations!! You are hired at Roof and Vinyl Housing Systems. Your starting salary is $45,600 for the year. Each year you stay employed with them your salary will increase by 3.5%. Determine what your salary would be if you worked for the company for 12 years.
Set up a function S(y) where y is the number of years after you start at the Roof and Vinyl place.
S(y) = 45600 * (1.035)^y <-- Since 3.5% = 0.035
The question asks for S(12):
S(12) = 45600 * (1.035)^12
S(12) = 45600 * 1.51106865735
S(12) = [B]68,904.73[/B]
Consecutive Integer Word ProblemsFree Consecutive Integer Word Problems Calculator - Calculates the word problem for what two consecutive integers, if summed up or multiplied together, equal a number entered.
Consider the following 15 numbers 1, 2, y - 4, 4, 5, x, 6, 7, 8, y, 9, 10, 12, 3x, 20 - The mean oConsider the following 15 numbers
1, 2, y - 4, 4, 5, x, 6, 7, 8, y, 9, 10, 12, 3x, 20
- The mean of the last 10 numbers is TWICE the mean of the first 10 numbers
- The sum of the last 2 numbers is FIVE times the sum of the first 3 numbers
(i) Calculate the values of x and y
We're given two equations:
[LIST=1]
[*](x + 6 + 7 + 8 + y + 9 + 10 + 12 + 3x + 20)/10 = 2(1 + 2 + y - 4 + 4 + 5 + x + 6 + 7 + 8 + y)/10
[*]3x - 20 = 5(1 + 2 + y - 4)
[/LIST]
Let's evaluate and simplify:
[LIST=1]
[*](x + 6 + 7 + 8 + y + 9 + 10 + 12 + 3x + 20)/10 = (1 + 2 + y - 4 + 4 + 5 + x + 6 + 7 + 8 + y)/5
[*]3x - 20 = 5(y - 1)
[/LIST]
Simplify some more:
[URL='https://www.mathcelebrity.com/polynomial.php?num=x%2B6%2B7%2B8%2By%2B9%2B10%2B12%2B3x%2B20&pl=Evaluate'](x + 6 + 7 + 8 + y + 9 + 10 + 12 + 3x + 20)/10[/URL] = (4x + y + 72)/10
[URL='https://www.mathcelebrity.com/polynomial.php?num=1%2B2%2By-4%2B4%2B5%2Bx%2B6%2B7%2B8%2By&pl=Evaluate'](1 + 2 + y - 4 + 4 + 5 + x + 6 + 7 + 8 + y)/5[/URL] = (2y + x + 29)/5
5(y - 1) = 5y - 5
So we're left with:
[LIST=1]
[*](4x + y + 72)/10 = (2y + x + 29)/5
[*]3x - 20 = 5y - 5
[/LIST]
Cross multiply equations in 1, we have:
5(4x + y + 72) = 10(2y + x + 29)
20x + 5y + 360 = 20y + 10x + 290
We have:
[LIST=1]
[*]20x + 5y + 360 = 20y + 10x + 290
[*]3x - 20 = 5y - 5
[/LIST]
Combining like terms:
[LIST=1]
[*]10x - 15y = -70
[*]3x - 5y = 15
[/LIST]
Now we have a system of equations which we can solve any of three ways:
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=10x+-+15y+%3D+-70&term2=3x+-+5y+%3D+15&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=10x+-+15y+%3D+-70&term2=3x+-+5y+%3D+15&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=10x+-+15y+%3D+-70&term2=3x+-+5y+%3D+15&pl=Cramers+Method']Cramer's Rule[/URL]
[/LIST]
No matter which method we choose, we get the same answer:
(x, y) = [B](-115, -72)[/B]
Construct a data set of seven temperature readings where the mean is positive and the median is negaConstruct a data set of seven temperature readings where the mean is positive and the median is negative.
[B]{-20,-10.-5,-2,-1,20,40}[/B]
[URL='https://www.mathcelebrity.com/statbasic.php?num1=-20%2C-10%2C-5%2C-2%2C-1%2C20%2C40&num2=+0.2%2C0.4%2C0.6%2C0.8%2C0.9&pl=Number+Set+Basics']Using our mean and median calculator[/URL], we see that:
[B]Mean = 3.142857 (positive)
Median = -2[/B]
CountingFree Counting Calculator - Counts up from a number to another number using a factor
Counts down from one number to another number using a factor. Also known as skip counting.
Counting on a Number LineFree Counting on a Number Line Calculator - Shows addition or subtraction by moving left or right on a number line.
Craig went bowling with $25 to spend. He rented shoes for $5.25 and paid $4.00 for each game. What wCraig went bowling with $25 to spend. He rented shoes for $5.25 and paid $4.00 for each game. What was the greatest number of games Craig could have played?
Set up the cost function C(g) where g is the number of games Craig plays:
C(g) = Game fee * number of games (g) + shoe rental fee
C(g) = 4g + 5.25
The problem asks for the maximum number of games Craig can play for $25. So we want an inequality of [I]less than or equal to[/I].
4g + 5.25 <= 25
[URL='https://www.mathcelebrity.com/1unk.php?num=4g%2B5.25%3C%3D25&pl=Solve']Type this inequality into our search engine[/URL], and we get:
g <= 4.9375
We want exact games, so we round this down to [B]4 games[/B].
cube root of a number and 7cube root of a number and 7
The phrase [I]a number[/I] means an arbitrary variable, let's call it x:
x
Cube root of a number means we raise x to the 1/3 power:
x^1/3
And 7 means we add 7:
[B]x^1/3 + 7[/B]
D= {a,b,c,d,e,f,g} the cardinality of set D isD= {a,b,c,d,e,f,g} the cardinality of set D is
Cardinality of D, denoted |D|, is the number of items in the set:
|D| = [B]7[/B]
Dakota needs a total of $400 to buy a new bicycle. He has $40 saved. He earns $15 each week deliveriDakota needs a total of $400 to buy a new bicycle. He has $40 saved. He earns $15 each week delivering newspapers. How many weeks will Dakota have to deliver papers to have enough money to buy the bicycle?
Let w be the number of weeks of delivering newspapers. We have the equation:
15w + 40 = 400
To solve for w, we [URL='https://www.mathcelebrity.com/1unk.php?num=15w%2B40%3D400&pl=Solve']type this equation into our search engine[/URL] and we get:
w = [B]24[/B]
Dale has a bookcase with d shelves. There are 14 books on each shelf. Using d, write an expression fDale has a bookcase with d shelves. There are 14 books on each shelf. Using d, write an expression for the total number of books.
We multiply the number of shelves by the number of books per shelf.
[B]14d[/B]
Dan earns £9.80 per hour. How much will he earn for 8 hours work?Dan earns £9.80 per hour. How much will he earn for 8 hours work?
Calculate Total Earnings
Total Earnings = Hourly Rate * Number of Hours
Total Earnings = £9.80 * 8
Total Earnings = [B]£78.40[/B]
Dan has a favorite fast food restaurant where he always orders French fries and a milk shake. If theDan has a favorite fast food restaurant where he always orders French fries and a milk shake. If the fries contain 15 grams of fat and the shake contains 9 grams of fat, how many burgers, at 17 grams of fat each, can Dan add to his fries and milkshake if he wants to keep the total fat content of his meal no greater than 69 grams?
His original meal is 1 fry and 1 shake. This contains 15 + 9 = 24 grams of fat.
To limit his meal to 69 grams of fat, he has 69 - 24 = 45 grams of fat left over.
Therefore, he can consume:
17b <= 45 where b is the number of burgers
Dividing by 17, we get b = 2.65. Since he does not want to go over 45, he can eat 2 burgers.
Dan makes 11 an hour working at the local grocery store. Over the past year he has saved 137.50 towaDan makes 11 an hour working at the local grocery store. Over the past year he has saved 137.50 toward a new pair of retro sneakers. If sneakers cost 240, how many hours will he need to be able to buy the sneakers?
Figure out his remaining savings target:
240 - 137.50 = 102.50
Let x equal the number of remaining hours Dan needs to work
11x = 102.50
Divide each side by 11
x = 9.318
We round up for a half-hour to 9.5, or a full hour to 10.
Dan's school is planning a field trip to an art museum. Bus company A charges a $60 rental fee plusDan's school is planning a field trip to an art museum. Bus company A charges a $60 rental fee plus $4 per student. Bus company B charges $150 plus $2 per student. How many students would have to go for the cost to be the same?
[U]Set up Company A's cost equation C(s) where s is the number of students[/U]
C(s) = Cost per student * s + Rental Fee
C(s) = 4s + 60
[U]Set up Company B's cost equation C(s) where s is the number of students[/U]
C(s) = Cost per student * s + Rental Fee
C(s) = 2s + 150
The problem asks for s where both C(s) equations would be equal. So we set Company A and Company B's C(s) equal to each other:
4s + 60 = 2s + 150
To solve for s, we [URL='https://www.mathcelebrity.com/1unk.php?num=4s%2B60%3D2s%2B150&pl=Solve']type this equation into our search engine[/URL] and we get:
s = [B]45[/B]
Dane wrote the letters of “NEW YORK CITY” on cards and placed them in a hat. What is the probabilityDane wrote the letters of “NEW YORK CITY” on cards and placed them in a hat. What is the probability that he will draw the letter “Y” out of the hat?
New York City has 11 letters.
Our probability of drawing a Y is denoted as P(Y):
P(Y) = Number of Y's / Total Letters
P(Y) = [B]2/11[/B]
Daniel pays $10 to get into the parking lot and will pay a fee of $2 per hour his car will be left iDaniel pays $10 to get into the parking lot and will pay a fee of $2 per hour his car will be left in the parking lot. He ending up paying a total of $23 for parking. How many hours was Daniels car left in the parking lot?
Calculate the amount of fees for hours:
Fees for hours = Total Bill - Entrance fee
Fees for hours = 23 - 10
Fees for hours = 13
Calculate the number of hours Daniel parked:
Number of hours = Fees for hours / Hourly Rate
Number of hours = 13/2
Number of hours = [B]6.5[/B]
Danny buys 5 books at $34 each and pays for them with 10-dollar bills. How many $10 bills did it takDanny buys 5 books at $34 each and pays for them with 10-dollar bills. How many $10 bills did it take?
Calculate his total bill:
Total bill = Number of books * cost per book
Total bill = 5 * 34
Total bill = 170
Now calculate the number of 10-dollar bills he used:
10-dollar bills used = Total bill / 10
10-dollar bills used = 170/10
10-dollar bills used = [B]17[/B]
Date InformationFree Date Information Calculator - This calculator takes a date in mm/dd/yyyy format, and gives the following information about it:
* Weekday
* Day number in the year
* Week number in the year
* Number of days in the month containing that date
* Leap Year (Yes or No)
* Zodiac Sign
* Julian Date
DeAndre is a spelunker (someone who explores caves). One day DeAndre is exploring a cave that has aDeAndre is a spelunker (someone who explores caves). One day DeAndre is exploring a cave that has a series of ladders going down into the depths. Every ladder is exactly 10 feet tall, and there is no other way to descend or ascend (the other paths in the cave are flat). DeAndre starts at 186 feet in altitude, and reaches a maximum depth of 86 feet in altitude.Write an equation for DeAndre's altitude, using x to represent the number of ladders DeAndre used (hint: a ladder takes DeAndre down in altitude, so the coefficient should be negative).
Set up a function A(x) for altitude, where x is the number of ladders used. Each ladder takes DeAndre down 10 feet, so this would be -10x. And DeAndre starts at 186 feet, so we'd have:
[B]A(x) = 186 - 10x[/B]
Deanna has 5-cent stamps and 10-cent stamps. If she has 100 total stamps, what is the value of the sDeanna has 5-cent stamps and 10-cent stamps. If she has 100 total stamps, what is the value of the stamps? Call the 5-cent stamps n.
Value of 5-cent stamps
0.05n
Number of 10 cent stamps is:
100 - n
Value is 0.10(100 - n) = 10 - 0.10n
Add them both:
10 - 0.10n + 0.05n
[B]10 - 0.05n[/B]
Debbie baked 32 cookies with 4 scoops of flour. With 10 scoops of flour, how many cookies can DebbieDebbie baked 32 cookies with 4 scoops of flour. With 10 scoops of flour, how many cookies can Debbie bake?
Set up a proportion of cookies to scoops of flour, where c is the number of cookies per 10 scoops of flour:
32/4 = c/10
[URL='https://www.mathcelebrity.com/prop.php?num1=32&num2=c&den1=4&den2=10&propsign=%3D&pl=Calculate+missing+proportion+value']Typing this proportion into our search engine[/URL], we get:
c = [B]80[/B]
Debra buys candy that costs 4 per pound. She will spend less than 20 on candy. What are the possibleDebra buys candy that costs 4 per pound. She will spend less than 20 on candy. What are the possible numbers of pounds she will buy?
Set up an inequality using less than < and p for pounds:
4p < 20
Divide each side by 4:
4p/4 < 20/4
[B]p < 5[/B]
Decagonal NumberFree Decagonal Number Calculator - This calculator determines the nth decagonal number
Decompose Number PairsFree Decompose Number Pairs Calculator - Decomposes a number into number pairs of sums.
Decrease 12 by a numberDecrease 12 by a number
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
We take 12 and decrease it by x, meaning we subtract x from 12:
[B]12 - x[/B]
decrease a number by 7 and multiply by 6.decrease a number by 7 and multiply by 6.
The phrase [I]a number[/I] means an arbitrary variable, let's call it x:
x
Decrease a number by 7:
x - 7
Multiply by 6
[B]6(x - 7)[/B]
Dedra took a total of 6 pages of notes during 2 hours of class. After attending 3 hours of class, hoDedra took a total of 6 pages of notes during 2 hours of class. After attending 3 hours of class, how many total pages of notes will Dedra have in her notebook?
Set up a proportion of pages of notes to hours of class where p equals the number of pages of notes Dedra takes for 3 hours of class:
6/2 = p/3
[URL='https://www.mathcelebrity.com/prop.php?num1=6&num2=p&den1=2&den2=3&propsign=%3D&pl=Calculate+missing+proportion+value']Type this proportion into our search engine[/URL], and we get:
p = [B]9[/B]
Deon opened his account starting with $650 and he is going to take out $40 per month. Mai opened upDeon opened his account starting with $650 and he is going to take out $40 per month. Mai opened up her account with a starting amount of $850 and is going to take out $65 per month. When would the two accounts have the same amount of money?
We set up a balance equation B(m) where m is the number of months.
[U]Set up Deon's Balance equation:[/U]
Withdrawals mean we subtract from our current balance
B(m) = Starting Balance - Withdrawal Amount * m
B(m) = 650 - 40m
[U]Set up Mai's Balance equation:[/U]
Withdrawals mean we subtract from our current balance
B(m) = Starting Balance - Withdrawal Amount * m
B(m) = 850 - 65m
When the two accounts have the same amount of money, we can set both balance equations equal to each other and solve for m:
650 - 40m = 850 - 65m
Solve for [I]m[/I] in the equation 650 - 40m = 850 - 65m
[SIZE=5][B]Step 1: Group variables:[/B][/SIZE]
We need to group our variables -40m and -65m. To do that, we add 65m to both sides
-40m + 650 + 65m = -65m + 850 + 65m
[SIZE=5][B]Step 2: Cancel -65m on the right side:[/B][/SIZE]
25m + 650 = 850
[SIZE=5][B]Step 3: Group constants:[/B][/SIZE]
We need to group our constants 650 and 850. To do that, we subtract 650 from both sides
25m + 650 - 650 = 850 - 650
[SIZE=5][B]Step 4: Cancel 650 on the left side:[/B][/SIZE]
25m = 200
[SIZE=5][B]Step 5: Divide each side of the equation by 25[/B][/SIZE]
25m/25 = 200/25
m = [B]8[/B]
Derangements - SubfactorialsFree Derangements - Subfactorials Calculator - Calculates the number of derangements/subfactorial !n.
Derek must choose a 4 digit PIN. Each Digit can be chosen from 0 to 9. Derek does not want to reuseDerek must choose a 4 digit PIN. Each Digit can be chosen from 0 to 9. Derek does not want to reuse any digits. He also only wants an even number that begins with 5. How many possible PINS could he choose from?
[LIST=1]
[*]First digit must begin with 5. So we have 1 choice
[*]We subtract 1 possible digit from digit 3 to have 8 - 1 = 7 possible digits
[*]This digit can be anything other than 5 and the even number in the next step. So we have 0-9 is 10 digits - 2 = 8 possible digits
[*]Last digit must end in 0, 2, 4, 6, 8 to be even. So we have 5 choices
[/LIST]
Our total choices from digits 1-4 are found by multiplying each possible digit choice:
1 * 7 * 8 * 5 = [B]280 possible PINS[/B]
Determine the formula of the given statement by following the procedures. Choose any number then addDetermine the formula of the given statement by following the procedures. Choose any number then add 2. Multiply your answer to 3 and minus 2
For the phrase [I]choose any number[/I] we can use an arbitrary variable, let's call it x.
Add 2:
x + 2
Multiply your answer to 3:
3(x + 2)
And minus 2 which means we subtract:
[B]3(x + 2) - 2[/B]
Determine whether the random variable is discrete or continuous. In each case, state the possible vDetermine whether the random variable is discrete or continuous. In each case, state the possible values of the random variable.
(a) The number of customers arriving at a bank between noon and 1:00 P.M.
(i) The random variable is continuous. The possible values are x >= 0.
(ii) The random variable is discrete. The possible values are x = 0, 1, 2,...
(iii) The random variable is continuous. The possible values are x = 0, 1, 2,...
(iv) The random variable is discrete. The possible values are x >= 0.
(b) The amount of snowfall
(i) The random variable is continuous. The possible values are s = 0, 1, 2,...
(ii) The random variable is discrete. The possible values are s >= 0.
(iii) The random variable is discrete. The possible values are s = 0, 1, 2,...
(iv) The random variable is continuous. The possible values are s >= 0.
[B](a) (ii) The random variable is discrete. The possible values are x = 0, 1, 2,...
Discrete variables are limited in the values they can take between 9 and ∞
(b) (iv) The random variable is continuous. The possible values are s >= 0. Snowfall can be a decimal and can vary between 0 and ∞[/B]
Deyjiana reads 30 pages in 25 minutes. If she reads 210 pages at this rate, how long will it take heDeyjiana reads 30 pages in 25 minutes. If she reads 210 pages at this rate, how long will it take her?
Set up a proportion of pages to minutes, were m is the number of minutes it takes to read 210 pages:
30/25 = 210/m
To solve this proportion for m, we [URL='https://www.mathcelebrity.com/prop.php?num1=30&num2=210&den1=25&den2=m&propsign=%3D&pl=Calculate+missing+proportion+value']type this proportion into our search engine[/URL] and we get:
m = [B]175[/B]
Diana earns $8.50 working as a lifeguard. Write an equation to find Dianas money earned m for any nuDiana earns $8.50 working as a lifeguard. Write an equation to find Dianas money earned m for any numbers of hours h
Set up the revenue function:
[B]R = 8.5h[/B]
difference between 2 positive numbers is 3 and the sum of their squares is 117difference between 2 positive numbers is 3 and the sum of their squares is 117
Declare variables for each of the two numbers:
[LIST]
[*]Let the first variable be x
[*]Let the second variable be y
[/LIST]
We're given 2 equations:
[LIST=1]
[*]x - y = 3
[*]x^2 + y^2 = 117
[/LIST]
Rewrite equation (1) in terms of x by adding y to each side:
[LIST=1]
[*]x = y + 3
[*]x^2 + y^2 = 117
[/LIST]
Substitute equation (1) into equation (2) for x:
(y + 3)^2 + y^2 = 117
Evaluate and simplify:
y^2 + 3y + 3y + 9 + y^2 = 117
Combine like terms:
2y^2 + 6y + 9 = 117
Subtract 117 from each side:
2y^2 + 6y + 9 - 117 = 117 - 117
2y^2 + 6y - 108 = 0
This is a quadratic equation:
Solve the quadratic equation 2y2+6y-108 = 0
With the standard form of ax2 + bx + c, we have our a, b, and c values:
a = 2, b = 6, c = -108
Solve the quadratic equation 2y^2 + 6y - 108 = 0
The quadratic formula is denoted below:
y = -b ± sqrt(b^2 - 4ac)/2a
[U]Step 1 - calculate negative b:[/U]
-b = -(6)
-b = -6
[U]Step 2 - calculate the discriminant Δ:[/U]
Δ = b2 - 4ac:
Δ = 62 - 4 x 2 x -108
Δ = 36 - -864
Δ = 900 <--- Discriminant
Since Δ is greater than zero, we can expect two real and unequal roots.
[U]Step 3 - take the square root of the discriminant Δ:[/U]
√Δ = √(900)
√Δ = 30
[U]Step 4 - find numerator 1 which is -b + the square root of the Discriminant:[/U]
Numerator 1 = -b + √Δ
Numerator 1 = -6 + 30
Numerator 1 = 24
[U]Step 5 - find numerator 2 which is -b - the square root of the Discriminant:[/U]
Numerator 2 = -b - √Δ
Numerator 2 = -6 - 30
Numerator 2 = -36
[U]Step 6 - calculate your denominator which is 2a:[/U]
Denominator = 2 * a
Denominator = 2 * 2
Denominator = 4
[U]Step 7 - you have everything you need to solve. Find solutions:[/U]
Solution 1 = Numerator 1/Denominator
Solution 1 = 24/4
Solution 1 = 6
Solution 2 = Numerator 2/Denominator
Solution 2 = -36/4
Solution 2 = -9
[U]As a solution set, our answers would be:[/U]
(Solution 1, Solution 2) = (6, -9)
Since one of the solutions is not positive and the problem asks for 2 positive number, this problem has no solution
Digit ProblemsFree Digit Problems Calculator - Determines how many (n) digit numbers can be formed based on a variety of criteria.
Digit ProductFree Digit Product Calculator - Calculates a digit product for a number.
Digit SumFree Digit Sum Calculator - Calculates a digit sum and reduced digit sum for a number.
distance between -2 and 9 on the number linedistance between -2 and 9 on the number line
Distance on the number line is the absolute value of the difference:
D = |9 - -2|
D = |11|
D = [B]11[/B]
Distributive PropertyFree Distributive Property Calculator - Demonstrates the distributive property using 3 numbers.
Numerical Properties
Divide a number by 10. Then, add 10.Divide a number by 10. Then, add 10.
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
Divide the number by 10 mean we have a quotient, of x over 10
x / 10
Then, add 10:
[B](x / 10) + 10[/B]
DivisibilityFree Divisibility Calculator - Shows the divisibility of a number by seeing if it is divisible by (2,3,4,5,6,7,8,9,10,11)
Divisibility by 11 no calculator shortcuts2 rules. If either of them passes, then the number is divisible by 11:
[LIST=1]
[*]Sum of the odd digits - Sum of the even digits is divisible by 11
[*]Sum of the odd digits - Sum of the even digits = 0 (Ex. 121)
[/LIST]
[MEDIA=youtube]WpV87es0WAU[/MEDIA]
Divya has 70 rocks. She donates half of the rocks to a science center. Then she collects 3 rocks onDivya has 70 rocks. She donates half of the rocks to a science center. Then she collects 3 rocks on each of her nature hikes. Write an expression to represent the number of rocks Divya has after she collects rocks on n nature hikes.
For each hike, we have:
[LIST=1]
[*]Start with 70 rocks
[*]She donates half which is 35, which means she's left with 35
[/LIST]
Since each nature hike gives her 3 more rocks, and she goes on n nature hikes, we have the following algebraic expression:
[B]3n + 35[/B]
Do the phrases 7 less than a number and a number less than 7 mean the same thing explainDo the phrases 7 less than a number and a number less than 7 mean the same thing explain
No, they are different, here's how:
First, the phrase [I]a number[/I] means an arbitrary variable, let's call it x.
7 less than a number means we subtract 7 from x:
x - 7
A number less than 7 means we subtract x from 7:
7 - x
As you can see:
x - 7 <> 7 - x so [B]they are different[/B]
Dora has $35 saved. She earns $9.50 per hour at her job. How many hours must she work to have a totaDora has $35 saved. She earns $9.50 per hour at her job. How many hours must she work to have a total of $358 in her savings?
Subtract the existing savings from the desired savings to see what we have left:
358 - 35 = 323
Now, at 9.50 per hour, how many hours of work does she need to get 323?
Let h be the number of hours. We have:
9.50h = 323
[URL='http://www.mathcelebrity.com/1unk.php?num=9.50h%3D323&pl=Solve']Running this problem through our search engine[/URL], we get
[B]h = 34[/B]
Dotty McGinnis starts up a small business manufacturing bobble-head figures of famous soccer playersDotty McGinnis starts up a small business manufacturing bobble-head figures of famous soccer players. Her initial cost is $3300. Each figure costs $4.50 to make. a. Write a cost function, C(x), where x represents the number of figures manufactured.
Cost function is the fixed cost plus units * variable cost.
[B]C(x) = 3300 + 4.50x[/B]
Dr. Carlson is contemplating the impact of an antibiotic on a particular patient. The patient will tDr. Carlson is contemplating the impact of an antibiotic on a particular patient. The patient will take 229 milligrams, and every hour his body will break down 20% of it. How much will be left after 9 hours?
Set up the antibiotic remaining function A(h) where h is the number of hours after the patient takes the antibiotic.
If the body breaks down 20%, then the remaining is 100% - 20% = 80%
80% as a decimal is 0.8, so we have:
A(h) = 229 * (0.8)^h
The problems asks for A(9):
A(9) = 229 * (0.8)^9
A(9) = 229 * 0.134217728
A(9) = [B]30.74 milligrams[/B]
Dr. Hoffman is contemplating the impact of an antibiotic on a particular patient. The patient will tDr. Hoffman is contemplating the impact of an antibiotic on a particular patient. The patient will take 590 milligrams, and every hour his body will break down 30% of it. How much will be left after 8 hours? If necessary, round your answer to the nearest tenth.
Set up a function A(h), where h is the number of hours since the patient took the antibiotic.
If the body breaks down 30%, it keeps 70%, or 0.7.
A(h) = 590(0.70)^h
The problem asks for A(8):
A(8) = 590(0.70)^8
A(8) =590 * 0.05764801
A(8) = 34.012 hours
Rounded to the nearest tenth, it's [B]34.0 hours[/B].
Dunder Mifflin will print business cards for $0.10 each plus setup charge of $15. Werham Hogg offersDunder Mifflin will print business cards for $0.10 each plus setup charge of $15. Werham Hogg offers business cards for $0.15 each with a setup charge of $10. What numbers of business cards cost the same from either company
Declare variables:
[LIST]
[*]Let b be the number of business cards.
[/LIST]
[U]Set up the cost function C(b) for Dunder Mifflin:[/U]
C(b) = Cost to print each business card * b + Setup Charge
C(b) = 0.1b + 15
[U]Set up the cost function C(b) for Werham Hogg:[/U]
C(b) = Cost to print each business card * b + Setup Charge
C(b) = 0.15b + 10
The phrase [I]cost the same[/I] means we set both C(b)'s equal to each other and solve for b:
0.1b + 15 = 0.15b + 10
Solve for [I]b[/I] in the equation 0.1b + 15 = 0.15b + 10
[SIZE=5][B]Step 1: Group variables:[/B][/SIZE]
We need to group our variables 0.1b and 0.15b. To do that, we subtract 0.15b from both sides
0.1b + 15 - 0.15b = 0.15b + 10 - 0.15b
[SIZE=5][B]Step 2: Cancel 0.15b on the right side:[/B][/SIZE]
-0.05b + 15 = 10
[SIZE=5][B]Step 3: Group constants:[/B][/SIZE]
We need to group our constants 15 and 10. To do that, we subtract 15 from both sides
-0.05b + 15 - 15 = 10 - 15
[SIZE=5][B]Step 4: Cancel 15 on the left side:[/B][/SIZE]
-0.05b = -5
[SIZE=5][B]Step 5: Divide each side of the equation by -0.05[/B][/SIZE]
-0.05b/-0.05 = -5/-0.05
b = [B]100[/B]
Duplication and MediationFree Duplication and Mediation Calculator - Multiplies two numbers using Duplication and Mediation
During the 2016 christmas season,UPS had 14 employees retire, 122 employees were hired and 31 left dDuring the 2016 christmas season,UPS had 14 employees retire, 122 employees were hired and 31 left due to illness. If UPS ended the year with 410 employees, how many did they have at the start of the season?
Let x be the number of employees at the start of the season. We have:
[LIST]
[*]-14 since retiring is an employee loss
[*]+122 hired since hiring is an employee gain
[*]-31 since illness means a leave
[/LIST]
x - 14 + 122 - 31 = 410
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=x-14%2B122-31%3D410&pl=Solve']equation solver[/URL], we get:
[B]x = 333[/B]
Dylan is playing darts. He hit the bullseye on 5 out of his last 20 tosses. Considering this data, hDylan is playing darts. He hit the bullseye on 5 out of his last 20 tosses. Considering this data, how many bullseyes would you expect Dylan to get during his next 16 tosses?
We have a proportion of bullseyes to tosses where b is the number of bullseyes for 16 tosses:
5/20 = b/16
[URL='https://www.mathcelebrity.com/prop.php?num1=5&num2=b&den1=20&den2=16&propsign=%3D&pl=Calculate+missing+proportion+value']Type this proportion into our search engine[/URL] and we get:
b = [B]4[/B]
Dylans mother tells Dylan he must spend less time playing electronic games. On the weekends he spendDylans mother tells Dylan he must spend less time playing electronic games. On the weekends he spends 9.5 hours playing electronic games. If he plays between 13 and 19 hours each week, how many hours does he play games on weekdays?
Let x equal the number of hours Dylan plays electronic games per week.
[U]Set up our inequality:[/U]
13 <= x <= 19
[U]To see how much he plays during weekdays, subtract off the weekend time[/U]
13 - 9.5 <= x <= 19 - 9.5
[B]3.5 <= x <= 9.5[/B]
Each brick is 14 inches long, 8 inches wide, and 5 inches tall.if they used 16,800 in3 of concrete,Each brick is 14 inches long, 8 inches wide, and 5 inches tall.if they used 16,800 in3 of concrete, how many bricks did they make?
Volume of a brick (V) is:
V = l * w * h
Plugging in our brick measurements, we get:
V = 14 * 8 * 5
V = 560
Calculate number of bricks:
Number of Bricks = Total Volume / Volume of one Brick
Number of Bricks = 16,800/560
Number of Bricks =[B]30[/B]
Each class can have 40 pupils. If a school opens 5 classes for Grade 6, how many Grade 6 pupils canEach class can have 40 pupils. If a school opens 5 classes for Grade 6, how many Grade 6 pupils can it accept?
Grade 6 pupils = pupils per class * number of classes
Grade 6 pupils = 40 * 5
Grade 6 pupils = [B]200 pupils[/B]
each classroom at HCS has a total of 26 desks. After Mr. Sean pond ordered 75 new desks the total nueach classroom at HCS has a total of 26 desks. After Mr. Sean pond ordered 75 new desks the total number of desks in the school was 543. How many classrooms does the school have?
Let d be the number of desks per classroom. We're given an equation:
26d + 75 = 543
To solve for d, [URL='https://www.mathcelebrity.com/1unk.php?num=26d%2B75%3D543&pl=Solve']type this equation into our search engine[/URL] and we get:
d = [B]18[/B]
Each of 6 students reported the number of movies they saw in the past year. Here is what they reporEach of 6 students reported the number of movies they saw in the past year. Here is what they reported. 19, 9, 14, 10, 16, 17. Find the mean number of movies that the students saw. If necessary, round your answer to the nearest tenth.
The mean is the average, so we add up the 6 movie scores, and divide by 6.
[URL='https://www.mathcelebrity.com/statbasic.php?num1=19%2C+9%2C+14%2C+10%2C+16%2C+17&num2=+0.2%2C0.4%2C0.6%2C0.8%2C0.9&pl=Number+Set+Basics']Mean (Average)[/URL] = Sum of 6 Movie Scores / 6
[URL='https://www.mathcelebrity.com/statbasic.php?num1=19%2C+9%2C+14%2C+10%2C+16%2C+17&num2=+0.2%2C0.4%2C0.6%2C0.8%2C0.9&pl=Number+Set+Basics']Mean (Average)[/URL] = 84 / 6
[URL='https://www.mathcelebrity.com/statbasic.php?num1=19%2C+9%2C+14%2C+10%2C+16%2C+17&num2=+0.2%2C0.4%2C0.6%2C0.8%2C0.9&pl=Number+Set+Basics']Mean (Average)[/URL] = 14.16666667
The problem asks us to round to the nearest tenth, which is the first decimal place.
Since the 2nd decimal place, 6 is more than 5, we round the first decimal place up one and remove the rest.
[B]14.2[/B]
Each tree in an orchard containing 2,650 trees requires 210 grams of fertiliizer. At $1.25 per kilogEach tree in an orchard containing 2,650 trees requires 210 grams of fertiliizer. At $1.25 per kilogram of fertilizer, how much does it cost to fertilize the orchard?
[U]Calculate the total fertilizer needed:[/U]
Total fertilizer needed = Number of trees * grams of fertilizer per tree
Total fertilizer needed = 2650 * 210
[URL='https://www.mathcelebrity.com/longdiv.php?num1=2650&num2=210&pl=Multiply']Total fertilizer needed[/URL] = 556500 grams
[U]1 kilogram = 1000 grams, so we convert our 556500 grams to kilograms:[/U]
kilograms of fertilizer = grams of fertilizer / 1000
kilograms of fertilizer = 556500/1000
kilograms of fertilizer = 556.5
[U]Calculate fertilizer cost:[/U]
Fertilizer cost = kilograms of fertilizer * cost per kilogram
Fertilizer cost = 556.5 * 1.25
Fertilizer cost = [B]695.63[/B]
Eight less then the sum of y and xThe sum of y and x is denoted as:
x + y
Eight less than that, using the number (8) for eight is:
x + y - 8
Eight students made 272.00 mowing lawns. How much did each student make?Eight students made 272.00 mowing lawns. How much did each student make?
Earnings per Student = Total Earnings / Number of Students
Earnings per Student = 272/8
Earnings per Student = [B]34[/B]
Eighteen times the difference of a number and tenThe phrase [I]a number[/I] means an arbitrary variable. We can pick any letter a-z except for i and e.
Let's choose x.
The difference of a number and ten
x - 10
Eighteen times the difference of a number and ten
[B]18(x - 10)[/B]
Elsa took a total of 25 quizzes over the course of 5 weeks. After attending 8 weeks of school this qElsa took a total of 25 quizzes over the course of 5 weeks. After attending 8 weeks of school this quarter, how many quizzes will Elsa have taken in total? Assume the relationship is directly proportional.
Set up a proportion of quizzes to weeks where q is the number of quizzes taken in 8 weeks. We have:
25/5 = q/8
We [URL='https://www.mathcelebrity.com/prop.php?num1=25&num2=q&den1=5&den2=8&propsign=%3D&pl=Calculate+missing+proportion+value']type this proportion into our search engine[/URL] and we get:
q = [B]40[/B]
entry at a zoo costs $30 for an adult and $25 for a child. How much would it cost for 2 adults and 3entry at a zoo costs $30 for an adult and $25 for a child. How much would it cost for 2 adults and 3 children?
Cost = Price * Quantity, so we have:
Cost = Price per adult * number of adults + Price per child * number of children
Cost = 30 * 2 + 25 * 3
Cost = 60 + 75
Cost = [B]135[/B]
Erica has $14 and plans to save $5 each week until she has the $64 she needs for a new jacket. ParErica has $14 and plans to save $5 each week until she has the $64 she needs for a new jacket. Part A: Write a number sentence describing this situation, using W to stand for the number of weeks Erica needs to save.
[B]14 + 5w = 64[/B]
Erik is rolling two regular six-sided number cubes. What is the probability that he will roll an eveErik is rolling two regular six-sided number cubes. What is the probability that he will roll an even number on one cube and a prime number on the other?
P(Even on first cube) = (2,4,6) / 6 total choices
P(Even on first cube) = 3/6
P(Even on first cube) = 1/2 <-- [URL='https://www.mathcelebrity.com/fraction.php?frac1=3%2F6&frac2=3%2F8&pl=Simplify']Using our fraction simplify calculator[/URL]
P(Prime on second cube) = (2,3,5) / 6 total choices
P(Prime on second cube) = 3/6
P(Prime on second cube) = 1/2 <-- [URL='https://www.mathcelebrity.com/fraction.php?frac1=3%2F6&frac2=3%2F8&pl=Simplify']Using our fraction simplify calculator[/URL]
Since each event is independent, we have:
P(Even on the first cube, Prime on the second cube) = P(Even on the first cube) * P(Prime on the second cube)
P(Even on the first cube, Prime on the second cube) = 1/2 * 1/2
P(Even on the first cube, Prime on the second cube) = [B]1/4[/B]
Erin has 72 stamps in her stamp drawer along with a quarter, two dimes and seven pennies. She has 3Erin has 72 stamps in her stamp drawer along with a quarter, two dimes and seven pennies. She has 3 times as many 3-cent stamps as 37-cent stamps and half the number of 5-cent stamps as 37-cent stamps. The value of the stamps and coins is $8.28. How many 37-cent stamps does Erin have?
Number of stamps:
[LIST]
[*]Number of 37 cent stamps = s
[*]Number of 3-cent stamps = 3s
[*]Number of 5-cent stamps = 0.5s
[/LIST]
Value of stamps and coins:
[LIST]
[*]37 cent stamps = 0.37s
[*]3-cent stamps = 3 * 0.03 = 0.09s
[*]5-cent stamps = 0.5 * 0.05s = 0.025s
[*]Quarter, 2 dime, 7 pennies = 0.52
[/LIST]
Add them up:
0.37s + 0.09s + 0.025s + 0.52 = 8.28
Solve for [I]s[/I] in the equation 0.37s + 0.09s + 0.025s + 0.52 = 8.28
[SIZE=5][B]Step 1: Group the s terms on the left hand side:[/B][/SIZE]
(0.37 + 0.09 + 0.025)s = 0.485s
[SIZE=5][B]Step 2: Form modified equation[/B][/SIZE]
0.485s + 0.52 = + 8.28
[SIZE=5][B]Step 3: Group constants:[/B][/SIZE]
We need to group our constants 0.52 and 8.28. To do that, we subtract 0.52 from both sides
0.485s + 0.52 - 0.52 = 8.28 - 0.52
[SIZE=5][B]Step 4: Cancel 0.52 on the left side:[/B][/SIZE]
0.485s = 7.76
[SIZE=5][B]Step 5: Divide each side of the equation by 0.485[/B][/SIZE]
0.485s/0.485 = 7.76/0.485
s = [B]16[/B]
[URL='https://www.mathcelebrity.com/1unk.php?num=0.37s%2B0.09s%2B0.025s%2B0.52%3D8.28&pl=Solve']Source[/URL]
Estimate Square RootsFree Estimate Square Roots Calculator - Estimates the square root of a number
Estimate SumsFree Estimate Sums Calculator - Estimates the sum of 2 numbers.
Estimating Reasonableness of ProductsFree Estimating Reasonableness of Products Calculator - Given a product of 2 numbers and an estimated product, this will check to see if it is reasonable
Ethan has $9079 in his retirement account, and Kurt has $9259 in his. Ethan is adding $19per day, whEthan has $9079 in his retirement account, and Kurt has $9259 in his. Ethan is adding $19per day, whereas Kurt is contributing $1 per day. Eventually, the two accounts will contain the same amount. What balance will each account have? How long will that take?
Set up account equations A(d) where d is the number of days since time 0 for each account.
Ethan A(d): 9079 + 19d
Kurt A(d): 9259 + d
The problems asks for when they are equal, and how much money they have in them. So set each account equation equal to each other:
9079 + 19d = 9259 + d
[URL='https://www.mathcelebrity.com/1unk.php?num=9079%2B19d%3D9259%2Bd&pl=Solve']Typing this equation into our search engine[/URL], we get [B]d = 10[/B].
So in 10 days, both accounts will have equal amounts in them.
Now, pick one of the account equations, either Ethan or Kurt, and plug in d = 10. Let's choose Kurt's since we have a simpler equation:
A(10) = 9259 + 10
A(10) = $[B]9,269
[/B]
After 10 days, both accounts have $9,269 in them.
Euclids Algorithm and Euclids Extended AlgorithmFree Euclids Algorithm and Euclids Extended Algorithm Calculator - Given 2 numbers a and b, this calculates the following
1) The Greatest Common Divisor (GCD) using Euclids Algorithm
2) x and y in Bézouts Identity ax + by = d using Euclids Extended Algorithm
Extended Euclidean Algorithm
Eva earns $72 washing 6 cars. At this rate, how many cars did Eva wash to earn $132?Eva earns $72 washing 6 cars. At this rate, how many cars did Eva wash to earn $132?
Set up a proportion of money to cars washed where c is the number of cars washed for $132 in earnings:
72/6 = 132/c
[URL='https://www.mathcelebrity.com/prop.php?num1=72&num2=132&den1=6&den2=c&propsign=%3D&pl=Calculate+missing+proportion+value']Type this proportion into our calculator[/URL], we get:
[B]c = 11[/B]
evaluate 16 raised to 1/4evaluate 16 raised to 1/4
What number raised to the 4th power equals 16?
[B]2[/B], since 2 * 2 * 2 * 2 = 16
evelyn needs atleast $112 to buy a new dress. She has already saved $40 . She earns $9 an hour babysevelyn needs atleast $112 to buy a new dress. She has already saved $40 . She earns $9 an hour babysitting. How many hours will she need to babysit to buy the dress?
Let the number of hours be h.
We have the earnings function E(h) below
E(h) = hourly rate * h + current savings
E(h) = 9h + 40
We're told E(h) = 112, so we have:
9h + 40 = 112
[URL='https://www.mathcelebrity.com/1unk.php?num=9h%2B40%3D112&pl=Solve']Typing this equation in our math engine[/URL] and we get:
h = [B]8[/B]
Even NumbersFree Even Numbers Calculator - Shows a set amount of even numbers and cumulative sum
Every 100 seeds of corn he plants, he harvests 84 ears of corn. If he wants to harvest 7200 ears ofEvery 100 seeds of corn he plants, he harvests 84 ears of corn. If he wants to harvest 7200 ears of corn, how many seeds must he plant?
Set up a proportion seeds to ears:
100/84 = x/7200 where x is the number of seeds needed for 7200 ears of corn.
Using our [URL='http://www.mathcelebrity.com/prop.php?num1=100&num2=x&den1=84&den2=7200&propsign=%3D&pl=Calculate+missing+proportion+value']proportion calculator[/URL], we get:
[B]x = 8,571.43 ~ 8,572[/B]
Expanded NotationFree Expanded Notation Calculator - Writes the expanded notation for a number.
Explain the relationship between "squaring" a number and finding the "square root" of a number. UseExplain the relationship between "squaring" a number and finding the "square root" of a number. Use an example to further explain your answer.
Squaring a number means raising it to the power of 2
The square root of a number [I]undoes[/I] a square of a number.
So square root of x^2 is x
x squared is x^2
Let x = 5.
x squared = 5^2 = 25
Square root of 25 = square root of 5^2 = 5
Explain why 1/2 and 3/6 are equivalentExplain why 1/2 and 3/6 are equivalent.
Multiply any number by 1, and we get the same number.
Multiply 1/2 by 3/3 which is 1
(1 * 3)/(2 *3) = 3/6
FactorialsFree Factorials Calculator - Calculates the following factorial items:
* A factorial of one number such as n!
* A factorial of a numerator divided by a factorial of a denominator such as n!m!/a!b!
* Double Factorials such as n!!
* Stirlings Approximation for n!
Factoring and Root FindingFree Factoring and Root Finding Calculator - This calculator factors a binomial including all 26 variables (a-z) using the following factoring principles:
* Difference of Squares
* Sum of Cubes
* Difference of Cubes
* Binomial Expansions
* Quadratics
* Factor by Grouping
* Common Term
This calculator also uses the Rational Root Theorem (Rational Zero Theorem) to determine potential roots
* Factors and simplifies Rational Expressions of one fraction
* Determines the number of potential positive and negative roots using Descarte’s Rule of Signs
FactorizationFree Factorization Calculator - Given a positive integer, this calculates the following for that number:
1) Factor pairs and prime factorization and prime power decomposition
2) Factors and Proper Factors
3) Aliquot Sum
Farmer Bob can get 10 gallons of milk from 4 cows. How many gallons of milk can he get from 14 cows?Farmer Bob can get 10 gallons of milk from 4 cows. How many gallons of milk can he get from 14 cows?
Set up a proportion of gallons to cows where g is the number of gallons per 14 cows:
10/4 = g/14
To solve this proportion for g, we[URL='https://www.mathcelebrity.com/prop.php?num1=10&num2=g&den1=4&den2=14&propsign=%3D&pl=Calculate+missing+proportion+value'] type it in our search engine[/URL] and we get:
g = [B]35
[/B]
Farmer Yumi has too many plants in her garden. If she starts out with 150 plants and is losing themFarmer Yumi has too many plants in her garden. If she starts out with 150 plants and is losing them at a rate of 4% each day, how long will it take for her to have 20 plants left? Round UP to the nearest day.
We set up the function P(d) where d is the number of days sine she started losing plants:
P(d) = Initial plants * (1 - Loss percent / 100)^d
Plugging in our numbers, we get:
20 = 150 * (1 - 4/100)^d
20 = 150 * (1 - 0.04)^d
Read left to right so it's easier to read:
150 * 0.96^d = 20
Divide each side by 150, and we get:
0.96^d = 0.13333333333
To solve this logarithmic equation for d, we [URL='https://www.mathcelebrity.com/natlog.php?num=0.96%5Ed%3D0.13333333333&pl=Calculate']type it in our search engine[/URL] and we get:
d = 49.35
The problem tells us to round up, so we round up to [B]50 days[/B]
Fermats Little TheoremFree Fermats Little Theorem Calculator - For any integer a and a prime number p, this demonstrates Fermats Little Theorem.
Fibonacci SequenceFree Fibonacci Sequence Calculator - Generates a list of the first 100 Fibonacci numbers.
Also shows how to generate the nth Fibonacci number using Binet's Formula
Fifteen less than 3Convert to numbers:
Fifteen = 15.
Less than means subtract.
3 - 15.
Evaluating, that is 12.
Fifty-two less than 75% of a numberFifty-two less than 75% of a number
A number means an arbitrary variable, let's call it x.
75% of this is 0.75x
Fifty-two less is:
[B]0.75x - 52[/B]
Finance1. Spend 8000 on a new machine. You think it will provide after tax cash inflows of 3500 per year for the next three years. The cost of funds is 8%. Find the NPV, IRR, and MIRR. Should you buy it?
2. Let the machine in number one be Machine A. An alternative is Machine B. It costs 8000 and will provide after tax cash inflows of 5000 per year for 2 years. It has the same risk as A. Should you buy A or B?
3. Spend 100000 on Machine C. You will need 5000 more in net working capital. C is three year MACRS. The cost of funds is 8% and the tax rate is 40%. C is expected to increase revenues by 45000 and costs by 7000 for each of the next three years. You think you can sell C for 10000 at the end of the three year period.
a. Find the year zero cash flow.
b. Find the depreciation for each year on the machine.
c. Find the depreciation tax shield for the three operating years.
d. What is the projects contribution to operations each year, ignoring depreciation effects?
e. What is the cash flow effect of selling the machine?
f. Find the total CF for each year.
g. Should you buy it?
Find 2 consecutive numbers such that the sum of twice the smaller number and 3 times the larger numbFind 2 consecutive numbers such that the sum of twice the smaller number and 3 times the larger number is 73.
Let x be the smaller number and y be the larger number. We are given:
2x + 3y = 73
Since the numbers are consecutive, we know that y = x + 1. Substitute this into our given equation:
2x + 3(x + 1) = 73
Multiply through:
2x + 3x + 3 = 73
Group like terms:
5x + 3 = 73
[URL='https://www.mathcelebrity.com/1unk.php?num=5x%2B3%3D73&pl=Solve']Type 5x + 3 = 73 into the search engine[/URL], and we get [B]x = 14[/B].
Our larger number is 14 + 1 = [B]15
[/B]
Therefore, our consecutive numbers are[B] (14, 15)[/B]
Find all numbers whose absolute value is -3Find all numbers whose absolute value is -3
[B][U][I]None[/I][/U][/B]. Absolute values are always positive, so no number has a negative absolute value.
Find all numbers whose absolute value is 6Find all numbers whose absolute value is 6.
2 numbers:
|6| = 6
|-6| = 6
find all numbers whose absolute value is 7find all numbers whose absolute value is 7
|7| = 7
|-7| = 7
So we have two numbers: [B](-7, 7)[/B]
Find all numbers who’s absolute value is 7Find all numbers who’s absolute value is 7
We have 2 numbers with an absolute value of 7:
[LIST=1]
[*][B]7 [/B]since |7| = 7
[*][B]-7[/B] since |-7| = 7
[/LIST]
Find four consecutive odd numbers which add to 64Find four consecutive odd numbers which add to 64.
Let the first number be x. The next three numbers are:
x + 2
x + 4
x + 6
Add them together to get 64:
x + (x + 2) + (x + 4) + (x + 6) = 64
Group like terms:
4x + 12 = 64
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=4x%2B12%3D64&pl=Solve']equation calculator[/URL], we get:
[B]x = 13[/B]
The next 3 odd numbers are:
x + 2 = 13 + 2 = 15
x + 4 = 13 + 4 = 17
x + 6 = 13 + 6 = 19
So the 4 consecutive odd numbers which add to 64 are:
[B](13, 15, 17, 19)[/B]
Find Requested ValueUsing our [URL='http://www.mathcelebrity.com/statbasic.php?num1=5.2%2C4.9%2C2.9%2C5.3%2C3.0%2C4.0%2C5.2%2C5.2%2C3.2%2C4.7%2C3.2%2C3.5%2C4.8%2C4.0%2C5.1&num2=+0.2%2C0.4%2C0.6%2C0.8%2C0.9&pl=Number+Set+Basics']statistics number set calculator[/URL], we get a mean of [B]4.28[/B]
find the difference between a mountain with an altitude of 1,684 feet above sea level and a valleyfind the difference between a mountain with an altitude of 1,684 feet above sea level and a valley 216 feet below sea level.
Below sea level is the same as being on the opposite side of zero on the number line. To get the difference, we do the following:
1,684 - (-216)
Since subtracting a negative is a positive, we have:
1,684 + 216
[B]1,900 feet[/B]
Find the greatest number which divides 845 and 1250Find the greatest number which divides 845 and 1250
This is the greatest common factor. We [URL='https://www.mathcelebrity.com/gcflcm.php?num1=845&num2=1250&num3=&pl=GCF+and+LCM']type GCF(845,1250) into our search engine [/URL]and we get:
[B]5[/B]
Find the last digit of 2 raised to the 2020 no calculatorCheck out this pattern:
2^1= 2
2^2= 4
2^3 = 8
2^4= 16
2^5 = 32
2^6 = 64
2^7 = 128
2^8 = 256
The last digit repeats itself in blocks of 4
2, 4, 8, 6
We want to know what is the largest number in 1, 2, 3, 4 that divides 2020 without a remainder.
LEt's start with 4 and work backwards.
2020/4 = 505
Ever power of 2^4(n) ends in 6, so our answer is [B]6
[MEDIA=youtube]6uX5gwb1jdY[/MEDIA][/B]
Find the last digit of 7^2013Consider the first 8 calculations of 7 to an exponent:
[LIST]
[*]7^1 = 7
[*]7^2 = 49
[*]7^3 = 343
[*]7^4 = 2,401
[*]7^5 = 16,807
[*]7^6 = 117,649
[*]7^7 = 823,543
[*]7^8 = 5,764,801
[/LIST]
Take a look at the last digit of the first 8 calculations:
7, 9, 3, 1, 7, 9, 3, 1
The 7, 9, 3, 1 repeats through infinity.
So every factor of 4, the cycle of 7, 9, 3, 1 restarts.
Counting backwards from 2013, we know that 2012 is the largest number divisible by 4:
7^2013 = 7^2012 * 7^1
The cycle starts over after 2012.
Which means the last digit of 7^2013 = [B]7
[MEDIA=youtube]Z157jj8R7Yc[/MEDIA][/B]
Find the number of combinations and the number of permutations for 10 objects taken 6 at a timeFind the number of combinations and the number of permutations for 10 objects taken 6 at a time
[LIST]
[*]Combinations is written as 10 C 6. Using our [URL='http://www.mathcelebrity.com/permutation.php?num=10&den=6&pl=Combinations']combinations calculator[/URL], we get [B]210[/B].
[*]Permutations is written as 10 P 6. Using our [URL='http://www.mathcelebrity.com/permutation.php?num=10&den=6&pl=Permutations']permutations calculator[/URL], we get [B]151,200[/B].
[/LIST]
Find the odd number less than 100 that is divisible by 9, and when divided by 10 has a remainder ofFind the odd number less than 100 that is divisible by 9, and when divided by 10 has a remainder of 7.
From our [URL='http://www.mathcelebrity.com/divisibility.php?num=120&pl=Divisibility']divisibility calculator[/URL], we see a number is divisible by 9 if the sum of its digits is divisible by 9.
Starting from 1 to 99, we find all numbers with a digit sum of 9.
This would be digits with 0 and 9, 1 and 8, 2 and 7, 3 and 6, and 4 and 5.
9
18
27
36
45
54
63
72
81
90
Now remove even numbers since the problem asks for odd numbers
9
27
45
63
81
Now, divide each number by 10, and find the remainder
9/10 = 0
[URL='http://www.mathcelebrity.com/modulus.php?num=27mod10&pl=Calculate+Modulus']27/10[/URL] = 2 R 7
We stop here. [B]27[/B] is an odd number, less than 100, with a remainder of 7 when divided by 10.
Find the total coast of four nights lodging at $62.00 per night with 8 1/2% sales tax.Find the total coast of four nights lodging at $62.00 per night with 8 1/2% sales tax.
[U]Calculate Total lodging cost[/U]
Total lodging cost = Nightly Rate * Number of Nights
Total lodging cost = 62 * 4
Total lodging cost = 248
[U]Calculate total bill with tax[/U]
Total bill with tax = Total bill * (1 + sales tax percent)
Total bill with tax = 248 * (1 + 0.85) <-- 8 1/2% = 0.085 as a decimal
Total bill with tax = 248 * 1.085
Total bill with tax =[B] $269.08[/B]
Find two numbers word problemsFree Find two numbers word problems Calculator - Given two numbers with a sum of s where one number is n greater than another, this calculator determines both numbers.
Fiona thinks of a number. fiona halves the number and gets an answer of 72.8. Form an equation withFiona thinks of a number. fiona halves the number and gets an answer of 72.8. Form an equation with x from the information
Halving means dividing by 2, so our equation is:
[B]x/2 = 72.8[/B]
Five less than a number is at least -7 and at most 7.Five less than a number is at least -7 and at most 7.
A number signifies an arbitrary variable, let's call it x.
Five less than a number: x - 5
Is at least -7 means greater than or equal to and at most 7 means less than or equal to, so we have a joint inequality:
[B]-7 <= x - 5 <= 7[/B]
Fixed cost 500 marginal cost 8 item sells for 30fixed cost 500 marginal cost 8 item sells for 30.
Set up Cost Function C(x) where x is the number of items sold:
C(x) = Marginal Cost * x + Fixed Cost
C(x) = 8x + 500
Set up Revenue Function R(x) where x is the number of items sold:
R(x) = Revenue per item * items sold
R(x) = 30x
Set up break even function (Cost Equals Revenue)
C(x) = R(x)
8x + 500 = 30x
Subtract 8x from each side:
22x = 500
Divide each side by 22:
x = 22.727272 ~ 23 units for breakeven
Flight is $295 and car rental is $39 a day, if a competition charges $320 and $33 a day car rental,Flight is $295 and car rental is $39 a day, if a competition charges $320 and $33 a day car rental, which is cheaper?
Set up cost function where d is the number of days:
[LIST]
[*]Control business: C(d) = 39d + 295
[*]Competitor business: C(d) = 33d + 320
[/LIST]
Set the [URL='http://www.mathcelebrity.com/1unk.php?num=39d%2B295%3D33d%2B320&pl=Solve']cost functions equal to each other[/URL]:
We get d = 4.1667.
The next integer day up is 5. Now plug in d = 1, 2, 3, 4. For the first 4 days, the control business is cheaper. However, starting at day 5, the competitor business is now cheaper forever.
FloorFree Floor Calculator - Determines the floor of a number
for every 10 white cars a dealer sells he sells 7 silver, 6 blue, 5 red, 4 yellow, 3 green, 2 black,for every 10 white cars a dealer sells he sells 7 silver, 6 blue, 5 red, 4 yellow, 3 green, 2 black, 2 purple and 1 brown car. If he sells 120 cars how many blue cars?
[U]Take this in blocks, so each block has:[/U]
10 white + 7 silver + 6 blue + 5 red + 4 yellow + 3 green + 2 black + 2 purple + 1 brown = 40 cars
[U]Calculate the number of blocks:[/U]
120 cars / 40 cars = 3 blocks.
[U]For 120 cars sold, it takes 3 blocks, which means we multiply:[/U]
6 blue cars per block * 3 blocks = [B]18 blue cars[/B]
For her phone service, Maya pays a monthly fee of $27 , and she pays an additional $0.04 per minuFor her phone service, Maya pays a monthly fee of $27 , and she pays an additional $0.04 per minute of use. The least she has been charged in a month is $86.04 . What are the possible numbers of minutes she has used her phone in a month? Use m for the number of minutes, and solve your inequality for m .
Maya's cost function is C(m), where m is the number of minutes used.
C(m) = 0.04m + 27
We are given C(m) = $86.04. We want her cost function [I]less than or equal[/I] to this.
0.04m + 27 <= 86.04
[URL='https://www.mathcelebrity.com/1unk.php?num=0.04m%2B27%3C%3D86.04&pl=Solve']Type this inequality into our search engine[/URL], and we get [B]m <= 1476[/B].
For the first 10 seconds of the ride, the height of the coaster can be determined by h(t) = 0.3t^3 -For the first 10 seconds of the ride, the height of the coaster can be determined by h(t) = 0.3t^3 - 5t^2 + 21t, where t is the time in seconds and h is the height in feet. classify this polynomial by degree and by number of terms.
[URL='http://www.mathcelebrity.com/polynomial.php?num=0.3t%5E3-5t%5E2%2B21t&pl=Evaluate']Using our polynomial calculator, we determine[/URL]:
[LIST]
[*]The degree of the polynomial is 3
[*]There are 3 terms
[/LIST]
Foster is centering a photo that is 9/1/2 inches wide on a scrapbook pages that is 10 inches wide. HFoster is centering a photo that is 9/1/2 inches wide on a scrapbook pages that is 10 inches wide. How far from each side of the pages should he put the picture? Enter your answer as a mixed number.
First, determine your margins, which is the difference between the width and photo width, divided by 2.
10 - 9 & 1/2 = 1/2
1/2 / 2 = [B]1/4[/B]
Four cousins were born at two-year intervals. The sum of their ages is 36. What are their ages?Four cousins were born at two-year intervals. The sum of their ages is 36. What are their ages?
So the last cousin is n years old. this means consecutive cousins are n + 2 years older than the next.
whether their ages are even or odd, we have the sum of 4 consecutive (odd|even) integers equal to 36. We [URL='https://www.mathcelebrity.com/sum-of-consecutive-numbers.php?num=sumof4consecutiveevenintegersis36&pl=Calculate']type this into our search engine[/URL] and we get the ages of:
[B]6, 8, 10, 12[/B]
Four less than five times a numberThe phrase [I]a number[/I] means an arbitrary variable. We can pick any letter a-z except for i and e.
Let's choose x.
5 times a number:
5x
Four less means we subtract 4 from 5x:
[B]5x - 4[/B]
Four more then double a number is greater than 2Four more then double a number is greater than 2
Double a number:
A number implies an arbitrary variable, let's call it "x". Double means multiply this by 2
2x
Four more than this:
2x + 4
Now, we set this expression as an inequality greater than 2
[B]2x + 4 > 2[/B]
Fractions and Mixed NumbersFree Fractions and Mixed Numbers Calculator - Given (improper fractions, proper fraction, mixed numbers, or whole numbers), this performs the following operations:
* Addition (Adding)
* Subtraction (Subtracting)
* Positive Difference (Absolute Value of the Difference)
* Multiplication (Multiplying)
* Division (Dividing: complex fraction division is included)
* Compare Fractions
* Simplifying of proper and improper fractions as well as mixed numbers. Fractions will be reduced down as far as possible (Reducing Fractions).
* Reciprocal of a Fraction
* Find all fractions between two fractions
* reduce a fraction
Frank is a plumber who charges a $35 service charge and $15 per hour for his plumbing services. FindFrank is a plumber who charges a $35 service charge and $15 per hour for his plumbing services. Find a linear function that expresses the total cost C for plumbing services for h hours.
Cost functions include a flat rate and a variable rate. The flat rate is $35 and the variable rate per hour is 15. The cost function C(h) where h is the number of hours Frank works is:
[B]C(h) = 15h + 35[/B]
From a regular deck of 52 playing cards, you turn over a 6 and then a 7. What is the probability thaFrom a regular deck of 52 playing cards, you turn over a 6 and then a 7. What is the probability that the next card you turn over will be a face card?
Key phrases: 52 card standard deck so you know there's no tricks or missing cards.
[U]Calculate the number of face cards in a standard 52 card deck[/U]
First, we know that face cards = (J, K, Q)
We also know that there are 4 suits (Hearts, Diamonds, Spades, Clubs)
Total Face Cards = 3 face card types * 4 possible suits = 12 face cards
[U]Calculate total face down cards[/U]
First card, you turn over a 6
Next card, you turn over a 7
This means, we have 52 cards - 2 cards from the draws = 50 cards left in the deck which are face down.
P(Face Card) = Total Face Cards / Total Cards in the Deck Face Down
P(Face Card) = 12/50
Simplifying this fraction [URL='https://www.mathcelebrity.com/fraction.php?frac1=12%2F50&frac2=3%2F8&pl=Simplify']using our math engine[/URL], we get:
P(Face Card) = [B]6/25[/B]
Fundamental Rule of CountingFree Fundamental Rule of Counting Calculator - Given a set of items, this calculates the total number of groups/choices that can be formed using the rule of product.
Gabe rents a piano for $49 per month. He earns $15 per hour giving piano lessons to students. How maGabe rents a piano for $49 per month. He earns $15 per hour giving piano lessons to students. How many hours of lessons per month must he give to earn a profit of $326?
Build a profit function P(h) where h is the number of hours:
P(h) = Hourly Rate * Number of Hours (h) - Cost of Piano
P(h) = 15h - 49
The problem asks for the number of hours where P(h) = $326
15h - 49 = 326
We take this equation and [URL='https://www.mathcelebrity.com/1unk.php?num=15h-49%3D326&pl=Solve']type it in our search engine[/URL] to solve for h:
h = [B]25[/B]
Gary is buying chips. Each bag costs $3.50. He has $40 to spend. Write an inequality to represent thGary is buying chips. Each bag costs $3.50. He has $40 to spend. Write an inequality to represent the number of chip bags, c, he can afford.
Gary's spend is found by this inequality:
[B]3.50c <= 40
[/B]
To solve this inequality, [URL='https://www.mathcelebrity.com/interval-notation-calculator.php?num=3.50c%3C%3D40&pl=Show+Interval+Notation']we type it in our search engine[/URL] and we get:
[B]c <= 11.43[/B]
Gayle has 36 coins, all nickels and dimes, worth $2.40. How many dimes does she have?Gayle has 36 coins, all nickels and dimes, worth $2.40. How many dimes does she have?
Set up our given equations using n as the number of nickels and d as the number of dimes:
[LIST=1]
[*]n + d = 36
[*]0.05n + 0.1d = 2.40
[/LIST]
Use our [URL='http://www.mathcelebrity.com/simultaneous-equations.php?term1=n+%2B+d+%3D+36&term2=0.05n+%2B+0.1d+%3D+2.40&pl=Cramers+Method']simultaneous equations calculator[/URL] to get:
n = 24
[B]d = 12[/B]
Geocache puzzle helpLet x equal the number of sticks he started with. We have:
The equation is 4/5 * (3/4 * (2/3 * (0.5x - 0.5) -1/3) - 0.75) - 0.2 = 19
Add 0.2 to each side:
4/5 * (3/4 * (2/3 * (0.5x - 0.5) -1/3) - 0.75) = 19.2
Multiply each side by 5/4
(3/4 * (2/3 * (0.5x - 0.5) - 1/3) - 0.75) = 24
Multiply the inside piece first:
2/6x - 2/6 - 1/3
2/6x - 4/6
Now subtract 0.75 which is 3/4
2/6x - 4/6 - 3/4
4/6 is 8/12 and 3/4 is 9/12, so we have:
2/6x - 17/12
Now multiply by 3/4
6/24x - 51/48 = 24
Simplify:
1/4x - 17/16 = 24
Multiply through by 4
x - 17/4 = 96
Since 17/4 = 4.25, add 4.25 to each side
x = 100.25
Since he did not cut up any sticks, he has a full stick to start with:
So x = [B]101[/B]
Geocache puzzle helpLet x equal the number of sticks he started with. We have:
The equation is 4/5 * (3/4 * (2/3 * (0.5x - 0.5) -1/3) - 0.75) - 0.2 = 19
Add 0.2 to each side:
4/5 * (3/4 * (2/3 * (0.5x - 0.5) -1/3) - 0.75) = 19.2
Multiply each side by 5/4
(3/4 * (2/3 * (0.5x - 0.5) - 1/3) - 0.75) = 24
Multiply the inside piece first:
2/6x - 2/6 - 1/3
2/6x - 4/6
Now subtract 0.75 which is 3/4
2/6x - 4/6 - 3/4
4/6 is 8/12 and 3/4 is 9/12, so we have:
2/6x - 17/12
Now multiply by 3/4
6/24x - 51/48 = 24
Simplify:
1/4x - 17/16 = 24
Multiply through by 4
x - 17/4 = 96
Since 17/4 = 4.25, add 4.25 to each side
x = 100.25
Since he did not cut up any sticks, he has a full stick to start with:
So x = [B]101[/B]
Geometric DistributionFree Geometric Distribution Calculator - Using a geometric distribution, it calculates the probability of exactly k successes, no more than k successes, and greater than k successes as well as the mean, variance, standard deviation, skewness, and kurtosis.
Calculates moment number t using the moment generating function
George has a certain number of apples, and Sarah has 4 times as many apples as George. They have a tGeorge has a certain number of apples, and Sarah has 4 times as many apples as George. They have a total of 25 apples.
Let George's apples be g. Let Sarah's apples be s. We're give two equations:
[LIST=1]
[*]s = 4g
[*]g + s = 25
[/LIST]
Substitute equation (1) into equation (2) for s:
g + 4g = 25
If [URL='https://www.mathcelebrity.com/1unk.php?num=g%2B4g%3D25&pl=Solve']we plug this equation into our search engine[/URL] and solve for g, we get:
g = [B]5[/B]
Now substitute this into equation 1 for g = 5:
s = 4(5)
s = [B]20[/B]
[B]So George has 5 apples and Sarah has 20 apples[/B]
Georgie joins a gym. she pays $25 to sign up and then $15 each month. Create an equation using thisGeorgie joins a gym. she pays $25 to sign up and then $15 each month. Create an equation using this information.
Let m be the number of months Georgie uses the gym. Our equation G(m) is the cost Georgie pays for m months.
G(m) = Variable Cost * m (months) + Fixed Cost
Plug in our numbers:
[B]G(m) = 15m + 25[/B]
Germany and Austria have a total of 25 states. Germany has 7 more states than Austria has. Create 2Germany and Austria have a total of 25 states. Germany has 7 more states than Austria has. Create 2 equations.
Let g be the number of German states. Let a be the number of Austrian states. We're given two equations:
[LIST=1]
[*]a + g = 25
[*]g = a + 7
[/LIST]
To solve this system of equations, we substitute equation (2) into equation (1) for g:
a + (a + 7) = 25
Combine like terms:
2a + 7 = 25
To solve for a, we[URL='https://www.mathcelebrity.com/1unk.php?num=2a%2B7%3D25&pl=Solve'] type this equation into our search engine[/URL] and we get:
[B]a = 9[/B]
To solve for g, we plug in a = 9 into equation (2):
g = 9 + 7
[B]g = 16[/B]
Gino has 7 whole pineapples. He cuts each whole into 4 equal parts. Write an improper fraction for tGino has 7 whole pineapples. He cuts each whole into 4 equal parts. Write an improper fraction for the cut parts of pineapples.
Take our whole pineapples divided by the number of equal parts:
[B]7/4[/B]
Giovanni is thinking of a number. If he adds 2 to it, then divides that sum by 3, he gets 7. What isGiovanni is thinking of a number. If he adds 2 to it, then divides that sum by 3, he gets 7. What is the number?
Let the number be n:
[LIST]
[*]n
[*]Add 2: n + 2
[*]Divide the sum by 3: (n + 2)/3
[*]The word "gets" means an equation, so we set (n + 2)/3 equal to 7
[/LIST]
(n + 2)/3 = 7
Cross multiply:
n + 2 = 21
To solve for n, we [URL='https://www.mathcelebrity.com/1unk.php?num=n%2B2%3D21&pl=Solve']type this equation into our search engine[/URL] and we get:
n = [B]19[/B]
Given f = cd^3, f = 450, and d = 10, what is c?Given f = cd^3, f = 450, and d = 10, what is c?
A) 0.5
B) 4.5
C) 15
D) 45
E) 150
Plugging in our numbers, we get:
c(10)^3 = 450
Since 10^3 = 1000, we have:
1000c = 450
[URL='https://www.mathcelebrity.com/1unk.php?num=1000c%3D450&pl=Solve']Typing this equation into our search engine[/URL], we get:
[B]c = 0.45 Answer B[/B]
Given the function f(x)=3x−9, what is the value of x when f(x)=9Given the function f(x)=3x−9, what is the value of x when f(x)=9
Plug in our numbers and we get:
3x - 9 = 9
To solve this equation for x, we [URL='https://www.mathcelebrity.com/1unk.php?num=3x-9%3D9&pl=Solve']type it in our search engine[/URL] and we get:
x = [B]6[/B]
Goal is to take at least 10,000 steps per day. According to your pedometer you have walked 5,274 steGoal is to take at least 10,000 steps per day. According to your pedometer you have walked 5,274 steps. Write and solve an inequality to find the possible numbers of steps you can take to reach your goal.
[U]
Subtract off the existing steps (s) from your goal of 10,000[/U]
g >= 10000 - 5274
[B]g >= 4726[/B]
[I]Note: we use >= since 10,000 steps meets the goal as well as anytihng above it[/I]
Graham is hiking at an altitude of 14,040 feet and is descending 50 feet each minute.Max is hiking aGraham is hiking at an altitude of 14,040 feet and is descending 50 feet each minute.Max is hiking at an altitude of 12,500 feet and is ascending 20 feet each minute. How many minutes will it take until they're at the same altitude?
Set up the Altitude function A(m) where m is the number of minutes that went by since now.
Set up Graham's altitude function A(m):
A(m) = 14040 - 50m <-- we subtract for descending
Set up Max's altitude function A(m):
A(m) = 12500 + 20m <-- we add for ascending
Set the altitudes equal to each other to solve for m:
14040 - 50m = 12500 + 20m
[URL='https://www.mathcelebrity.com/1unk.php?num=14040-50m%3D12500%2B20m&pl=Solve']We type this equation into our search engine to solve for m[/URL] and we get:
m = [B]22[/B]
Grand MeanFree Grand Mean Calculator - Calculates the grand mean of a set of number sets.
Grayson took a total of 16 quizzes over the course of 8 weeks. How many weeks of school will GraysonGrayson took a total of 16 quizzes over the course of 8 weeks. How many weeks of school will Grayson have to attend this quarter before he will have taken a total of 20 quizzes? Assume the relationship is directly proportional.
Set up a proportion of quizzes to weeks, where w is the number of weeks for 20 quizzes:
16/8 = 20/w
[URL='https://www.mathcelebrity.com/prop.php?num1=16&num2=20&den1=8&den2=w&propsign=%3D&pl=Calculate+missing+proportion+value']Type this proportion into our search engine[/URL], and we get:
w = [B]10[/B]
Greatest Common Factor and Least Common MultipleFree Greatest Common Factor and Least Common Multiple Calculator - Given 2 or 3 numbers, the calculator determines the following:
* Greatest Common Factor (GCF) using Factor Pairs
* Rewrite Sum using the Distributive Property and factoring out the GCF
* Least Common Multiple (LCM) / Least Common Denominator (LCD) using Factor Pairs
* GCF using the method of Successive Division
* GCF using the Prime Factorization method
* Determine if the numbers are coprime and twin prime
Gym A: $75 joining fee and $35 monthly charge. Gym B: No joining fee and $60 monthly charge. (ThinkGym A: $75 joining fee and $35 monthly charge. Gym B: No joining fee and $60 monthly charge. (Think of the monthly charges paid at the end of the month.) Enter the number of months it will take for the total cost for both gyms to be equal.
Gym A cost function C(m) where m is the number of months:
C(m) = Monthly charge * months + Joining Fee
C(m) = 35m + 75
Gym B cost function C(m) where m is the number of months:
C(m) = Monthly charge * months + Joining Fee
C(m) = 60m
Set them equal to each other:
35m + 75 = 60m
To solve for m, [URL='https://www.mathcelebrity.com/1unk.php?num=35m%2B75%3D60m&pl=Solve']we type this equation into our search engine[/URL] and get:
m = [B]3[/B]
half the sum of the numbers s, t, and uhalf the sum of the numbers s, t, and u
The [I]sum [/I]of s, t, and u means we add all 3:
s + t + u
[I]Half[/I] the sum means we divide the sum by 2:
[B](s + t + u)/2[/B]
Hall looked at 10 websites every 35 hours. At this rate, how long, in hours, will it take to look atHall looked at 10 websites every 35 hours. At this rate, how long, in hours, will it take to look at 6 websites?
Set up a proportion of websites to hours where h is the number of hours it takes to look at 6 websites:
10/35 = 6/h
To solve this proportion for h, we [URL='https://www.mathcelebrity.com/prop.php?num1=10&num2=6&den1=35&den2=h&propsign=%3D&pl=Calculate+missing+proportion+value']type it in our math engine[/URL] and we get:
h = [B]21 hours[/B]
Happy Paws charges $16.00 plus $1.50 per hour to keep a dog during the day. Woof Watchers charges $1Happy Paws charges $16.00 plus $1.50 per hour to keep a dog during the day. Woof Watchers charges $11.00 plus $2.75 per hour. Complete the equation and solve it to find for how many hours the total cost of the services is equal. Use the variable h to represent the number of hours.
Happy Paws Cost: C = 16 + 1.5h
Woof Watchers: C = 11 + 2.75h
Setup the equation where there costs are equal
16 + 1.5h = 11 + 2.75h
Subtract 11 from each side:
5 + 1.5h = 2.75h
Subtract 1.5h from each side
1.25h = 5
Divide each side by 1.25
[B]h = 4[/B]
Happy Paws charges $19.00 plus $5.50 per hour to keep a dog during the day. Woof Watchers charges $1Happy Paws charges $19.00 plus $5.50 per hour to keep a dog during the day. Woof Watchers charges $11.00 plus $6.75 per hour. Complete the equation and solve it to find for how many hours the total cost of the services is equal. Use the variable h to represent the number of hours.
[B]Happy Paws cost equation:[/B]
5.50h + 19
[B]Woof Watchers cost equation:[/B]
6.75h + 11
[B]Set them equal to each other:[/B]
5.50h + 19 = 6.75h + 11
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=5.50h%2B19%3D6.75h%2B11&pl=Solve']equation solver[/URL], we get [B]h = 6.4[/B].
Hari planted 324 plants in such a way that there were as many rows of plants as there were number ofHari planted 324 plants in such a way that there were as many rows of plants as there were number of columns. Find the number of rows and columns.
Let r be the number of rows and c be the number of columns. We have the area:
rc = 324
Since rows equal columns, we have a square, and we can set r = c.
c^2 = 324
Take the square root of each side:
[B]c = 18[/B]
Which means [B]r = 18[/B] as well.
What we have is a garden of 18 x 18.
harley had $500 in his bank account at the beginning of the year. he spends $20 each week on food, charley had $500 in his bank account at the beginning of the year. he spends $20 each week on food, clothing, and movie tickets. he wants to have more than $100 at the end of summer to make sure he has enough to purchase some new shoes before school starts. how many weeks, w, can harley withdraw money from his savings account and still have more than $100 to buy new shoes?
Let the number of weeks be w. Harley needs $100 (or more) for shoes. We have the balance in Harley's account as:
500 - 20w >= 100
To solve this inequality for w, we [URL='https://www.mathcelebrity.com/1unk.php?num=500-20w%3E%3D100&pl=Solve']type it in our search engine[/URL] and we get:
[B]w <= 20[/B]
He charges $1.50 per delivery and then $2 per km he has to drive to get from his kitchen to the deliHe charges $1.50 per delivery and then $2 per km he has to drive to get from his kitchen to the delivery address. Write an equation that can be used to calculate the delivery price and the distance between the kitchen and the delivery address. Use your equation to calculate the total cost to deliver to someone 2.4km away
Let k be the number of kilometers between the kitchen and delivery address. Our Delivery equation D(k) is:
[B]D(k) = 2k + 1.50[/B]
The problem wants to know D(2.4):
D(2.4) = 2(2.4) + 1.50
D(2.4) = 4.8 + 1.50
D(2.4) = [B]$6.30[/B]
HelpSuppose company A charges a rate of $40 per day and Company B charges a $60 fee plus $40 per day. For what number of days is the cost the same?
Henrietta hired a tutor to help her improve her math scores. While working with the tutor, she tookHenrietta hired a tutor to help her improve her math scores. While working with the tutor, she took four tests. She scored 10 points better on the second test than she did on the first, 20 points better on the third test than on the first, and 30 points better on the fourth test than on the first. If the mean of these four tests was 70, what was her score on the third test?
Givens:
[LIST]
[*]Let the first test score be s:
[*]The second test score is: s + 10
[*]The third test score is: s + 20
[*]The fourth test score is: s + 30
[/LIST]
The mean of the four tests is 70, found below:
Sum of test scores / Number of Tests = Mean
Plugging in our number, we get:
(s + s + 10 + s + 20 + s + 30) / 4 = 70
Cross multiply and simplify:
4s + 60 = 70 * 4
4s + 60 = 280
To [URL='https://www.mathcelebrity.com/1unk.php?num=4s%2B60%3D280&pl=Solve']solve this equation for s, we type it in our search engine[/URL] and we get:
s = 55
So the third test score:
s + 20 = 55 + 20
[B]75[/B]
Heptagonal NumberFree Heptagonal Number Calculator - This calculator determines the nth heptagonal number
Hero cards come in packs of 6. Max has 8 packs of hero cards. He decides to give as many of his frieHero cards come in packs of 6. Max has 8 packs of hero cards. He decides to give as many of his friends as he can 9 cards each. How many cards are left over after he does this?
Calculate the number of cards Max starts with:
8 packs * 6 cards per pack = 48 total cards
If he gives as many friends as he can 9 cards each, we want to know how many left over after giving as many friends as he can 9 cards. So we have:
[URL='https://www.mathcelebrity.com/modulus.php?num=48mod9&pl=Calculate+Modulus']48 mod 9[/URL] = [B]3 left over[/B]
Hexagonal NumberFree Hexagonal Number Calculator - This calculator determines the nth hexagonal number
HomeWork Help Please Respond ASAP!!![CENTER][B]The Sum of three times a number and 18 is -39. Find the number.[/B][/CENTER]
I was always confused with these problems and never understood them. Any help would be much appreciated!!
Thank you!
HomeWork Help Please Respond ASAP!!!The phrase a number means an arbitrary variable, let's call it x.
Three times a number:
3x
And 18 means we add 18
3x + 18
The word is means equal to, so we set 3x + 18 equal to -39
3x + 18 = -39
This is your algebraic expression. If you want to solve for x, plug it into the [URL='http://www.mathcelebrity.com/1unk.php?num=3x%2B18%3D-39&pl=Solve']search engine[/URL] and you get x = -19
Hope it's okay to ask this here?A candy vendor analyzes his sales records and finds that if he sells x candy bars in one day, his profit(in dollars) is given byP(x) = − 0.001x2 + 3x − 1800
(a.) Explain the significance of the number 1800 to the vendor.
(b.) What is the maximum profit he can make in one day, and how many candy bars must he sell to
achieve it?
I got 1800 as the amount he starts with, and can't go over. maximum profit as 4950
and if I got that right I am getting stuck on how to find how many candy bars.
Thanks
How can you rewrite the number 1 as 2 to a power?How can you rewrite the number 1 as 2 to a power?
There exists an identity which says, n^0 = 1 where n is a number.
So [B]2^0 = 1[/B]
How long does it take to cook 20 eggs if it takes 10 minutes to cook 4 eggsHow long does it take to cook 20 eggs if it takes 10 minutes to cook 4 eggs
Set up a proportion of minutes to eggs where m is the number of minutes it takes for 20 eggs.
10 minutes / 4 eggs = m/20
[URL='https://www.mathcelebrity.com/proportion-calculator.php?num1=10&num2=m&den1=4&den2=20&propsign=%3D&pl=Calculate+missing+proportion+value']Solving for m[/URL], we get:
m = 50
How many 8$, tickets can I get for 100$How many 8$, tickets can I get for 100$
Tickets = Total Money / price per ticket
Tickets = 100/8
Tickets = [B]12.5
[/B]
If the problem asks for a whole number, this means you cannot have a partial ticket. Therefore, we round down to [B]12 tickets[/B]
How many nickels are in 3 quarters and 2 dimesHow many nickels are in 3 quarters and 2 dimes
[URL='https://www.mathcelebrity.com/coinvalue.php?p=&n=&d=2&q=3&h=&dol=&pl=Calculate+Coin+Value']3 quarters and 2 dimes[/URL] = 0.95
Since a nickel is 0.05, we have:
Number of nickels = 0.95/0.05
Number of nickels = [B]19[/B]
How many of the numbers between 20 and 40 are prime numbers?[SIZE=4]How many of the numbers between 20 and 40 are prime numbers?
A) 3
B) 4
C) 5
D) 6
E) 7
Recall that a prime number is a number that only has itself and 1 as a divisor.
[/SIZE]
[LIST]
[*][SIZE=4]Remove all the evens since the are divisible by 2 (20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40)[/SIZE]
[*][SIZE=4]Remove all the remaining numbers divisible by 3 (21, 24, 27, 30, 33, 36, 39)[/SIZE]
[*][SIZE=4]Remove all the remaining numbers divisible by 5 (25, 35)[/SIZE]
[/LIST]
[SIZE=4]We're left with ([B]23, 29, 31, 37[/B])
This is 4 numbers which is answer [B]B[/B][/SIZE]
How many palindromes are between 700 and 800?How many palindromes are between 700 and 800?
Numeric palindromes are numbers which read the same backwards and forwards. In this case, the number has to start and end with 7.
[LIST=1]
[*]707
[*]717
[*]727
[*]737
[*]747
[*]757
[*]767
[*]777
[*]787
[*]797
[/LIST]
There are [B]10[/B] palindromes between 700 and 800
How many rides per day to reach 150 rides in 90 days?How many rides per day to reach 150 rides in 90 days?
Set up a proportion of rides per day where r is the number or rides per day:
150/90 = r/1
Type [URL='https://www.mathcelebrity.com/prop.php?num1=150&num2=r&den1=90&den2=1&propsign=%3D&pl=Calculate+missing+proportion+value']this proportion into our search engine[/URL] and we get:
r = 1.66 7
How many twelfths equal three-sixths?How many twelfths equal three-sixths?
We set up the equation below where x is the number of twelfths in three-sixths:
1/12x = 3/6
Cross multiply, and we get:
12x * 3 = 6 * 1
36x = 6
To solve for x, we [URL='https://www.mathcelebrity.com/1unk.php?num=36x%3D6&pl=Solve']type this in our math engine[/URL] and we get:
x = [B]1/6 or 0.16667[/B]
How MUCH Change would be returned from a $50.00 bill for the purchase of 26 stainless Steel 8-in. boHow MUCH Change would be returned from a $50.00 bill for the purchase of 26 stainless Steel 8-in. bolts at the Price Of 79.5 cents each?
Calculate the Stainless Steel Bolts Cost:
Stainless Steel Bolts Cost = Number of Stainless Steel Bolts * Price per bolt
Stainless Steel Bolts Cost = 26 * 0.795
Stainless Steel Bolts Cost = $20.67
Calculate the change:
Change = Cash Offered - Stainless Steel Bolts Cost
Change = $50 - $20.67
Change = [B]$29.33[/B]
I am thinking of a number. I multiply it by 14 and add 13. I get the same answer if I multiply by 5I am thinking of a number. I multiply it by 14 and add 13. I get the same answer if I multiply by 5 and add 283. What is my number?
Let the number be n. We're given two expressions:
[LIST=1]
[*]Multiply it by 14 and add 13: 14n + 13
[*]Multiply by 5 and add 283: 5n + 283
[/LIST]
The phrase [I]I get the same answer[/I] means an equation. So we set expression 1 equal to expression 2:
14n + 13 = 5n + 283
To solve for n, we [URL='https://www.mathcelebrity.com/1unk.php?num=14n%2B13%3D5n%2B283&pl=Solve']type this equation into our search engine[/URL] and we get:
n = [B]30[/B]
I am thinking of a number. I multiply it by 14 and add 21. I get the same answer if I multiply by 4I am thinking of a number. I multiply it by 14 and add 21. I get the same answer if I multiply by 4 and add 141.
Let the number be n.
We have two expressions:
[LIST=1]
[*]Multiply by 14 and add 21 is written as: 14n + 21
[*]Multiply by 4 and add 141 is written as: 4n + 141
[/LIST]
The phrase [I]get the same expression[/I] means they are equal. So we set (1) and (2) equal to each other and solve for n:
14n + 21 = 4n + 141
[URL='https://www.mathcelebrity.com/1unk.php?num=14n%2B21%3D4n%2B141&pl=Solve']Type this equation into our search engine [/URL]to solve for n and we get:
n = [B]12[/B]
I am Thinking of a number. I multiply it by 3 and add 67. I get the same answer If i multiply by 6 sI am Thinking of a number. I multiply it by 3 and add 67. I get the same answer If i multiply by 6 subtract 8.
Let the number be n. We're given two equal expressions:
[LIST=1]
[*]3n + 67
[*]6n - 8
[/LIST]
Set the expressions equal to each other since they give the [B]same answer[/B]:
3n + 67 = 6n - 8
We have an equation. [URL='https://www.mathcelebrity.com/1unk.php?num=3n%2B67%3D6n-8&pl=Solve']Type this equation into our search engine and we get[/URL]:
n = [B]25[/B]
I am thinking of a number. I multiply it by 7 and add 25. I get the same answer if I multiply by 3 aI am thinking of a number. I multiply it by 7 and add 25. I get the same answer if I multiply by 3 and add 93. What is my number?
Let the number be n. We're given two expressions:
[LIST]
[*]Multiply the number by 7: 7n
[*]add 25: 7n + 25. <-- Expression 1
[*]Multiply by 3: 3n
[*]Add 93: 3n + 93 <-- Expression 2
[*]The phrase [I]get the same answer[/I] means both expression 1 and expression 2 are equal. So we set them equal to each other:
[/LIST]
7n + 25 = 3n + 93
To solve for n, we [URL='https://www.mathcelebrity.com/1unk.php?num=7n%2B25%3D3n%2B93&pl=Solve']type this equation into our search engine[/URL] and we get:
n = [B]17[/B]
I am thinking of a number.i multiply it by 5 and add 139. I get the same number if I multiply by 13I am thinking of a number.i multiply it by 5 and add 139. I get the same number if I multiply by 13 and subtract 13.What is my number?
Take a number (n):
The first operation is multiply 5 times n, and then add 39:
5n + 139
The second operation is multiply 13 times n and subtract 13:
13n - 13
Set both operations equal to each other since they result in [I]the same number[/I]
5n + 139 = 13n - 13
[URL='https://www.mathcelebrity.com/1unk.php?num=5n%2B139%3D13n-13&pl=Solve']Type this equation into our search engine[/URL] and we get:
[B]n = 19[/B]
I have $36 dollars and it goes up by 3 every day how much money would I have after 500 daysI have $36 dollars and it goes up by 3 every day how much money would I have after 500 days
We have a balance function B(d) where d is the number of days passed since we first had $36:
B(d) = 3d + 36
The problem asks for B(500):
B(500) = 3(500) + 36
B(500) = 1500 + 36
B(500) = [B]1536[/B]
I have 150 bags of candy. I need 5 candies for every one bag. How many candies do I need?I have 150 bags of candy. I need 5 candies for every one bag. How many candies do I need?
Candies = Number of bags * candies per bag
Candies = 150 * 5
Candies = [B]750[/B]
i have 25 pencil cases there are p pencils in each pencil case. how many pencils do i have altogethei have 25 pencil cases there are p pencils in each pencil case. how many pencils do i have altogether?
Total pencils = Number of cases * pencils per case
Total pencils = [B]25p[/B]
I make 750 toys in 10 hours how many can I make in 4 minutesI make 750 toys in 10 hours how many can I make in 4 minutes
Convert 10 hours to 4 minutes so we can compare minutes to minutes:
10 hours * 60 hours per minute = 600 minutes
Now set up a proportion of toys to minutes where t is the number of toys made in 4 minutes:
750/600 = t/4
[URL='https://www.mathcelebrity.com/prop.php?num1=750&num2=t&den1=600&den2=4&propsign=%3D&pl=Calculate+missing+proportion+value']Type this proportion into our search engine and we get[/URL]:
t = [B]5[/B]
I only own blue blankets and red blankets. 8 out of every 15 blankets I have are red.I only own blue blankets and red blankets. 8 out of every 15 blankets I have are red. If have i 45 blankets, how many are blue?
If 8 out of 15 blankets are red, then 15 - 8 = 7 are blue
So 7 out of every 15 blankets are blue.
Set up a proportion of blue blankets to total blankets where b is the number of blue blankets in 45 blankets
7/15 = b/45
Cross multiply:
If 2 proportions are equal, then we can do the following:
Numerator 1 * Denominator 2 = Denominator 1 * Numerator 2
15b = 45 * 7
15b = 315
To solve for b, divide each side of the equation by 15:
15b/15 = 315/15
Cancel the 15's on the left side and we get:
b = [B]21[/B]
I sold 3 units in 563 attempts. How many did I sell per 100 attempts?I sold 3 units in 563 attempts. How many did I sell per 100 attempts?
Set up a proportion of sales to attempts where s is the number of sales for 100 attempts:
3/563 = s/100
[URL='https://www.mathcelebrity.com/prop.php?num1=3&num2=s&den1=563&den2=100&propsign=%3D&pl=Calculate+missing+proportion+value']Typing this in our search engine[/URL], we get:
s = [B]0.532 sales[/B]
I think of a number. I multiply it by 6 and add 3. If my answer is 75, calculate the number I starteI think of a number. I multiply it by 6 and add 3. If my answer is 75, calculate the number I started with.
Let the number be n.
Multiply it by 6:
6n
Add 3:
6n + 3
If the answer is 75, we set 6n + 3 equal to 75:
6n + 3 = 75
We have an equation. To solve for n, [URL='https://www.mathcelebrity.com/1unk.php?num=6n%2B3%3D75&pl=Solve']we type this equation into our search engine[/URL] and get:
[B]n = 12[/B]
If 1/2 cup of milk makes 8 donuts. How much cups it takes to make 28 donutsIf 1/2 cup of milk makes 8 donuts. How much cups it takes to make 28 donuts?
Set up a proportion of cups to donuts, where c is the number of cups required to make 28 donuts:
1/2/8 = c/28
Cross multiply:
28(1/2) = 8c
8c = 14
[URL='https://www.mathcelebrity.com/1unk.php?num=8c%3D14&pl=Solve']Plugging this equation into our search engine[/URL], we get:
[B]c = 1.75[/B]
If 11 times a number is added to twice the number, the result is 104If 11 times a number is added to twice the number, the result is 104
Let [I]the number[/I] be an arbitrary variable we call x.
11 times a number:
11x
Twice the number (means we multiply x by 2):
2x
The phrase [I]is added to[/I] means we add 2x to 11x:
11x + 2x
Simplify by grouping like terms:
(11 + 2)x = 13x
The phrase [I]the result is[/I] means an equation, so we set 13x equal to 104:
13x = 104 <-- This is our algebraic expression
To solve this equation for x, [URL='https://www.mathcelebrity.com/1unk.php?num=13x%3D104&pl=Solve']we type it in our search engine[/URL] and we get:
x = [B]8[/B]
If 115% of a number is 460, what is 75% of the numberIf 115% of a number is 460, what is 75% of the number.
Let the number be n. We're given:
115% * n = 460
We write 115% of n as 1.15n, so we have:
1.15n = 460
[URL='https://www.mathcelebrity.com/1unk.php?num=1.15n%3D460&pl=Solve']Using our equation calculator[/URL], we get:
n = [B]400
[/B]
The problem asks for 75% of this number, so we [URL='https://www.mathcelebrity.com/perc.php?num=+5&den=+8&num1=+16&pct1=+80&pct2=75&den1=400&pcheck=3&pct=+82&decimal=+65.236&astart=+12&aend=+20&wp1=20&wp2=30&pl=Calculate']type in [I]75% of 400[/I] into our search engine[/URL] and get:
[B]300[/B]
If 12 times a number is added to twice the number, the result is 112If 12 times a number is added to twice the number, the result is 112.
Let the number be n, so we have:
12n + 2n = 112
Combine like terms
14n = 112
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=14n%3D112&pl=Solve']equation solver[/URL], we get [B]n = 8[/B].
If 2 inches is about 5 centimeters, how many inches are in 25 centimeters? Choose the proportions thIf 2 inches is about 5 centimeters, how many inches are in 25 centimeters? Choose the proportions that accurately represent this scenario.
We set up a proportion of inches to centimeters where i is the number of inches in 25 centimeters:
2/5 = i/25
To solve this proportion for i, we [URL='https://www.mathcelebrity.com/prop.php?num1=2&num2=i&den1=5&den2=25&propsign=%3D&pl=Calculate+missing+proportion+value']type it in our math engine[/URL] and we get:
i = [B]10[/B]
If 2 ounces goes into 100 gallons how many ounces is needed for 3000 gallonsIf 2 ounces goes into 100 gallons how many ounces is needed for 3000 gallons?
Set up a proportion of ounces to gallons. We set o as the number of ounces for 3000 gallons.
2/100 = o/3000
Using our [URL='http://www.mathcelebrity.com/prop.php?num1=2&num2=o&den1=100&den2=3000&propsign=%3D&pl=Calculate+missing+proportion+value']proportion calculator[/URL], we get [B]o = 60[/B].
If 200 bacteria triple every 1/2 hour, how much bacteria in 3 hoursIf 200 bacteria triple every 1/2 hour, how much bacteria in 3 hours
Set up the exponential function B(t) where t is the number of tripling times:
B(d) = 200 * (3^t)
3 hours = 6 (1/2 hour) periods, so we have 6 tripling times. We want to know B(6):
B(6) = 200 * (3^6)
B(6) = 200 * 729
B(6) = [B]145,800[/B]
if 200 is divided in the ratio of 1:3:4 , what is the greatest numberif 200 is divided in the ratio of 1:3:4 , what is the greatest number
Determine the ratio denominator by adding up the ratio amounts:
1 + 3 + 4 = 8
So we have the following ratios and ratio amounts with our greatest number in bold:
[LIST]
[*]1/8 * 200 = 25
[*]3/8 * 200 = 75
[*]4/8 * 200 = [B]100[/B]
[/LIST]
If 25% of a number b is 25.18. What is 20% of b?If 25% of a number b is 25.18. What is 20% of b?
Using our 25% as 0.25, we have:
0.25b = 25.18
Using our [URL='https://www.mathcelebrity.com/1unk.php?num=0.25x%20%3D%2025.18&pl=Solve']equation calculator[/URL], we get:
b = 100.72
The question asks what is [URL='https://www.mathcelebrity.com/perc.php?num=+5&den=+8&num1=+16&pct1=+80&pct2=20&den1=100.72&pcheck=3&pct=+82&decimal=+65.236&astart=+12&aend=+20&wp1=20&wp2=30&pl=Calculate']20% of 100.72[/URL]. Using our calculator, we get:
[B]20.144[/B]
If 3 times a number added to 2 is divided by the number plus 4 the result is 4/3If 3 times a number added to 2 is divided by the number plus 4 the result is 4/3
Take this in pieces, where "a number" means an arbitrary variable, let's call it "x".
[LIST=1]
[*]3 times a number --> 3x
[*]3 times a number added to 2 --> 3x + 2
[*]The number plus 4 --> x + 4
[*]is divided by --> (3x + 2)/(x + 4)
[*]the result is 4/3 --> (3x + 2)/(x + 4) = 4/3
[/LIST]
If 3.75 inches on a map are equal to 18.75 miles, how many miles are 5 inches equal to?If 3.75 inches on a map are equal to 18.75 miles, how many miles are 5 inches equal to?
Set up a proportion of inches to miles where m is the number of miles for 5 inches:
3.75/18.75 = 5/m
Using our [URL='https://www.mathcelebrity.com/proportion-calculator.php?num1=3.75&num2=5&den1=18.75&den2=m&propsign=%3D&pl=Calculate+missing+proportion+value']proportion calculator,[/URL] we get:
m = [B]25 miles[/B]
If 4 times a number is added to 9, the result is 49If 4 times a number is added to 9, the result is 49.
[I]A number[/I] means an arbitrary variable, let's call it x.
4 [I]times a number[/I] means we multiply x by 4
4x
[I]Added to[/I] 9 means we add 9 to 4x
4x + 9
[I]The result is[/I] means we have an equation, so we set 4x + 9 equal to 49
[B]4x + 9 = 49[/B] <-- This is our algebraic expression
To solve this equation, [URL='https://www.mathcelebrity.com/1unk.php?num=4x%2B9%3D49&pl=Solve']we type it in the search engine[/URL] and get x = 10
If 44% of a number is 120, find 11% of that number.If 44% of a number is 120, find 11% of that number.
[URL='https://www.mathcelebrity.com/algexpress.php?num=44%ofanumberis120&pl=Write+Expression']44% of a number is 120[/URL]
[URL='https://www.mathcelebrity.com/1unk.php?num=0.44x%20%3D%20120&pl=Solve']Solving for x, we get 272.72[/URL]
[URL='https://www.mathcelebrity.com/perc.php?num=+5&den=+8&num1=+16&pct1=+80&pct2=11&den1=272.727272&pcheck=3&pct=+82&decimal=+65.236&astart=+12&aend=+20&wp1=20&wp2=30&pl=Calculate']11% of this is [/URL][B]30[/B]
If 50 out of 250 people die. How many people died per 10 peopleIf 50 out of 250 people die. How many people died per 10 people
We set up a proportion of deaths to total people where d is the number of deaths for 10 people. We have:
50/250 = d/10
To solve this proportion for d, we [URL='https://www.mathcelebrity.com/prop.php?num1=50&num2=d&den1=250&den2=10&propsign=%3D&pl=Calculate+missing+proportion+value']type it in our search engine[/URL] and we get:
d = [B]2[/B]
If 72 is added to a number it will be 4 times as large as it was originallyIf 72 is added to a number it will be 4 times as large as it was originally
The phrase [I]a number[/I] means an arbitrary variable. Let's call it x.
x
72 added to a number:
x + 72
4 times as large as it was originally means we take the original number x and multiply it by 4:
4x
Now, the phrase [I]it will be[/I] means an equation, so we set x + 72 equal to 4x to get our final algebraic expression:
[B]x + 72 = 4x[/B]
[B][/B]
If the problem asks you to solve for x, we [URL='https://www.mathcelebrity.com/1unk.php?num=x%2B72%3D4x&pl=Solve']type this equation into our search engine[/URL] and we get:
x = [B]24[/B]
If 9 is added to 1/3 of a number, the result is 15. What is the number?If 9 is added to 1/3 of a number, the result is 15. What is the number?
The phrase [I]a number[/I] means an arbitrary variable, let's call it x:
x
1/3 of a number means we multiply x by 1/3:
x/3
9 is added to 1/3 of a number:
x/3 + 9
The phrase [I]the result is[/I] means an equation. so we set x/3 + 9 equal to 15
x/3 + 9 = 15
To solve this equation for x, we [URL='https://www.mathcelebrity.com/1unk.php?num=x%2F3%2B9%3D15&pl=Solve']type it in our search engine[/URL] and we get:
x = [B]18[/B]
if 9 times a number is decreased by 6, the result is 111if 9 times a number is decreased by 6, the result is 111
A number means an arbitrary variable, let's call it x.
9 times a number:
9x
Decreased by 6
9x - 6
The result is 11, this means we set 9x - 6 equal to 11
[B]9x - 6 = 11
[/B]
To solve this equation for x, use our [URL='http://www.mathcelebrity.com/1unk.php?num=9x-6%3D11&pl=Solve']equation calculator[/URL]
If a die is rolled, what is the probability that the number rolled will not be a "5"?If a die is rolled, what is the probability that the number rolled will not be a "5"?
Possible rolls:
{1, 2, 3, 4, 5, 6}
Probability of not a 5 means:
{1, 2, 3, 4, 6}
P(Not 6) = 1 - P(6)
P(Not 6) = 1 - 1/6
P(Not 6) = [B]5/6[/B]
If a is an even integer and b is an odd integer then prove a − b is an odd integerIf a is an even integer and b is an odd integer then prove a − b is an odd integer
Let a be our even integer
Let b be our odd integer
We can express a = 2x (Standard form for even numbers) for some integer x
We can express b = 2y + 1 (Standard form for odd numbers) for some integer y
a - b = 2x - (2y + 1)
a - b = 2x - 2y - 1
Factor our a 2 from the first two terms:
a - b = 2(x - y) - 1
Since x - y is an integer, 2(x- y) is always even. Subtracting 1 makes this an odd number.
[MEDIA=youtube]GDVuQ7bGHx8[/MEDIA]
if a number is added to its square, it equals 20if a number is added to its square, it equals 20.
Let the number be an arbitrary variable, let's call it n.
The square of the number means we raise n to the power of 2:
n^2
We add n^2 to n:
n^2 + n
It equals 20 so we set n^2 + n equal to 20
n^2 + n = 20
This is a quadratic equation. So [URL='https://www.mathcelebrity.com/quadratic.php?num=n%5E2%2Bn%3D20&pl=Solve+Quadratic+Equation&hintnum=+0']we type this equation into our search engine[/URL] to solve for n and we get two solutions:
[B]n = (-5, 4)[/B]
if a number is added to its square, the result is 72. find the numberif a number is added to its square, the result is 72. find the number.
Let the number be n. We're given:
n + n^2 = 72
Subtract 72 from each side, we get:
n^2 + n - 72 = 0
This is a quadratic equation. [URL='https://www.mathcelebrity.com/quadratic.php?num=n%5E2%2Bn-72%3D0&pl=Solve+Quadratic+Equation&hintnum=+0']We type this equation into our search engine[/URL], and we get:
[B]n = 8 and n = -9[/B]
if a number is decreased by 5, and then the result is multiplied by 2, the result is 26If a number is decreased by 5, and then the result is multiplied by 2, the result is 26
The phrase [I]a number[/I] means an arbitrary variable, let's call it x:
x
[I]Decreased by[/I] means we subtract 5 from x:
x - 5
Multiply the result by 2:
2(x - 5)
The result is 26 means we set 2(x - 5) equal to 26:
[B]2(x - 5) = 26[/B]
If a number is increased by 16 and then divided by 3, the result is 8If a number is increased by 16 and then divided by 3, the result is 8.
Let x be the number. We have:
(x + 16)/3 = 8
Cross multiply
x + 16 = 24
Using our equation calculator, we get:
[B]x = 8[/B]
if a number is tripled the result is 60if a number is tripled the result is 60
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
Triple the number means we multiply by 3:
3x
The phrase [I]the result is[/I] means an equation, so we set 3x equal to 60:
[B]3x = 60 <-- This is our algebraic expression
[/B]
If you want to solve this equation, then [URL='https://www.mathcelebrity.com/1unk.php?num=3x%3D60&pl=Solve']you type in 3x = 60 into the search engine[/URL] and get:
x = 20
If a tutor charges $35 an hour and works for 286 minutes, what is the dollar amount she is owed?If a tutor charges $35 an hour and works for 286 minutes, what is the dollar amount she is owed?
Dollar Amount Owed = Hourly Rate * Number of Hours Worked
Convert Minutes worked to hours worked
Hours worked = Minutes Worked / 60
Hours worked = 286 minutes / 60 minutes per hour
Hours worked = 4.77
So now back to our main formula...
Dollar Amount Owed = Hourly Rate * Number of Hours Worked
Dollar Amount Owed = $35 * 4.77
Dollar Amount Owed = [B]$166.95[/B]
If an employee starts saving with $750 and increases his savings by 8% each month, what will be hisIf an employee starts saving with $750 and increases his savings by 8% each month, what will be his total savings after 10 months?
Set up the savings function S(m), where m is the number of months and I is the interest rate growth:
S(m) = Initial Amount * (1 + i)^m
Plugging in our number at m = 10 months we get:
S(10) = 750 * (1 + 0.08)^10
S(10) = 750 * 1.08^10
S(10) = [B]$1,619.19[/B]
If an experiment is conducted with 5 conditions and 6 subjects in each condition, what are dfn and dIf an experiment is conducted with 5 conditions and 6 subjects in each condition, what are dfn and dfe?
a = Number of groups/conditions = 5
dfn = a - 1
don = 5 - 1
[B]dfn = 4[/B]
N = 5 * 6 = 30
dfe = N - a
dfe = 30 - 5
[B]dfe = 25[/B]
If ben recently paid a $3.77 fine for a book that was 13 days late, what is the daily fine?If ben recently paid a $3.77 fine for a book that was 13 days late, what is the daily fine?
Daily Fine = Total Fine / Number of Days
Daily Fine = $3.77 / 13 days
Daily Fine = [B]$0.29[/B]
If Bill's salary is $25 and he gets a 20¢ commission on every newspaper he sells, how many must he sIf Bill's salary is $25 and he gets a 20¢ commission on every newspaper he sells, how many must he sell to make $47
Set up bills Earnings function E(n) where n is the number of newspapers he sells:
E(n) =. Cost per newspaper * number of newspapers sold + base salary
E(n) = 0.2n + 25
We're asked to find n when E(n) = 47, so we set E(n) = 47 and solve for n:
0.2n + 25 = 47
Using our [URL='https://www.mathcelebrity.com/1unk.php?num=0.2n%2B25%3D47&pl=Solve']equation solver[/URL], we get:
n = [B]110[/B]
If each box contains 6 apples, and there are 8 boxes, how many apples are there in total?If each box contains 6 apples, and there are 8 boxes, how many apples are there in total?
Total Apples = Number of Boxes * apples per box
Total Apples = 8 * 6
Total Apples = [B]48[/B]
If Emma reads 1 page of a book in 44 seconds, how many pages will she read in 15 minutesIf Emma reads 1 page of a book in 44 seconds, how many pages will she read in 15 minutes
Convert 15 minutes to seconds:
15 minutes = 60 * 15 = 900 seconds
Set up a proportion of pages read to seconds where p is the number of pages read in 900 seconds (15 minutes):
1/44 = p/900
[URL='https://www.mathcelebrity.com/prop.php?num1=1&num2=p&den1=44&den2=900&propsign=%3D&pl=Calculate+missing+proportion+value']Typing this proportion into our search engine[/URL], we get:
p = [B]20.45[/B]
If from twice a number you subtract four, the difference is twentyThe phrase [I]a number[/I] means an arbitrary variable. We can pick any letter a-z except for i and e.
Let's choose x.
Twice a number means we multiply x by 2:
2x
Subtract four:
2x - 4
The word [I]is [/I]means equal to. We set 2x - 4 equal to 20 for our algebraic expression:
[B]2x - 4 = 20
[/B]
If the problem asks you to solve for x:
we [URL='https://www.mathcelebrity.com/1unk.php?num=2x-4%3D20&pl=Solve']plug this equation into our calculator [/URL]and get x = [B]12[/B]
If half the number is added to twice the number, the answer is 50If half the number is added to twice the number, the answer is 50.
Let the number be n. Half is also written as 0.5, and twice is written by multiplying by 2. We have:
0.5n + 2n = 50
[URL='https://www.mathcelebrity.com/1unk.php?num=0.5n%2B2n%3D50&pl=Solve']Plugging this equation into our search engine[/URL], we get:
[B]n = 20[/B]
If I add 8 to the number and then multiply the result by 6 I get the same answer as when I add 58 toIf I add 8 to the number and then multiply the result by 6 I get the same answer as when I add 58 to a number. Form an equation
Let the number be n. We're given:
6(n + 8) = n + 58
Multiply through:
6n + 48 = n + 58
To solve this equation for n, [URL='https://www.mathcelebrity.com/1unk.php?num=6n%2B48%3Dn%2B58&pl=Solve']we type it into our search engine[/URL] and we get:
n = [B]2[/B]
If I have a reading average of 2 hours 30 minutes 0 seconds per 93.25 pages, how long would it takeIf I have a reading average of 2 hours 30 minutes 0 seconds per 93.25 pages, how long would it take me to read 58 pgs?
Set up a proportion, of reading time to pages where m is the number of minutes it takes you to read 58 pages.
2 hours and 30 minutes is:
60(2) + 30
120 + 30
150 minutes
Our proportion is:
150/93.25 = m/58
[URL='https://www.mathcelebrity.com/prop.php?num1=150&num2=m&den1=93.25&den2=58&propsign=%3D&pl=Calculate+missing+proportion+value']Type this proportion into the search engine[/URL], and we get:
[B]m = 93.3 minutes, or about 1 hour, 33 minutes[/B]
If I make 40,000 dollars every 15 minutes then how long will it take me to make a millionIf I make 40,000 dollars every 15 minutes then how long will it take me to make a million
Let f be the number of fifteen minute blocks. We're given:
40000f = 1000000
To solve for f, we [URL='https://www.mathcelebrity.com/1unk.php?num=40000f%3D1000000&pl=Solve']type this equation into our search engine[/URL] and we get:
f = 25
Total minutes = Fifteen minute blocks (f) * 15 minutes
Total minutes = 25 * 15
Total minutes = [B]375 minutes or 6 hours and 15 minutes[/B]
If i triple the number then subtract 7 the answer is 2. What is the numberIf i triple the number then subtract 7 the answer is 2. What is the number
Let the number be x.
Triple the number:
3x
Subtract 7
3x - 7
The answer is 2 means we set:
[B]3x - 7 = 2[/B]
This is our algebraic expression. To solve this, [URL='https://www.mathcelebrity.com/1unk.php?num=3x-7%3D2&pl=Solve']we type this problem into the search engine[/URL] and get [B]x = 3[/B].
If j = –1 and k = 16, what is k + 16jIf j = –1 and k = 16, what is k + 16j
Plug in our numbers:
16 + 16 * -1
16 - 16
[B]0[/B]
If n(A)=1200, n(B)=1250 and n(AintersectionB)=320, then n(AUB) isIf n(A)=1200, n(B)=1250 and n(AintersectionB)=320, then n(AUB) is
We know that:
n(AUB) = n(A) + n(B) - n(AintersectionB)
Plugging in our given numbers, we get:
n(AUB) = 1200 + 1250 - 320
n(AUB) = [B]2130[/B]
If one calculator costs d dollars, what is the cost, in dollars, of 13 calculators?If one calculator costs d dollars, what is the cost, in dollars, of 13 calculators?
Set up cost function C(n), where n is the number of calculators:
C(n) = dn
C(13) = [B]13d[/B]
If one half of a number is 24, what is twice the number?If one half of a number is 24, what is twice the number?
Let the number be n. We have:
n/2 = 24
Cross multiply, we get n = 48
The problem asks for 2n.
2(48) = [B]96[/B]
if p=2x is even, then p^2 is also evenif p=2x is even, then p^2 is also even
p^2 = 2 * 2 * x^2
p^2 = 4x^2
This is [B]true [/B]because:
[LIST]
[*]If x is even, then x^2 is even since two evens multiplied by each other is even and 4x^2 is even
[*]If x is odd, the x^2 is odd, but 4 times the odd number is always even since even times odd is even
[/LIST]
if q is a whole number and q is a prime, and if 20q is divisible by 6, then q could beA. 2
B. 3
C. 4
D. 5
E. 6
We have 3 conditions that all must be met:
[LIST=1]
[*]Whole number
[*]Prime Number
[*]20 * number is divisible by 6
[/LIST]
[LIST]
[*]The are [U]all[/U] whole numbers
[*]One A, B, and D are prime, so we eliminate C and E
[*]20(2) = 40 which is not divisible by 6 - Eliminate Answer A
[*]20(5) = 100 which is not divisible by 6- Eliminate Answer D
[*]20(3) = 60/6 = 10. [B]Our answer is B[/B]
[/LIST]
[B][MEDIA=youtube]EZ0pXijlCUc[/MEDIA][/B]
If the difference of a number and 4 is multiplied by 3 the result is 19If the difference of a number and 4 is multiplied by 3 the result is 19
The phrase [I]a number[/I] means an arbitrary variable, let's call it x:
x
The difference of a number and 4:
x - 4
The phrase [I]is multiplied by[/I] means we multiply x - 4 by 3:
3(x - 4)
The phrase [I]the result is[/I] means equals, so we set 3(x - 4) equal to 19
[B]3(x - 4) = 19
[MEDIA=youtube]Q8bnVJuWeVk[/MEDIA][/B]
If the number of professors in a college is P and the number is students S, and there are 14 times aIf the number of professors in a college is P and the number is students S, and there are 14 times as many students as professors
14 times as many means we multiply:
[B]S = 14P[/B]
If the third of 6 consecutive numbers is 12, what is their sum?If the third of 6 consecutive numbers is 12, what is their sum?
If 12 is the third of 6 consecutive numbers:
First consecutive number is 12 - 2 = 10
Second consecutive number = 12 - 1 = 11
Third consecutive number = 12
Fourth consecutive number = 12 + 1 = 13
Fifth consecutive number = 13 + 1 = 14
Sixth consecutive number = 14 + 1 = 15
The sum of all consecutive numbers is:
10 + 11 + 12 + 13 + 14 + 15 =[B] 75[/B]
If there are 9000 seconds in 2.5 hours, how many hours are there in 13,500 seconds?If there are 9000 seconds in 2.5 hours, how many hours are there in 13,500 seconds?
Setup a proportion of hours to seconds where h is the number of hours in 13,500 seconds
2.5/9000 = h/13500
Using our [URL='https://www.mathcelebrity.com/proportion-calculator.php?num1=2.5&num2=h&den1=9000&den2=13500&propsign=%3D&pl=Calculate+missing+proportion+value']proportion calculator[/URL] we get:
h = [B]3.75 hours[/B]
If thrice a number is increased by 11,the result is 35. What is the numberIf thrice a number is increased by 11,the result is 35. What is the number?
[LIST]
[*]The phrase [I]a number [/I]means an arbitrary variable. Let's call it x.
[*]Thrice means multiply by 3, so we have 3x
[*]Increased by 11 means we add 11, so we have 3x + 11
[*]The [I]result is[/I] means an equation, so we set 3x + 11 equal to 35
[/LIST]
3x + 11 = 35 <-- This is our algebraic expression
The problem ask us to solve the algebraic expression.
[URL='https://www.mathcelebrity.com/1unk.php?num=3x%2B11%3D35&pl=Solve']Typing this problem into our search engine[/URL], we get [B]x = 8[/B].
If twice a number is divided by 7, the result is -28If twice a number is divided by 7, the result is -28.
The phrase [I]a number[/I] means an arbitrary variable, let's call it "x".
Twice x means we multiply x by 2: 2x
Divide this by 7: 2x/7
We set this equal to -28, and we have our algebraic expression:
[B]2x/7 = -28 [/B]
If two consecutive even numbers are added, the sum is equal to 226. What is the smaller of the two nIf two consecutive even numbers are added, the sum is equal to 226. What is the smaller of the two numbers?
Let the smaller number be n.
The next consecutive even number is n + 2.
Add them together to equal 226:
n + n + 2 = 226
Solve for [I]n[/I] in the equation n + n + 2 = 226
[SIZE=5][B]Step 1: Group the n terms on the left hand side:[/B][/SIZE]
(1 + 1)n = 2n
[SIZE=5][B]Step 2: Form modified equation[/B][/SIZE]
2n + 2 = + 226
[SIZE=5][B]Step 3: Group constants:[/B][/SIZE]
We need to group our constants 2 and 226. To do that, we subtract 2 from both sides
2n + 2 - 2 = 226 - 2
[SIZE=5][B]Step 4: Cancel 2 on the left side:[/B][/SIZE]
2n = 224
[SIZE=5][B]Step 5: Divide each side of the equation by 2[/B][/SIZE]
2n/2 = 224/2
n = [B]112
[URL='https://www.mathcelebrity.com/1unk.php?num=n%2Bn%2B2%3D226&pl=Solve']Source[/URL][/B]
if x2 is added to x, the sum is 42If x2 is added to x, the sum is 42.
x^2 + x = 42
Subtract 42 from both sides:
x^2 + x - 42 = 0
We have a quadratic equation. Using our [URL='http://www.mathcelebrity.com/quadratic.php?num=x%5E2%2Bx-42%3D0&pl=Solve+Quadratic+Equation&hintnum=+0']quadratic equation solver[/URL], we get:
[B]x = 6 and x = -7
[/B]
Since the problem does not state positive number solutions, they are both answers.
if you add 35 to twice a number, the result is 17. What is the number?if you add 35 to twice a number, the result is 17. What is the number?
A number is represented by a variable, let's call it "x".
Twice a number means we multiply by 2 --> 2x
Add 35
2x + 35
Now set that entire expression equal to 17
2x + 35 = 17
[URL='http://www.mathcelebrity.com/1unk.php?num=2x%2B35%3D17&pl=Solve']Plug that into the search engine to solve for x[/URL]
[B]x = -9[/B]
If you can buy 1⁄3 of a box of chocolates for 6 dollars, how much can you purchase for 4 dollars? WrIf you can buy 1⁄3 of a box of chocolates for 6 dollars, how much can you purchase for 4 dollars? Write your answer as a fraction of a box.
Set up a proportion of dollars to boxes where b is the number of boxes for $4:
6/1/3 = 4/b
Cross multiply:
6b = 4/3
Multiply each side by 1/6 to isolate b:
b = 4/18
[URL='https://www.mathcelebrity.com/gcflcm.php?num1=4&num2=18&num3=&pl=GCF+and+LCM']Type in GCF(4,18) into the search engine[/URL]. We get a greatest common factor of 2.
Divide 4 and 18 in the fraction by 2. We get the reduced fraction of:
[B]b = 2/9[/B]
If you have $272, and you spend $17 each day, how long would it be until you had no money left?If you have $272, and you spend $17 each day, how long would it be until you had no money left?
Let d be the number of days. We have a balance expression of:
272 - 17d
We want to know when the balance is 0, so we set 272 - 17d equal to 0.
272 - 17d = 0
To solve for d, we [URL='http://272 - 17d = 0']type this equation into our search engine[/URL] and we get:
d = [B]16[/B]
If you triple a number and then add 10, you get one-half of the original number. What is the numberIf you triple a number and then add 10, you get one-half of the original number. What is the number?
Let the number be n. We have:
3n + 10 = 0.5n
Subtract 0.5n from each side
2.5n + 10 = 0
Subtract 10 from each side:
2.5n = -10
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=2.5n%3D-10&pl=Solve']equation calculator,[/URL] we get:
[B]n = -4[/B]
If you triple me, subract 7, and add 4 you get 42. What number am i?If you triple me, subract 7, and add 4 you get 42. What number am i?
Start with an unknown number, "x".
Triple me
3x
Subtract 7
3x - 7
Add 4
3x - 7 + 4
You get 42
3x - 7 + 4 = 42
Simplify:
3x - 3 = 42
Run this through our [URL='https://www.mathcelebrity.com/1unk.php?num=3x-3%3D42&pl=Solve']equation calculator:[/URL]
x = [B]15[/B]
If your parents give you $20 per week and $1.50 per chore, how many chores would you have to do to eIf your parents give you $20 per week and $1.50 per chore, how many chores would you have to do to earn a total of $33.50 that week?
Let c be the number of chores. We're given the equation:
1.50c + 20 = 33.50
To solve this equation for c, we [URL='https://www.mathcelebrity.com/1unk.php?num=1.50c%2B20%3D33.50&pl=Solve']type it in our search engine [/URL]and we get:
c = [B]9[/B]
Imaginary NumbersFree Imaginary Numbers Calculator - Calculates the imaginary number i where i = √-1 raised to any integer power as well as the product of imaginary numbers of quotient of imaginary numbers
Imagine that a researcher wanted to know the average weight of 5th grade boys in a high school. He rImagine that a researcher wanted to know the average weight of 5th grade boys in a high school. He randomly sampled 5 boys from that high school. Their weights were: 120 lbs., 99 lbs, 101 lbs, 87 lbs, 140 lbs. What's the sample [U][B]standard deviation[/B][/U]?
[B]20.79182532[/B] using stdev.s in excel or also found on our [URL='http://www.mathcelebrity.com/statbasic.php?num1=120%2C99%2C101%2C87%2C140&num2=+0.2%2C0.4%2C0.6%2C0.8%2C0.9&pl=Number+Set+Basics#standard_deviation']statistics calculator[/URL]
Imagine that a researcher wanted to know the average weight of 5th grade boys in a high school. He rImagine that a researcher wanted to know the average weight of 5th grade boys in a high school. He randomly sampled 5 boys from that high school. Their weights were: 120 lbs., 99 lbs, 101 lbs, 87 lbs, 140 lbs. What's the [B][U]standard error of the mean[/U][/B]?
9.29839 using our [URL='http://www.mathcelebrity.com/statbasic.php?num1=120%2C99%2C101%2C87%2C140&num2=+0.2%2C0.4%2C0.6%2C0.8%2C0.9&pl=Number+Set+Basics#standard_error_of_the_mean']statistics calculator[/URL]
Imagine that a researcher wanted to know the average weight of 5th grade boys in a high school. He rImagine that a researcher wanted to know the average weight of 5th grade boys in a high school. He randomly sampled 5 boys from that high school. Their weights were: 120 lbs., 99 lbs, 101 lbs, 87 lbs, 140 lbs. The researcher posed a null hypothesis that the average weight for boys in that high school should be 100 lbs. What is the [B][U]absolute value[/U][/B] of calculated t that we use for testing the null hypothesis?
Mean is 109.4 and Standard Deviation = 20.79182532 using our [URL='http://www.mathcelebrity.com/statbasic.php?num1=120%2C99%2C101%2C87%2C140&num2=+0.2%2C0.4%2C0.6%2C0.8%2C0.9&pl=Number+Set+Basics']statistics calculator[/URL]
Now use those values and calculate the t-value
Abs(t value) = (100 - 109.4)/ 20.79182532/sqrt(5)
Abs(tvalue) = [B]1.010928029[/B]
In 2010 a algebra book cost $125. In 2015 the book cost $205. Whats the linear function since 2010?In 2010 a algebra book cost $125. In 2015 the book cost $205. Whats the linear function since 2010?
In 5 years, the book appreciated 205 - 125 = 80 in value.
80/5 = 16.
So each year, the book increases 16 in value. Set up the cost function:
[B]C(y) = 16y where y is the number of years since 2010[/B]
In 2010, the population of Greenbow, AL was 1,100 people. The population has risen at at rate of 4%In 2010, the population of Greenbow, AL was 1,100 people. The population has risen at at rate of 4% each year since. Let x = the number of years since 2010 and y = the population of Greenbow. What will the population of Greenbow be in 2022?
P(x) = 1,100(1.04)^x
x = 2022 - 2010
x = 12 years
We want P(12):
P(12) = 1,100(1.04)^12
P(12) = 1,100(1.60103221857)
P(12) = [B]1,761.14 ~ 1,761[/B]
In a basketball game, you make 8 of 20 free throws. If you continue this for the next 50 free throwsIn a basketball game, you make 8 of 20 free throws. If you continue this for the next 50 free throws, how many can you expect to make?
We set up a [U][I]proportion[/I][/U] of made free throws to attempts.
8/20 = m/50 where m is the number of made free throws in 50 attempts.
[URL='https://www.mathcelebrity.com/prop.php?num1=8&num2=m&den1=20&den2=50&propsign=%3D&pl=Calculate+missing+proportion+value']We type 8/20 = m/50 into the search engine[/URL] and get [B]m = 20[/B].
In a bike shop they sell bicycles & tricycles. I counted 80 wheels & 34 seats. How many bicycles & tIn a bike shop they sell bicycles & tricycles. I counted 80 wheels & 34 seats. How many bicycles & tricycles were in the bike shop?
Let b be the number or bicycles and t be the number of tricycles. Since each bicycle has 2 wheels and 1 seat and each tricycle has 3 wheels and 1 seat, we have the following equations:
[LIST=1]
[*]2b + 3t = 80
[*]b + t = 34
[/LIST]
We can solve this set of simultaneous equations 3 ways:
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=2b+%2B+3t+%3D+80&term2=b+%2B+t+%3D+34&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=2b+%2B+3t+%3D+80&term2=b+%2B+t+%3D+34&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=2b+%2B+3t+%3D+80&term2=b+%2B+t+%3D+34&pl=Cramers+Method']Cramers Rule[/URL]
[/LIST]
No matter which method we choose, we get the same answer:
[LIST]
[*][B]b = 22[/B]
[*][B]t = 12[/B]
[/LIST]
In a car lot there are 38 rows with 25 parking spots in each row. How many parking spots are there?In a car lot there are 38 rows with 25 parking spots in each row. How many parking spots are there?
Total parking spots = Number of Rows * Parking spots per row
Total parking spots = 38 * 25
Total parking spots = [B]950[/B]
In a class there are 5 more boys than girls. There are 13 students in all. How many boys are there iIn a class there are 5 more boys than girls. There are 13 students in all. How many boys are there in the class?
We start by declaring variables for boys and girls:
[LIST]
[*]Let b be the number of boys
[*]Let g be the number of girls
[/LIST]
We're given two equations:
[LIST=1]
[*]b = g + 5
[*]b + g = 13
[/LIST]
Substitute equation (1) for b into equation (2):
g + 5 + g = 13
Grouping like terms, we get:
2g + 5 = 13
Subtract 5 from each side:
2g + 5 - 5 = 13 - 5
Cancel the 5's on the left side and we get:
2g = 8
Divide each side of the equation by 2 to isolate g:
2g/2 = 8/2
Cancel the 2's on the left side and we get:
g = 4
Substitute g = 4 into equation (1) to solve for b:
b = 4 + 5
b = [B]9[/B]
In a newspaper, it was reported that yearly robberies in Springfield were up 40% to 77 in 2012 fromIn a newspaper, it was reported that yearly robberies in Springfield were up 40% to 77 in 2012 from 2011. How many robberies were there in Springfield in 2011?
Let r be the number of robberies in 2011. We have:
Robberies in 2012 = Robberies in 2011 * 1.4
77 = r * 1.4
Divide each side by 1.4
[B]r = 55[/B]
In a sample of 80 beetles, 50 beetles had 4 spots each, and the rest had 6 spots each. What was theIn a sample of 80 beetles, 50 beetles had 4 spots each, and the rest had 6 spots each. What was the average number of spots per beetle? Show your work below.
Average spots per beetle = Total spots for all beetles / Total beetles
Average spots per beetle = (50(4) + 6(80 - 50))/80
Average spots per beetle =(200 + 6(30))/80
Average spots per beetle = (200 + 180)/80
Average spots per beetle = (380)/80
Average spots per beetle = [B]4.75 spots[/B]
In a shipment of 330 animals, 125 were hogs, 68 were sheep, and the rest were cattle. Find the numbeIn a shipment of 330 animals, 125 were hogs, 68 were sheep, and the rest were cattle. Find the number of cattle in the shipment.
To find the rest (cattle), we subtract off the hogs and sheep from the total.
Cattle = Total Animals - Hogs - Sheep
Cattle = 330 - 125 - 68
[B]Cattle = 137[/B]
In a survey of 420 people, 230 use samsung mobile, 180 use iphone, 90 use both ,find the number of pIn a survey of 420 people, 230 use samsung mobile, 180 use iphone, 90 use both ,find the number of people who don't use either of them
People who don't use both is:
420 - (230 + 180 - 90)
420 - (320)
[B]100[/B]
In base 10 the number 25.12 actually means 20 + 5 + 1/10 + 2/100. What does the base 7 number 25.12In base 10 the number 25.12 actually means 20 + 5 + 1/10 + 2/100. What does the base 7 number 25.12 mean?
2 groups of 7
5 groups of 1
1 group of 1/7
2 groups of 1/49 (1/7)^2
14 + 5 + 1/7 + 2/49
In base 10, the number .1111... approaches 1/9. What does .111111 base 2 approach in base 10?In base 10, the number .1111... approaches 1/9. What does .111111 base 2 approach in base 10?
Base 2 .11111 means:
(1/2)^1 + (1/2)^2 + + (1/2)^3 + (1/2)^4
1/2 + 1/4 + 1/8 + 1/16
[B]This approaches 1[/B]
In one day, a store sells 14 pairs of jeans. The 14 jeans represent 20% of the total number of itemsIn one day, a store sells 14 pairs of jeans. The 14 jeans represent 20% of the total number of items sold that day. How many items did the store sell in one day? Explain or show how you got your answer.
14 = 20%s where s is the number of items sold in one day.
We can write 20% as 0.2, so we have:
0.2s = 14
[URL='https://www.mathcelebrity.com/1unk.php?num=0.2s%3D14&pl=Solve']Type this equation into the search engine[/URL], and we get:
s = [B]70[/B]
In rolling a die, the event E is getting a number greater than or equal to 3. What is the complementIn rolling a die, the event E is getting a number greater than or equal to 3. What is the complement of the event?
The complement E' is everything but the event. So we have:
E = P(n >= 3)
E' = [B]P(n < 3)[/B]
In Super Bowl XXXV, the total number of points scored was 41. The winning team outscored the losingIn Super Bowl XXXV, the total number of points scored was 41. The winning team outscored the losing team by 27 points. What was the final score of the game? In Super Bowl XXXV, the total number of points scored was 41. The winning team outscored the losing team by 27 points. What was the final score of the game?
Let w be the winning team's points, and l be the losing team's points. We have two equations:
[LIST=1]
[*]w + l = 41
[*]w - l = 27
[/LIST]
Add the two equations:
2w = 68
Divide each side by 2
[B]w = 34[/B]
Substitute this into (1)
34 + l = 41
Subtract 34 from each side
[B]l = 7[/B]
Check your work:
[LIST=1]
[*]34 + 7 = 41 <-- check
[*]34 - 7 = 27 <-- check
[/LIST]
The final score of the game was [B]34 to 7[/B].
You could also use our [URL='http://www.mathcelebrity.com/simultaneous-equations.php?term1=w+%2B+l+%3D+41&term2=w+-+l+%3D+27&pl=Cramers+Method']simultaneous equation solver[/URL].
In the wild, monkeys eat an average of 28 bananas a day with a standard deviation of 2 bananas. OneIn the wild, monkeys eat an average of 28 bananas a day with a standard deviation of 2 bananas. One monkey eats only 21 bananas. What is the z-score for this monkey? Is the number of bananas the monkey eats unusually low?
Using [URL='https://www.mathcelebrity.com/probnormdist.php?xone=21&mean=28&stdev=2&n=1&pl=P%28X+%3C+Z%29']our z-score calculator[/URL], we get:
Z < -3.5
P(Z < -3.5) = 0.499767
Also, this [B]is unusually low as it's more than 3 deviations away from the mean[/B]
In the year 2000, the population of Rahway, New Jersey, was 26500. Express this number in scientificIn the year 2000, the population of Rahway, New Jersey, was 26500. Express this number in scientific notation
26,500 in [URL='https://www.mathcelebrity.com/scinot.php?num=26500&pl=Convert+to+Number']scientific notation is found using our scientific notation calculator[/URL]:
[B]2.65 x 10^4[/B]
In this class of 4/5 students are right handed. if there are 20 right handed students, what is the tIn this class of 4/5 students are right handed. if there are 20 right handed students, what is the total number of students in this class?
Let x be the total number of students in the class. We have:
4/5x = 20
Cross multiplying or using our [URL='http://www.mathcelebrity.com/1unk.php?num=4x%3D100&pl=Solve']equation calculator[/URL], we get:
4x = 100
Divide each side by 4
[B]x = 25[/B]
Ina has $40 in her bank account and saves $8 a week. Ree has $200 in her bank account and spends $12Ina has $40 in her bank account and saves $8 a week. Ree has $200 in her bank account and spends $12 a week. Write an equation to represent each girl.
Let w equal the number of weeks, and f(w) be the amount of money in the account after w weeks:
[LIST]
[*]Ina: [B]f(w) = 40 + 8w[/B]
[LIST]
[*]We add because Ina saves money, so her account grows
[/LIST]
[*]Ree: [B]f(w) = 200 - 12w[/B]
[LIST]
[*]We subtract because Ree saves
[/LIST]
[/LIST]
Inclusive Number Word ProblemsFree Inclusive Number Word Problems Calculator - Given an integer A and an integer B, this calculates the following inclusive word problem questions:
1) The Average of all numbers inclusive from A to B
2) The Count of all numbers inclusive from A to B
3) The Sum of all numbers inclusive from A to B
Index FormFree Index Form Calculator - Writes a number using index form notation
index form of (5^3)^6Index form of (5^3)^6
Index form is written as a number raised to a power.
Let's simplify by multiply the exponents. Since 6*3 = 18, We have:
[B]5^18[/B]
Int FunctionFree Int Function Calculator - Determines the integer of a number
Integers BetweenFree Integers Between Calculator - This calculator determines all integers between two numbers (Decimals)
Irrational Numbers BetweenFree Irrational Numbers Between Calculator - This calculator determines all irrational numbers between two numbers
Is (3,10) a solution to the equation y=4xIs (3,10) a solution to the equation y=4x
Plug in the numbers to check:
10 ? 4(3)
10 <> 12
No, this is [B]not a solution[/B]
Isabel earns $7.50 per hour on the weekends. Write and solve an inequality to find how many hours shIsabel earns $7.50 per hour on the weekends. Write and solve an inequality to find how many hours she needs to work to earn at least $120.
A few things to note:
[LIST]
[*]Earnings = Rate * time
[*]Let h be the number of hours worked
[*]The phrase [I]at least[/I] means greater than or equal to, so we have the following inequality.
[/LIST]
We represent this with the following inequality:
7.5h < 120
To solve this inequality for h, we [URL='https://www.mathcelebrity.com/interval-notation-calculator.php?num=7.5h%3C120&pl=Show+Interval+Notation']type it into our math engine[/URL] and we get:
[B]h < 16[/B]
Isabel is making face mask. She spends $50 on supplies and plans on selling them for $4 per mask. HoIsabel is making face mask. She spends $50 on supplies and plans on selling them for $4 per mask. How many mask does have to make in order to make a profit equal to $90?
[U]Set up the cost function C(m) where m is the number of masks:[/U]
C(m) = supply cost
C(m) = 50
[U]Set up the cost function R(m) where m is the number of masks:[/U]
R(m) = Sale Price * m
R(m) = 4m
[U]Set up the profit function P(m) where m is the number of masks:[/U]
P(m) = R(m) - C(m)
P(m) = 4m - 50
The problems asks for profit of 90, so we set P(m) = 90:
4m - 50 = 90
To solve this equation for m, we [URL='https://www.mathcelebrity.com/1unk.php?num=4m-50%3D90&pl=Solve']type it in our search engine[/URL] and we get:
m = [B]35[/B]
Isabel will run less than 36 minutes today. So far, she has run 22 minutes. What are the possible nuIsabel will run less than 36 minutes today. So far, she has run 22 minutes. What are the possible numbers of additional minutes she will run?
Set up our inequality. If she ran 22 minutes, we need to find an expression to find out the remaining minutes
x + 22 < 36
Subtract 22 from each side:
x < 14
Remember, she cannot run negative minutes, so our lower bound is 0, so we have:
[B]0 < x < 14
[/B]
Ishaan is 72 years old and William is 4 years old. How many years will it take until Ishaan is only[SIZE=4]Ishaan is 72 years old and William is 4 years old. How many years will it take until Ishaan is only 5 times as old as William?
[U]Express Ishaan and William's age since today where y is the number of years since today, we have:[/U]
i = 72+y
w = 4+y
[U]We want the time for Ishaan age will be 5 times William's age:[/U]
i = 5w
72 + y = 5(4 + y)
We [URL='https://www.mathcelebrity.com/1unk.php?num=72%2By%3D5%284%2By%29&pl=Solve']plug this equation into our search engine [/URL]and get:
y = [B]13[/B]
[/SIZE]
It costs $2.50 to rent bowling shoes. Each game costs $2.25. You have $9.25. How many games can youIt costs $2.50 to rent bowling shoes. Each game costs $2.25. You have $9.25. How many games can you bowl. Writing an equation and give your answer.
Let the number of games be g. we have the function C(g):
C(g) = cost per game * g + bowling shoe rental
C(g) = 2.25g + 2.50
The problem asks for g when C(g) = 9.25
2.25g + 2.50 = 9.25
To solve this equation, we[URL='https://www.mathcelebrity.com/1unk.php?num=2.25g%2B2.50%3D9.25&pl=Solve'] type it in our search engine[/URL] and we get:
g = [B]3[/B]
It costs $4.25 per game at the bowling alley plus $1.90 to rent shoes. if Wayne has $20, how many gaIt costs $4.25 per game at the bowling alley plus $1.90 to rent shoes. if Wayne has $20, how many games can he Bowl?
Let g be the number of games. The cost for Wayne is:
C(g) = Cost per game * number of games + shoe rental
4.25g + 1.90 = C(g)
We're given C(g) = 20, so we have:
4.25g + 1.90 = 20
Using our [URL='https://www.mathcelebrity.com/1unk.php?num=4.25g%2B1.90%3D20&pl=Solve']equation solver[/URL] for g, we get:
g = 4.25
We need whole games, we we round down to [B]4 games[/B]
it costs $75.00 for a service call from shearin heating and air conditioning company. the charge forit costs $75.00 for a service call from shearin heating and air conditioning company. the charge for labor is $60.00 . how many full hours can they work on my air conditioning unit and still stay within my budget of $300.00 for repairs and service?
Our Cost Function is C(h), where h is the number of labor hours. We have:
C(h) = Variable Cost * Hours + Fixed Cost
C(h) = 60h + 75
Set C(h) = $300
60h + 75 = 300
[URL='https://www.mathcelebrity.com/1unk.php?num=60h%2B75%3D300&pl=Solve']Running this problem in the search engine[/URL], we get [B]h = 3.75[/B].
It costs a $20 flat fee to rent a lawn mower, plus $5 a day starting with the first day. Let x repreIt costs a $20 flat fee to rent a lawn mower, plus $5 a day starting with the first day. Let x represent the number of days rented, so y represents the charge to the user (in dollars)
Set up our function:
[B]y = 20 + 5x[/B]
It is known that 45% of men snore an 25% of women snore. A doctor looked at these numbers and made tIt is known that 45% of men snore an 25% of women snore. A doctor looked at these numbers and made the following statement:
"If you put a man and a woman together, there is a 70% chance that someone is snoring."
Explain why the doctor's math is wrong.
The doctor added the percents together: 45% + 25% = 70%.
Here's why this is incorrect:
[LIST]
[*]45% of men snore means 100% - 45% = 55% of men do not snore
[*]25% of women snore means 100% - 25% = 75% of women do not snore
[*]Both men and women not snoring is: 55% * 75% = 41.25% neither of them snore
[*]100% - 41.25% = [B]58.75%[/B] somebody is snoring
[/LIST]
It takes 3/4 of an hour to complete a puzzle. How many puzzles can Cindy finish in 3 hours?It takes 3/4 of an hour to complete a puzzle. How many puzzles can Cindy finish in 3 hours?
We setup a proportion of time to puzzles where p is the number of puzzles Cindy can complete in 3 hours:
3/4/1 = 3/p
Dividing by 1 means the same as the original fraction, so we have:
3/4 = 3/p
[URL='https://www.mathcelebrity.com/prop.php?num1=3&num2=3&den1=4&den2=p&propsign=%3D&pl=Calculate+missing+proportion+value']Typing this proportion into the search engine[/URL], we get:
p = [B]4[/B]
It took 3.5 gallons of paint to cover a wall that is 985 square feet. How many gallons will it takeIt took 3.5 gallons of paint to cover a wall that is 985 square feet. How many gallons will it take to cover a wall that is 6501 square feet?
Set up a proportion of gallons of paint to square feet where n is the number of gallons of paint to cover 6501 square feet
3.5/985 = n/6501
Using our [URL='https://www.mathcelebrity.com/proportion-calculator.php?num1=3.5&num2=n&den1=985&den2=6501&propsign=%3D&pl=Calculate+missing+proportion+value']proportion calculator[/URL], we get:
n = [B]23.1[/B]
Itachi want’s to buy apples that weights 5.7 pounds. The apples is priced at $1.58 per pound how mucItachi want’s to buy apples that weights 5.7 pounds. The apples is priced at $1.58 per pound how much does the apples costs
Cost = price per pound * number of pounds
Cost = 1.58 * 5.7
Cost = [B]9.01[/B]
Jack and Jill have a magic pail of beans. The number of beans in the pail doubles every second. IfJack and Jill have a magic pail of beans. The number of beans in the pail doubles every second. If the pail is full after 10 seconds, when was the pail half full? Explain your answer.
[LIST]
[*]At time 0, we have n beans
[*]At time 1, we have 2n beans
[*]At time 2, we have 4n beans
[*]At time 3, we have 8n beans
[*]At time 4, we have 16n beans
[*]At time 5, we have 32n beans
[*]At time 6, we have 64n beans
[*]At time 7, we have 128n beans
[*]At time 8, we have 256n beans
[*]At time 9, we have 512n beans
[*]At time 10, we have 1024n beans
[/LIST]
1/2 of 1024 is 512, so at [B]Time 9[/B], the pail is half full.
Jack bought 7 tickets for a movie. He paid $7 for each adult ticket and $4 for each child ticket. JaJack bought 7 tickets for a movie. He paid $7 for each adult ticket and $4 for each child ticket. Jack spent $40 for the tickets
Let a = Number of adult tickets and c be the number of child tickets.
[LIST=1]
[*]7a + 4c = 40
[*]a + c = 7
[*]Rearrange (2): a = 7 - c
[/LIST]
Now substitute a in (3) into (1):
7(7 - c) + 4c = 40
49 - 7c + 4c = 40
49 - 3c = 40
Add 3c to each side and subtract 40:
3c = 9
Divide each side by 3:
[B]c = 3
[/B]
Substitute c = 3 into Equation (2)
a + 3 = 7
Subtract 3 from each side:
[B]a = 4[/B]
Jack bought a car for $17,500. The car loses $750 in value each year. Which equation represents theJack bought a car for $17,500. The car loses $750 in value each year. Which equation represents the situation?
Let y be the number of years since Jack bought the car. We have a Book value B(y):
[B]B(y) = 17500 - 750y[/B]
Jack has 34 bills and coins in 5’s and 2’s. The total value is $116. How many 5 dollar bills does heJack has 34 bills and coins in 5’s and 2’s. The total value is $116. How many 5 dollar bills does he have?
Let the number of 5 dollar bills be f. Let the number of 2 dollar bills be t. We're given two equations:
[LIST=1]
[*]f + t = 34
[*]5f + 2t = 116
[/LIST]
We have a system of equations, which we can solve 3 ways:
[LIST=1]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=f+%2B+t+%3D+34&term2=5f+%2B+2t+%3D+116&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=f+%2B+t+%3D+34&term2=5f+%2B+2t+%3D+116&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=f+%2B+t+%3D+34&term2=5f+%2B+2t+%3D+116&pl=Cramers+Method']Cramer's Rule[/URL]
[/LIST]
No matter which method we choose, we get the same answers:
[LIST]
[*][B]f = 16[/B]
[*][B]t = 18[/B]
[/LIST]
Jack is making snack bags. He has 18 baby carrots and 42 pretzels. He wants to divide them equally aJack is making snack bags. He has 18 baby carrots and 42 pretzels. He wants to divide them equally among the bags. What is the greatest number of snack bags he can make?
Find the [URL='http://www.mathcelebrity.com/gcflcm.php?num1=18&num2=42&num3=&pl=GCF']Greatest Common Factor[/URL] of (18, 42) = 6
6 bags for 18 carrots = 3 carrots per bag
6 bags for 42 pretzels = 7 pretzels per bag
[B]6 bags is the answer[/B]
Jack reads 90 pages of a book in six hours. What is the average number of pages he read each hourJack reads 90 pages of a book in six hours. What is the average number of pages he read each hour
90 pages / 6 hour = 90/6
Type [URL='https://www.mathcelebrity.com/fraction.php?frac1=90%2F6&frac2=3%2F8&pl=Simplify']90/6 in our search engine, click simplify[/URL], and we get:
[B]15 pages per hour[/B]
Jack's mother gave him 50 chocolates to give to his friends at his birthday party. He gave 3 chocolaJack's mother gave him 50 chocolates to give to his friends at his birthday party. He gave 3 chocolates to each of his friends and still had 2 chocolates left.
Let f be the number of Jacks's friends. We have the following equation to represent the chocolates:
3f + 2 = 50
To solve this equation for f, we [URL='https://www.mathcelebrity.com/1unk.php?num=3f%2B2%3D50&pl=Solve']type it in the math engine[/URL] and we get:
f = [B]16[/B]
Jack's mother gave him 50 chocolates to give to his friends at his birthday party. He gave 3 chocolaJack's mother gave him 50 chocolates to give to his friends at his birthday party. He gave 3 chocolates to each of his friends and still had 2 chocolates left.
If Jack had 2 chocolates left, then the total given to his friends is:
50 - 2 = 48
Let f be the number of friends at his birthday party. Then we have:
3f = 48
[URL='https://www.mathcelebrity.com/1unk.php?num=3f%3D48&pl=Solve']Typing this equation into our search engine[/URL], we get:
[B]f = 16[/B]
Jake Callahan stars in the new TV series Stone Simons: Kid Astronaut. The day after the first episodJake Callahan stars in the new TV series Stone Simons: Kid Astronaut. The day after the first episode airs, Jake receives a bunch of fan mail. He splits all the letters into 3 equal stacks to open with his mom and his sister. Each stack contains 21 letters. Which equation can you use to find the number of letters n Jake receives?
The number of letters n is represented by number of stacks (s) times letter per stack (l). We're given s = 3 and l = 21, so we have:
n = 21(3)
n = [B]63[/B]
James has a weekly allowance of 5 plus 1.50 for each chore c he doesJames has a weekly allowance of 5 plus 1.50 for each chore c he does
We build the allowance function A(c) where c is each chore
A(c) = cost per chore * c + Weekly Allowance
Plugging in our numbers, we get:
[B]A(c) = 1.50c + 5[/B]
Jamie spent $15.36 on several items at the store. he spent an equal amount on each item. if jamie spJamie spent $15.36 on several items at the store. he spent an equal amount on each item. if jamie spent $1.92 on each item, how many items did he buy?
Let x equal the number of items Jamie bought. We have:
1.92x = 15.36
Divide each side by 1.92
[B]x = 8[/B]
Jane did this calculation a. Add -12 b.subtract -9 c. Add 8 d. Subtract -2 the result is -5. What waJane did this calculation a. Add -12 b.subtract -9 c. Add 8 d. Subtract -2 the result is -5. What was the original number?
Let the original number be n.
[LIST=1]
[*]Add -12: n - 12
[*]Subtract -9: n - 12 - -9 = n - 12 + 9
[*]Add 8: n - 12 + 9 + 8
[*]Subtract - 2: n - 12 + 9 + 8 - -2 = n - 12 + 9 + 8 + 2
[*]The result is -5. So we build the following equation:
[/LIST]
n - 12 + 9 + 8 + 2 = -5
To solve this equation for n, we [URL='https://www.mathcelebrity.com/1unk.php?num=n-12%2B9%2B8%2B2%3D-5&pl=Solve']type it in our search engine[/URL] and we get:
[B]n = -12[/B]
Jane has $7.50 to spend in the candy store. She likes lollipops and gumballs. Each lollipop costsJane has $7.50 to spend in the candy store. She likes lollipops and gumballs. Each lollipop costs $2.75, and each gumball costs $0.50. If Jane decides to buy 1 lollipop, then what is the greatest number of gumballs Jane can buy? A
Subtract the cost of 1 lollipop:
$7.50 - $2.75 = $4.75
Let the number of gumballs = g. We have:
0.50g = $4.75
[URL='https://www.mathcelebrity.com/1unk.php?num=0.50g%3D4.75&pl=Solve']Run this through the search engine[/URL] to get g = 9.5 The problem asks for the greatest number. So we round down to [B]9 gumballs[/B].
jane has 55$ to spend at cedar point. the admission price is 42$ and each soda is 4.25. write an inejane has 55$ to spend at cedar point. the admission price is 42$ and each soda is 4.25. write an inequality to show how many sodas he can buy.
Let s be the number of sodas.
Cost for the day is:
Price per soda * s + Admission Price
4.25s + 42
We're told that Jane has 55, which means Jane cannot spend more than 55. Jane can spend up to or less than 55. We write this as an inequality using <= 55
[B]4.25s + 42 <= 55[/B]
[B][/B]
If the problems asks you to solve for s, we type it in our math engine and we get:
Solve for [I]s[/I] in the inequality 4.25s + 42 ≤ 55
[SIZE=5][B]Step 1: Group constants:[/B][/SIZE]
We need to group our constants 42 and 55. To do that, we subtract 42 from both sides
4.25s + 42 - 42 ≤ 55 - 42
[SIZE=5][B]Step 2: Cancel 42 on the left side:[/B][/SIZE]
4.25s ≤ 13
[SIZE=5][B]Step 3: Divide each side of the inequality by 4.25[/B][/SIZE]
4.25s/4.25 ≤ 13/4.25
[B]s ≤ 3.06[/B]
Janet drove 395 kilometers and the trip took 5 hours. How fast was Janet traveling?Janet drove 395 kilometers and the trip took 5 hours. How fast was Janet traveling?
Distance = Rate * Time
We're given D = 395 and t = 5
We want Rate. We divide each side of the equation by time:
Distance / Time = Rate * Time / Time
Cancel the Time's on each side and we get:
Rate = Distance / Time
Plugging our numbers in, we get:
Rate = 395/5
Rate = [B]79 kilometers[/B]
Janice is looking to buy a vacation home for $185,000 near her favorite southern beach. The formulaJanice is looking to buy a vacation home for $185,000 near her favorite southern beach. The formula to compute a mortgage payment, M, is shown below, where P is the principal amount of the loan, r is the monthly interest rate, and N is the number of monthly payments. Janice's bank offers a monthly interest rate of 0.325% for a 12-year mortgage. How many monthly payments must Janice make?
12 years * 12 months per year = [B]144 mortgage payments[/B]
jared bakes 2 apple pies. he cuts two pies into pieces. Each piece is 1/8 of a pie. Enter the numberjared bakes 2 apple pies. he cuts two pies into pieces. Each piece is 1/8 of a pie. Enter the number of pieces of pie jared cuts
1/8 of a pie per slice means there are 8 slices per pie
2 pies * 8 pieces per pie = [B]16 pieces[/B]
Jason has an equal number of nickels and dimes. The total value of his nickels and dimes is $2.25. HJason has an equal number of nickels and dimes. The total value of his nickels and dimes is $2.25. How many nickels does Jason have?
Let the number of nickels be n
Let the number of dimes be d
We're given two equations:
[LIST=1]
[*]d = n
[*]0.05n + 0.1d = 2.25
[/LIST]
Substitute equation (1) for d into equation (2):
0.05n + 0.1n = 2.25
Solve for [I]n[/I] in the equation 0.05n + 0.1n = 2.25
[SIZE=5][B]Step 1: Group the n terms on the left hand side:[/B][/SIZE]
(0.05 + 0.1)n = 0.15n
[SIZE=5][B]Step 2: Form modified equation[/B][/SIZE]
0.15n = + 2.25
[SIZE=5][B]Step 3: Divide each side of the equation by 0.15[/B][/SIZE]
0.15n/0.15 = 2.25/0.15
n = [B]15[/B]
[URL='https://www.mathcelebrity.com/1unk.php?num=0.05n%2B0.1n%3D2.25&pl=Solve']Source[/URL]
Jay has 5 paintings that he plans to display on a wall that only has 4 books. Nancy has 5 paintingsJay has 5 paintings that he plans to display on a wall that only has 4 books. Nancy has 5 paintings that she plans to display on a wall with 5 hooks. Who has more possible ways to hang his/her paintings?
Jay's ways:
[URL='https://www.mathcelebrity.com/permutation.php?num=5&den=4&pl=Permutations']5 P 4 [/URL]= [B]120
[/B]
Nancy's ways:
[URL='https://www.mathcelebrity.com/permutation.php?num=5&den=5&pl=Permutations']5 P 5[/URL] = [B]120
Therefore, they have the same number of ways.[/B]
Jayden spent $46.20 on 12 galllons of gasoline. What was the price per gallon?Jayden spent $46.20 on 12 galllons of gasoline. What was the price per gallon?
Price per gallon = Total spend / number of gallons
Price per gallon = $46.20/12
Price per gallon = $[B]3.85[/B]
Jazmin is a hairdresser who rents a station in a salon for daily fee. The amount of money (m) JazminJazmin is a hairdresser who rents a station in a salon for daily fee. The amount of money (m) Jazmin makes from any number of haircuts (n) a day is described by the linear function m = 45n - 30
A) A haircut costs $30, and the station rent is $45
B) A haircut costs $45, and the station rent is $30.
C) Jazmin must do 30 haircuts to pay the $45 rental fee.
D) Jazmin deducts $30 from each $45 haircut for the station rent.
[B]Answer B, since rent is only due once. Profit is Revenue - Cost[/B]
Jeff Bezos, who owns Amazon, has a net worth of approximately $143.1 billion (as of mid-2018). An emJeff Bezos, who owns Amazon, has a net worth of approximately $143.1 billion (as of mid-2018). An employee in the Amazon distribution center earns about $13 an hour. The estimated lifespan of the employee is 71 years. If the employee worked 24 hours a day, every day of the year from the moment of his birth, how many lifespans would it take for him to earn wages equivalent to Jeff Bezos' net worth? Round the answer to the nearest whole number.
Calculate earnings per lifespan:
Earnings per lifespan = lifespan in years * Annual Earnings
Earnings per lifespan = 71 * 13 * 24 * 365 <-- (24 hours per day * 365 days per year)
Earnings per lifespan = 8,085,480
Calculate the number of lifespans needed to match Jeff Bezos earnings:
Number of lifespans = Jeff Bezos Net Worth / Earnings Per Lifespan
Number of lifespans = 143,100,000,000 / 8,085,480
Number of lifespans = [B]17,698.39 ~ 17,699[/B]
Jeni sees 104 octopus legs in the aquarium how many octopuses are there ?Jeni sees 104 octopus legs in the aquarium how many octopuses are there ?
An octopus has 8 legs. So the total number of octupuses are:
Total octopuses = Total legs / 8
Total octopuses = 104 / 8
Total octopuses = [B]13[/B]
Jennifer is playing cards with her bestie when she draws a card from a pack of 25 cards numbered froJennifer is playing cards with her bestie when she draws a card from a pack of 25 cards numbered from 1 to 25. What is the probability of drawing a number that is square?
The squares from 1 - 25 less than or equal to 25 are as follows:
[LIST=1]
[*]1^2 = 1
[*]2^2 = 4
[*]3^2 = 9
[*]4^2 = 16
[*]5^2 = 25
[/LIST]
So the following 5 cards are squares:
{1, 4, 9, 16, 25}
Therefore, our probability of drawing a square is:
P(square) = Number of Squares / Number of Cards
P(square) = 5/25
This fraction can be simplified. So [URL='https://www.mathcelebrity.com/fraction.php?frac1=5%2F25&frac2=3%2F8&pl=Simplify']we type in 5/25 into our search engine, choose simplify[/URL], and we get:
P(square) = [B]1/5[/B]
Jennifer spent $11.25 on ingredients for cookies shes making for the school bake sale. How many cookJennifer spent $11.25 on ingredients for cookies shes making for the school bake sale. How many cookies must she sale at $0.35 apiece to make profit?
Let x be the number of cookies she makes. To break even, she must sell:
0.35x = 11.25
Use our [URL='http://www.mathcelebrity.com/1unk.php?num=0.35x%3D11.25&pl=Solve']equation calculator[/URL], and we get:
x = 32.14
This means she must sell [B]33[/B] cookies to make a profit.
Jenny has $1200 and is spending $40 per week. Kelsey has $120 and is saving $50 a week. In how manyJenny has $1200 and is spending $40 per week. Kelsey has $120 and is saving $50 a week. In how many weeks will Jenny and Kelsey have the same amount of money?
Jenny: Let w be the number of weeks. Spending means we subtract, so we set up a balance equation B(w):
B(w) = 1200 - 40w
Kelsey: Let w be the number of weeks. Saving means we add, so we set up a balance equation B(w):
B(w) = 120 + 50w
When they have the same amount of money, we set the balance equations equal to each other:
1200 - 40w = 120 + 50w
To solve for w, we [URL='https://www.mathcelebrity.com/1unk.php?num=1200-40w%3D120%2B50w&pl=Solve']type this equation into our search engine[/URL] and we get:
w = [B]12[/B]
Jenny makes 9 dollars for each hour of work. Write an equation to represent her total pay p after woJenny makes 9 dollars for each hour of work. Write an equation to represent her total pay p after working h hours.
Since Jenny makes 9 dollars for each hour of work, then her total pay (p) is her hourly rate times the number of hours worked:
[B]p = 9h[/B]
Jenny went shoe shopping. Now she has 5 more pairs than her brother. Together they have 25 pairs. HoJenny went shoe shopping. Now she has 5 more pairs than her brother. Together they have 25 pairs. How many pairs does Jenny have and how many pairs does her brother have?
[U]Let j be the number of shoes Jenny has and b be the number of s hoes her brother has. Set up 2 equations:[/U]
(1) b + j = 25
(2) j = b + 5
[U]Substitute (2) into (1)[/U]
b + (b + 5) = 25
[U]Group the b terms[/U]
2b + 5 = 25
[U]Subtract 5 from each side[/U]
2b = 20
[U]Divide each side by b[/U]
[B]b = 10
[/B]
[U]Substitute b = 10 into (2)[/U]
j = 10 + 5
[B]j = 15[/B]
Jeremy can plant 10 trees in 4 hours. How many trees can he plant in 10 hours?Jeremy can plant 10 trees in 4 hours. How many trees can he plant in 10 hours?
Set up a proportion of trees planted to hours where t is the number of trees planted in 10 hours.
10/4 = t/10
[URL='https://www.mathcelebrity.com/prop.php?num1=10&num2=t&den1=4&den2=10&propsign=%3D&pl=Calculate+missing+proportion+value']Type this expression into the search engine[/URL] and we get [B]t = 25[/B].
This means Jeremy can plant 25 trees in 10 hours.
Jerry rolls a dice 300 times what is the estimated numbers the dice rolls on 6Jerry rolls a dice 300 times what is the estimated numbers the dice rolls on 6
Expected Value = Rolls * Probability
Since a 6 has a probability of 1/6, we have:
Expected Value = 300 * 1/6
Expected Value = [B]50[/B]
Jerry’s Bakery makes 144 muffins daily. How many muffins do they make in 7 days? Explain.Jerry’s Bakery makes 144 muffins daily. How many muffins do they make in 7 days? Explain.
Total muffins = Muffins per day * number of days
Total muffins = 144 * 7
Total muffins = [B]1,008[/B]
Jessica has 16 pairs of shoes. She buys 2 additional pair of shoes every month. What is the slope inJessica has 16 pairs of shoes. She buys 2 additional pair of shoes every month. What is the slope in this situation?
Set up a graph where months is on the x-axis and number of shoes Jessica owns is on the y-axis.
[LIST=1]
[*]Month 1 = (1, 18)
[*]Month 2 = (2, 20)
[*]Month 3 = (3, 22)
[*]Month 4 = (4, 24)
[/LIST]
You can see for every 1 unit move in x, we get a 2 unit move in y.
Pick any of these 2 points, and [URL='https://www.mathcelebrity.com/slope.php?xone=3&yone=22&slope=+2%2F5&xtwo=4&ytwo=24&pl=You+entered+2+points']use our slope calculator[/URL] to get:
Slope = [B]2[/B]
Jill made 122 muffins. She put them into 3 boxes and has two muffins left. How many are in each boxJill made 122 muffins. She put them into 3 boxes and has two muffins left. How many are in each box if they all contain the same amount of muffins?
Let m equal the number of muffins per box.
We're told that we have 3 boxes and 2 muffins left after filling up all 3 boxes.
3m + 2 = 122
To solve for m, we subtract 2 from each side:
3m + 2 - 2 = 122 - 2
Cancel the 2's on the left side and we get:
3m = 120
Divide each side by 3 to isolate m:
3m/3 = 120/3
Cancel the 3's on the left side and we get:
m = [B]40[/B]
Jim has $440 in his savings account and adds $12 per week to the account. At the same time, Rhonda hJim has $440 in his savings account and adds $12 per week to the account. At the same time, Rhonda has $260 in her savings account and adds $18 per week to the account. How long will it take Rhonda to have the same amount in her account as Jim?
[U]Set up Jim's savings function S(w) where w is the number of weeks of savings:[/U]
S(w) = Savings per week * w + Initial Savings
S(w) = 12w + 440
[U]Set up Rhonda's savings function S(w) where w is the number of weeks of savings:[/U]
S(w) = Savings per week * w + Initial Savings
S(w) = 18w + 260
The problems asks for w where both savings functions equal each other:
12w + 440 = 18w + 260
To solve for w, we [URL='https://www.mathcelebrity.com/1unk.php?num=12w%2B440%3D18w%2B260&pl=Solve']type this equation into our math engine[/URL] and we get:
w = [B]30[/B]
Jim was thinking of a number. Jim adds 20 to it, then doubles it and gets an answer of 99.2. What waJim was thinking of a number. Jim adds 20 to it, then doubles it and gets an answer of 99.2. What was the original number?
Start with x.
Add 20 to it
x + 20
Double it
2(x + 20)
Set this equal to 99.2
2(x + 20) = 99.2
Divide each side by 2:
x + 20 = 49.6
Subtract 20 from each side:
x = [B]29.6[/B]
Jim works for his dad and earns $400 every week plus $22 for every chair (c) he sells. Write an equaJim works for his dad and earns $400 every week plus $22 for every chair (c) he sells. Write an equation that can be used to determine jims weekly salary (S) given the number of chairs (c) he sells.
[B]S(c) = 400 + 22c[/B]
Jina's test score average decreased by 10 points this semester. Write a signed number to represent tJina's test score average decreased by 10 points this semester. Write a signed number to represent this change in average.
Let A be the original average. The new average is:
A + (-10)
Jinas final exam has true/false questions, worth 3 points each, and multiple choice questions, worthJinas final exam has true/false questions, worth 3 points each, and multiple choice questions, worth 4 points each. Let x be the number of true/false questions she gets correct, and let y be the number of multiple choice questions she gets correct. She needs at least 76 points on the exam to get an A in the class. Using the values and variables given, write an inequality describing this.
At least means greater than or equal to, so we have:
[B]3x + 4y >= 76[/B]
Jody is buying a scrapbook and sheets of designer paper. She has $40 and needs at least $18.25 to buJody is buying a scrapbook and sheets of designer paper. She has $40 and needs at least $18.25 to buy the scrapbook. Each sheet of paper costs $0.34. How many sheets of paper can she buy?
Set up a cost equation for the number of pieces of paper (p):
0.34p + 18.25 <= 40 <-- we have an inequality since we can't go over 40
[URL='https://www.mathcelebrity.com/1unk.php?num=0.34p%2B18.25%3C%3D40&pl=Solve']Type this inequality into our search engine[/URL] and we get:
p <= 63.97
We round down, so we get p = [B]63[/B].
Joe is paid a 4% commission on all his sales in addition to a $500 per month salary. In May, his salJoe is paid a 4% commission on all his sales in addition to a $500 per month salary. In May, his sales were $100,235. How much money did he earn in May?
[U]The commission and salary formula is:[/U]
Earnings = Salary + Commission Percent * Sales
Plugging in our numbers with 4% as 0.04, we get:
Earnings = 500 + 0.04 * 100235
Earnings = 500 + 4009.40
Earnings = [B]4,509.40[/B]
Joe opens a bank account that starts with $20 and deposits $10 each week. Bria has a different accouJoe opens a bank account that starts with $20 and deposits $10 each week. Bria has a different account that starts with $1000 but withdraws $15 each week. When will Joe and Bria have the same amount of money?
Let w be the number of weeks. Deposits mean we add money and withdrawals mean we subtract money.
[U]Joe's Balance function B(w) where w is the number of weeks:[/U]
20 + 10w
[U]Bria's Balance function B(w) where w is the number of weeks:[/U]
1000 - 15w
[U]The problem asks for when both balances will be the same. So we set them equal to each other and solve for w:[/U]
20 + 10w = 1000 - 15w
To solve for w, we [URL='https://www.mathcelebrity.com/1unk.php?num=20%2B10w%3D1000-15w&pl=Solve']type this equation into our search engine[/URL] and we get:
w = 39.2
We round up to full week and get:
w = [B]40[/B]
joe plans to watch 3 movies each month. white an equation to represent the total number of movies njoe plans to watch 3 movies each month. white an equation to represent the total number of movies n that he will watch in m months
Build movie equation. 3 movies per month at m months means we multiply:
[B]n = 3m[/B]
Joel bought 88 books. Some books cost $13 each and some cost $17 each. In all, he spent $128. WhichJoel bought 88 books. Some books cost $13 each and some cost $17 each. In all, he spent $128. Which system of linear equations represents the given situation?
Let a be the number of the $13 book, and b equal the number of $17 books. We have the following system of linear equations:
[LIST=1]
[*][B]a + b = 88[/B]
[*][B]13a + 17b = 128[/B]
[/LIST]
To solve this system, use our calculator for the following methods:
[LIST]
[*][URL='http://www.mathcelebrity.com/simultaneous-equations.php?term1=a+%2B+b+%3D+88&term2=13a+%2B+17b+%3D+128&pl=Substitution']Substitution[/URL]
[*][URL='http://www.mathcelebrity.com/simultaneous-equations.php?term1=a+%2B+b+%3D+88&term2=13a+%2B+17b+%3D+128&pl=Elimination']Elimination[/URL]
[*][URL='http://www.mathcelebrity.com/simultaneous-equations.php?term1=a+%2B+b+%3D+88&term2=13a+%2B+17b+%3D+128&pl=Cramers+Method']Cramers Method[/URL]
[/LIST]
Joelle had $24 to spend on seven pencils. After buying them she had $10. How much did each pencil coJoelle had $24 to spend on seven pencils. After buying them she had $10. How much did each pencil cost?
Subtract the $10 left over from the $24 Joelle started with.
$24 - $10 = $14
Therefore, Joelle spent $14 on seven pencils.
Cost per pencil = Total Pencil Spend / Number of pencils
Cost per pencil = 14 / 7
Cost per pencil = [B]$2[/B]
Joey and Romnick play in the same soccer team. Last Saturday, Romnick scored 3 more goals than Joey,Joey and Romnick play in the same soccer team. Last Saturday, Romnick scored 3 more goals than Joey,but together they scored less than 9 goals. What are the possible number of goal Romnick scored?
Let j be Joey's goals
Let r by Romnick's goals
We're given 1 equation and 1 inequality:
[LIST=1]
[*]r = j + 3
[*]r + j < 9
[/LIST]
Rearranging equation 1 for j, we have:
[LIST=1]
[*]j = r - 3
[*]r + j < 9
[/LIST]
Substitute equation (1) into inequality (2) for j:
r + r - 3 < 9
2r - 3 < 9
[URL='https://www.mathcelebrity.com/1unk.php?num=2r-3%3C9&pl=Solve']Typing this inequality into our math engine[/URL], we get:
[B]r < 6[/B]
John has x number of marbles. His friend gave him 6 marbles more. Write an expression for the totalJohn has x number of marbles. His friend gave him 6 marbles more. Write an expression for the total number of marbles John now has.
More means we add:
[B]x + 6[/B]
John is paid a retainer of $550 a week as well as a 2% commission on sales made. Find his income forJohn is paid a retainer of $550 a week as well as a 2% commission on sales made. Find his income for the week if in one week he sells cars worth of $80000
Set up the income function C(s) where s is the number of sales for a week. Since 2% can be written as 0.02, we have:
I(s) = Retainer + 2% of sales
I(s) = 550 + 0.02s
The problem asks for a I(s) where s = 80,000:
I(s) = 550 + 0.02(80000)
I(s) = 550 + 1600
I(s) = [B]2150[/B]
John read the first 114 pages of a novel, which was 3 pages less than 1/3John read the first 114 pages of a novel, which was 3 pages less than 1/3
Set up the equation for the number of pages (p) in the novel
1/3p - 3 = 114
Add 3 to each side
1/3p = 117
Multiply each side by 3
[B]p = 351[/B]
John read the first 114 pages of a novel, which was 3 pages less than 1/3 of the novel.John read the first 114 pages of a novel, which was 3 pages less than 1/3 of the novel.
Let n be the number of pages in the novel. We have:
1/3n - 3 = 114
Multiply each side by 3:
n - 9 = 342
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=n-9%3D342&pl=Solve']equation solver[/URL], we get [B]n = 351[/B].
John spent $10.40 on 5 notebooks and 5 pens. Ariana spent $7.00 on 4 notebooks and 2 pens. What is tJohn spent $10.40 on 5 notebooks and 5 pens. Ariana spent $7.00 on 4 notebooks and 2 pens. What is the ost of 1 notebook and what is the cost of 1 pen?
Let the number of notebooks be n and the number of pens be p. We have two equations:
[LIST=1]
[*]5n + 5p = 10.40
[*]4n + 2p = 7
[/LIST]
Using our [URL='http://www.mathcelebrity.com/simultaneous-equations.php?term1=5n+%2B+5p+%3D+10.40&term2=4n+%2B+2p+%3D+7&pl=Cramers+Method']simultaneous equation calculator[/URL], we have:
[LIST]
[*][B]n = 1.42[/B]
[*][B]p = 0.66[/B]
[/LIST]
Jordan has already scored 153 points this basketball season. If he scores 17 points per game, whichJordan has already scored 153 points this basketball season. If he scores 17 points per game, which inequality represents the number of addional games he needs to play in order to score at least 255 points for the season?
Let g be the number of games Jordan plays. Total points per game is 17g. And he’s already scored 153. So we need 17g + 153 to be [I]at least [/I]255. The phrase at least means greater than or equal to, so we use the >= operator for our inequality:
[B]17g + 153 >= 255[/B]
Jordan practices his trombone for 45 minutes each day. Write an expression for the number of minutesJordan practices his trombone for 45 minutes each day. Write an expression for the number of minutes Jordan practices she practices the trombone in d days.
Let m = the number of minutes practiced. We ave:
[B]m = 45d[/B]
Jose has scored 556 points on his math tests so far this semester. To get an A for the semester, heJose has scored 556 points on his math tests so far this semester. To get an A for the semester, he must score at least 660 points. Write and solve an inequality to find the minimum number of points he must score on the remaining tests, n, in order to get an A.
We want to know n, such that 556 + n >= 660. <-- We use >= symbol since at least means greater than or equal to.
556 + n >= 660
Use our [URL='http://www.mathcelebrity.com/1unk.php?num=556%2Bn%3E%3D660&pl=Solve']equation/inequality calculator[/URL], we get [B]n >= 104[/B]
Josh earns $25 per week for cleaning his room. He cleaned his room for 7 weeks. How much money did JJosh earns $25 per week for cleaning his room. He cleaned his room for 7 weeks. How much money did Josh earn?
Total Earnings = Room cleaning Fee Per Week * Number of Weeks
Total Earnings = $25 * 7
Total Earnings = [B]$175[/B]
Juan has d dimes and q quarters in his pocket. The total value of the coins is less than $14.75. WhiJuan has d dimes and q quarters in his pocket. The total value of the coins is less than $14.75. Which inequality models this situation?
[U]Let d be the number of dimes and q be the number of quarters[/U]
[B]0.1d + 0.25q < 14.75[/B]
Julia has made 9 posts while trying out a new social media platform. Starting now, she plans to makeJulia has made 9 posts while trying out a new social media platform. Starting now, she plans to make 1 post daily. Write an equation that shows how the total number of posts, y, depends on the number of elapsed days, x. y=
Julia starts with 9 and adds one post per day on each of x days, so we have:
[B]y = x + 9[/B]
Julia owes 18.20 for the month of November. Her plan costs 9.00 for the first 600 text messages andJulia owes 18.20 for the month of November. Her plan costs 9.00 for the first 600 text messages and .10 cents for additional texts. How many texts did she send out?
Let m be the number of messages. We have a cost function of:
C(m) = 9 + 0.1(m - 600)
We are given C(m) = 18.20
18.20 = 9 + 0.1(m - 600)
18.20 = 9 + 0.1m - 60
Combine like terms:
18.20 = 0.1m - 51
Add 51 to each side
0.1m = 69.20
Divide each side by 0.1
[B]m = 692[/B]
Julie has $300 to plan a dance. There is a one-time fee of $75 to reserve a room. It also costs $1.5Julie has $300 to plan a dance. There is a one-time fee of $75 to reserve a room. It also costs $1.50 per person for food and drinks. What is the maximum number of people that can come to the dance?
Let each person be p. We have the following relationship for cost:
1.50p + 75 <=300
We use the <= sign since we cannot go over the $300 budget.
[URL='https://www.mathcelebrity.com/1unk.php?num=1.50p%2B75%3C%3D300&pl=Solve']We type this inequality into our search engine[/URL], and we get:
p <= 150
Since we have the equal sign within the inequality, the maximum number of people that can come to the dance is [B]150.[/B]
Julie has $48 to spend at a carnival. The carnival charges $8 for admission and $5 per ride. What isJulie has $48 to spend at a carnival. The carnival charges $8 for admission and $5 per ride. What is the maximum number of rides Julie can go on?
Subtract admission charges, since that money is gone:
$48 - $8 = $40 left over
If rides cost $5, we can go on $40/$5 = [B]8 rides[/B] maximum.
Julio had a coin box that consisted of only quarters and dimes. The number of quarters was three timJulio had a coin box that consisted of only quarters and dimes. The number of quarters was three times the number of dimes. If the number of dimes is n, what is the value of coins in the coin box?
Set up monetary value:
[LIST]
[*]Value of the dimes = 0.1n
[*]Value of the quarters = 0.25 * 3n = 0.75n
[/LIST]
Add them together
[B]0.85n[/B]
Julio has $150. Each week, he saves an additional $10. Write a function f(x) that models the total aJulio has $150. Each week, he saves an additional $10. Write a function f(x) that models the total amount of money Julio has after x weeks
f(x) = Savings per week * number of weeks + starting amount
f(x) = [B]10x + 150[/B]
Julius Caesar was born and 100 BC and was 66 years old when he died in which year did he die?Julius Caesar was born and 100 BC and was 66 years old when he died in which year did he die?
BC means "Before Christ". On a timeline, it represents a negative number, where year 0 is the birth of Christ. So we have -100 + 66 = -34
-34 means [B]34 BC[/B].
Kaitlin is a software saleswoman. Let y represent her total pay (in dollars). Let x represent the nuKaitlin is a software saleswoman. Let y represent her total pay (in dollars). Let x represent the number of copies of Math is Fun she sells. Suppose that x and y are related by the equation 2500+110x=y. What is Kaitlin totalm pay if she doesnt sell any copies of Math is Fun?
We want the value of y when x = 0.
y = 2500 + 110(o)
y = 2500 + 0
[B]y = 2500[/B]
Karen bought a bucket of popcorn at the movies for $5. She also bought some candy for $2 each. KarenKaren bought a bucket of popcorn at the movies for $5. She also bought some candy for $2 each. Karen has to spend less than $15 on the popcorn and candy. Which inequality can be used to find c, the number of candies that Karen could have bought?
Since the candy cost is the product of price and quantity, we have:
2c + 5 < 15
To solve this inequality for c, we [URL='https://www.mathcelebrity.com/1unk.php?num=2c%2B5%3C15&pl=Solve']type it in our math engine [/URL]and we get:
[B]c < 5[/B]
Karen earns $20 per hour and already has $400 saved, and wants to save $1200. How many hours until bKaren earns $20 per hour and already has $400 saved, and wants to save $1200. How many hours until bob gets his $1200 goal?
Set up he savings function S(h) where h is the number of hours needed:
S(h) = savings per hour * h + current savings amount
S(h) = 20h + 400
The question asks for h when S(h) = 1200:
20h + 400 = 1200
To solve for h, we [URL='https://www.mathcelebrity.com/1unk.php?num=20h%2B400%3D1200&pl=Solve']type this equation into our search engine[/URL] and we get:
h = [B]40[/B]
Karen wants to buy new shoes. There is a promotion for 3 pairs of sneakers for $450.75, how much wouKaren wants to buy new shoes. There is a promotion for 3 pairs of sneakers for $450.75, how much would one pair of sneakers cost?
Cost per sneaker = Total Cost / number of sneakers
Cost per sneaker = 450.75/3
Cost per sneaker = [B]150.25[/B]
Karin has 3 to spend in the arcade. The game she likes costs 50c per play. What are the possible numKarin has 3 to spend in the arcade. The game she likes costs 50c per play. What are the possible numbers of times that she can play?
[U]Let x = the number of games Karin can play with her money[/U]
0.5x = 3
[U]Divide each side by 0.5[/U]
[B]x = 6[/B]
Karmen just got hired to work at Walmart. She spent $15 on her new uniform and she gets paid $8 perKarmen just got hired to work at Walmart. She spent $15 on her new uniform and she gets paid $8 per hour. Write an equation that represents how much money she profits after working for a certain number of hours. How many hours will she have to work for in order to buy a new snowboard ( which costs $450)
Her profit equation P(h) where h is the number of hours worked is:
[B]P(h) = 8h - 15[/B]
Note: [I]We subtract 15 as the cost of Karmen's uniform.
[/I]
Next, we want to see how many hours Karmen must work to buy a new snowboard which costs $450.
We set the profit equation equal to $450
8h - 15 = 450
[URL='https://www.mathcelebrity.com/1unk.php?num=8h-15%3D450&pl=Solve']Typing 8h - 15 = 450 into the search engine[/URL], we get h = 58.13. We round this up to 59 hours.
Kayla has $1500 in her bank account. She spends $150 each week. Write an equation in slope-interceptKayla has $1500 in her bank account. She spends $150 each week. Write an equation in slope-intercept form that represents the relationship between the amount in Kayla's bank account, A, and the number of weeks she has been spending, w
[LIST]
[*]Slope intercept form is written as A = mw + b
[*]m = -150, since spending is a decrease
[*]b = 1500, since this is what Kayla starts with when w = 0
[/LIST]
[B]A = -150w + 1500[/B]
keisha is babysitting at 8$ per hour to earn money for a car. So far she has saved $1300. The car thkeisha is babysitting at 8$ per hour to earn money for a car. So far she has saved $1300. The car that keisha wants to buy costs at least $5440. How many hours does Keisha need to babysit to earn enough to buy the car
Set up the Earning function E(h) where h is the number of hours Keisha needs to babysit:
E(h) = 8h + 1300
The question asks for h when E(h) is at least 5440. The phrase [I]at least[/I] means an inequality, which is greater than or equal to. So we have:
8h + 1300 >= 5440
To solve this inequality, we [URL='https://www.mathcelebrity.com/1unk.php?num=8h%2B1300%3E%3D5440&pl=Solve']type it in our search engine[/URL] and we get:
h >= [B]517.5[/B]
Keith has $500 in a savings account at the beginning of the summer. He wants to have at least $200 aKeith has $500 in a savings account at the beginning of the summer. He wants to have at least $200 at the end of the summer. He withdraws $25 per week for food, clothing, and movie tickets. How many weeks can Keith withdraw money from his account.
Keith's balance is written as B(w) where w is the number of weeks passed since the beginning of summer. We have:
B(w) = 500 - 25w
The problem asks for B(w) = 200, so we set 500 - 25w = 200.
[URL='https://www.mathcelebrity.com/1unk.php?num=500-25w%3D200&pl=Solve']Typing 500 - 25w = 200 into the search engine[/URL], we get [B]w = 12[/B].
Keith has $500 in a savings account at the beginning of the summer. He wants to have at least $200 aKeith has $500 in a savings account at the beginning of the summer. He wants to have at least $200 at the end of the summer. He withdraws $25 per week for food, clothing, and movie tickets. How many weeks can Keith withdraw money from his account
Our account balance is:
500 - 25w where w is the number of weeks.
We want to know the following for w:
500 - 25w = 200
[URL='https://www.mathcelebrity.com/1unk.php?num=500-25w%3D200&pl=Solve']Typing this equation into our search engine[/URL], we get:
[B]w = 12[/B]
Keith is going to Renaissance Festival with $120 to pay for his admission, food and the cost of gameKeith is going to Renaissance Festival with $120 to pay for his admission, food and the cost of games. He spends a total of $85 on admission and food. Games cost $5 each. Which inequality models the maximum number of games Keith can play.
Let the number of games be g. Keith can spend less than or equal to 120. So we have
[B]5g + 85 <= 120
[/B]
If we want to solve the inequality for g, we [URL='https://www.mathcelebrity.com/1unk.php?num=5g%2B85%3C%3D120&pl=Solve']type it in our search engine[/URL] and we have:
g <= 7
kelko buys candy that costs $7 per pound. She will spend less than $84 on candy. What are the possibkelko buys candy that costs $7 per pound. She will spend less than $84 on candy. What are the possible numbers of pounds she will buy.
Let p be the number of pounds Kelko buys.
p < 84/7
[B]p < 12[/B]
Kellie has only $5.25 to buy breakfast. She wants to buy as many carrot muffins as she can. Each mufKellie has only $5.25 to buy breakfast. She wants to buy as many carrot muffins as she can. Each muffin costs $0.75. What’s an equation?
Let m be the number of muffins. Cost equals price * quantity, so we have:
[B]0.75m = 5.25
[/B]
To solve the equation for m, we [URL='https://www.mathcelebrity.com/1unk.php?num=0.75m%3D5.25&pl=Solve']type the equation into our search engine[/URL] and we get:
m = [B]7[/B]
Kendra has $5.70 in quarters and nickels. If she has 12 more quarters than nickels, how many of eachKendra has $5.70 in quarters and nickels. If she has 12 more quarters than nickels, how many of each coin does she have?
Let n be the number of nickels and q be the number of quarters. We have:
[LIST=1]
[*]q = n + 12
[*]0.05n + 0.25q = 5.70
[/LIST]
Substitute (1) into (2)
0.05n + 0.25(n + 12) = 5.70
0.05n + 0.25n + 3 = 5.70
Combine like terms:
0.3n + 3 = 5.70
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=0.3n%2B3%3D5.70&pl=Solve']equation calculator[/URL], we get [B]n = 9[/B].
Substituting that back into (1), we get:
q = 9 + 12
[B]q = 21[/B]
Kerry asked a bank teller to cash 390 check using 20 bills and 50 bills. If the teller gave her a toKerry asked a bank teller to cash 390 check using 20 bills and 50 bills. If the teller gave her a total of 15 bills, how many of each type of bill did she receive?
Let t = number of 20 bills and f = number of 50 bills. We have two equations.
(1) 20t + 50f = 390
(2) t + f = 15
[U]Rearrange (2) into (3) for t, by subtracting f from each side:[/U]
(3) t = 15 - f
[U]Now substitute (3) into (1)[/U]
20(15 - f) + 50f = 390
300 - 20f + 50f = 390
[U]Combine f terms[/U]
300 + 30f = 390
[U]Subtract 300 from each side[/U]
30f = 90
[U]Divide each side by 30[/U]
[B]f = 3[/B]
[U]Substitute f = 3 into (3)[/U]
t = 15 - 3
[B]t = 12[/B]
Kevin and Randy Muise have a jar containing 52 coins, all of which are either quarters or nickels.Kevin and Randy Muise have a jar containing 52 coins, all of which are either quarters or nickels. The total value of the coins in the jar is $6.20. How many of each type of coin do they have?
Let q be the number of quarters, and n be the number of nickels. We have:
[LIST=1]
[*]n + q = 52
[*]0.05n + 0.25q = 6.20
[/LIST]
We can solve this system of equations three ways:
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=n+%2B+q+%3D+52&term2=0.05n+%2B+0.25q+%3D+6.20&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=n+%2B+q+%3D+52&term2=0.05n+%2B+0.25q+%3D+6.20&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=n+%2B+q+%3D+52&term2=0.05n+%2B+0.25q+%3D+6.20&pl=Cramers+Method']Cramers Rule[/URL]
[/LIST]
No matter what method we choose, we get the same answer:
[LIST]
[*][B]n = 34[/B]
[*][B]q = 18[/B]
[/LIST]
Kierra had $35 to spend at the movies. If it was $11 to get in and snacks were 2$ each, how many snaKierra had $35 to spend at the movies. If it was $11 to get in and snacks were 2$ each, how many snacks could she buy?
Subtract off cover charge:
35 - 11 = 24
Let s equal the number of snacks Kierra can buy. With each snack costing $2, we have the following equation:
2s = 24
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=2s%3D24&pl=Solve']equation calculator[/URL], we have:
[B]s = 12[/B]
kim and jason just had business cards made. kim’s printing company charged a one time setup fee of $kim and jason just had business cards made. kim’s printing company charged a one time setup fee of $8 and then $20 per box of cards. jason,meanwhile ordered his online. they cost $8 per box. there was no setup fee, but he had to pay $20 to have his order shipped to his house. by coincidence, kim and jason ended up spending the same amount on their business cards. how many boxes did each buy? how much did each spend?
Set up Kim's cost function C(b) where b is the number of boxes:
C(b) = Cost per box * number of cards + Setup Fee + Shipping Fee
C(b) = 20c + 8 + 0
Set up Jason's cost function C(b) where b is the number of boxes:
C(b) = Cost per box * number of cards + Setup Fee + Shipping Fee
C(b) = 8c + 0 + 20
Since Kim and Jason spent the same amount, set both cost equations equal to each other:
20c + 8 = 8c + 20
[URL='https://www.mathcelebrity.com/1unk.php?num=20c%2B8%3D8c%2B20&pl=Solve']Type this equation into our search engine[/URL] to solve for c, and we get:
c = 1
How much did they spend? We pick either Kim's or Jason's cost equation since they spent the same, and plug in c = 1:
Kim:
C(1) = 20(1) + 8
C(1) = 20 + 8
C(1) = [B]28
[/B]
Jason:
C(1) = 8(1) + 20
C(1) = 8 + 20
C(1) = [B]28[/B]
Kim earns $30 for babysitting on Friday nights. She makes an average of $1.25 in tips per hour. WritKim earns $30 for babysitting on Friday nights. She makes an average of $1.25 in tips per hour. Write the function of Kim's earnings, and solve for how much she would make after 3 hours.
Set up the earnings equation E(h) where h is the number of hours. We have the function:
E(h) = 1.25h + 30
The problem asks for E(3):
E(3) = 1.25(3) + 30
E(3) = 4.75 + 30
E(3) = [B]$34.75[/B]
kim wants to buy candy for 4 dollars a pound. if she wants to spend less than 20 dollars, how many bkim wants to buy candy for 4 dollars a pound. if she wants to spend less than 20 dollars, how many bags can she buy
Since cost = price * quantity, we have the following inequality with b as the number of bags:
4b < 20
To solve this inequality for b, we [URL='https://www.mathcelebrity.com/interval-notation-calculator.php?num=4b%3C20&pl=Show+Interval+Notation']type it in our search engine[/URL] and we get:
[B]b < 5[/B]
Kim, Jenny, and Wendy are basketball players. Each plays a different position (guard, forward, and cKim, Jenny, and Wendy are basketball players. Each plays a different position (guard, forward, and center) and wears a different number (30, 32, and 35).Kim and number 30 are too small to play center. Number 35 is the center. Neither Kim nor Wendy is the forward. Who plays guard, and what uniform number does she wear?
[LIST]
[*]Kim does not play center
[*]Kim does not play forward
[*]Which means [B]Kim is the guard[/B]
[*]Since Kim is not number 30, and she cannot be number 35 since Number 35 is the center, the only number left is [B]Number 32[/B]
[/LIST]
[B]Kim is the guard with number 32[/B]
Kimberly takes 4 pages of notes during each hour of class. Write an equation that shows the relationKimberly takes 4 pages of notes during each hour of class. Write an equation that shows the relationship between the time in class x and the number of pages y.
With x hours and y pages, our equation is:
[B]y = 4x [/B]
Kimberly wants to become a member of the desert squad at a big catering company very badly, but sheKimberly wants to become a member of the desert squad at a big catering company very badly, but she must pass three difficult tests to do so. On the first Terrifying Tiramisu test she scored a 68. On the second the challenging Chocalate-Sprinkled Creme Brulee she scored a 72. If kimberly needs an average of 60 on all three tests to become a member on the squad what is the lowest score she can make on her third and final test
This is a missing average problem.
Given 2 scores of 68, 72, what should be score number 3 in order to attain an average score of 60?
[SIZE=5][B]Setup Average Equation:[/B][/SIZE]
Average = (Sum of our 2 numbers + unknown score of [I]x)/[/I]Total Numbers
60 = (68 + 72 + x)/3
[SIZE=5][B]Cross Multiply[/B][/SIZE]
68 + 72 + x = 60 x 3
x + 140 = 180
[SIZE=5][B]Subtract 140 from both sides of the equation to isolate x:[/B][/SIZE]
x + 140 - 140 = 180 - 140
x = [B]40[/B]
Kristen and Julia went skating. Julia skated 30 minutes longer than Kristen. If Julia skated for 55Kristen and Julia went skating. Julia skated 30 minutes longer than Kristen. If Julia skated for 55 minutes, write and solve an equation to find how long Kristen skated
Let j be the number of minutes Julia skates and k be the number of minutes Kristen skated. We have 2 equations:
[B](1) j = k + 30
(2) j = 55[/B]
[U]Plug (2) into (1)[/U]
j = 55 + 30
[B]j = 85 minutes, or 1 hour and 25 minutes[/B]
Krutika was thinking of a number. Krutika doubles it and adds 8.7 to get an answer of 64.9. Form anKrutika was thinking of a number. Krutika doubles it and adds 8.7 to get an answer of 64.9. Form an equation with x from the information.
[LIST=1]
[*]The number we start with is x.
[*]Double it means we multiply by 2: 2x
[*]Add 8.7: 2x + 8.7
[*][I]Get an answer[/I] means we have an equation, so we set (3) above equal to 64.9
[*][B]2x + 8.7 = 64.9[/B]
[/LIST]
If you want to solve for x, use our [URL='http://www.mathcelebrity.com/1unk.php?num=2x%2B8.7%3D64.9&pl=Solve']equation calculator[/URL].
Lagrange Four Square Theorem (Bachet Conjecture)Free Lagrange Four Square Theorem (Bachet Conjecture) Calculator - Builds the Lagrange Theorem Notation (Bachet Conjecture) for any natural number using the Sum of four squares.
Lamar had N record albums that he tried to sell at a garage sale for $5 each. If the number of recorLamar had N record albums that he tried to sell at a garage sale for $5 each. If the number of record albums he didn't sell is called Q, how much money did Lamar get from record album sales?
Sales = Price * (Albums had - Albums sold)
[B]Sales = 5(N - Q)[/B]
larger of 2 numbers is 12 more than the smaller number. if the sum of the 2 numbers is 74 find the 2larger of 2 numbers is 12 more than the smaller number. if the sum of the 2 numbers is 74 find the 2 numbers
Declare Variables for each number:
[LIST]
[*]Let l be the larger number
[*]Let s be the smaller number
[/LIST]
We're given two equations:
[LIST=1]
[*]l = s + 12
[*]l + s = 74
[/LIST]
Equation (1) already has l solved for. Substitute equation (1) into equation (2) for l:
s + 12 + s = 74
Solve for [I]s[/I] in the equation s + 12 + s = 74
[SIZE=5][B]Step 1: Group the s terms on the left hand side:[/B][/SIZE]
(1 + 1)s = 2s
[SIZE=5][B]Step 2: Form modified equation[/B][/SIZE]
2s + 12 = + 74
[SIZE=5][B]Step 3: Group constants:[/B][/SIZE]
We need to group our constants 12 and 74. To do that, we subtract 12 from both sides
2s + 12 - 12 = 74 - 12
[SIZE=5][B]Step 4: Cancel 12 on the left side:[/B][/SIZE]
2s = 62
[SIZE=5][B]Step 5: Divide each side of the equation by 2[/B][/SIZE]
2s/2 = 62/2
s = [B]31[/B]
To solve for l, we substitute in s = 31 into equation (1):
l = 31 + 12
l = [B]43[/B]
larger of 2 numbers is 4 more than the smaller. the sum of the 2 is 40. what is the larger number?larger of 2 numbers is 4 more than the smaller. the sum of the 2 is 40. what is the larger number?
Declare variables for the 2 numbers:
[LIST]
[*]Let l be the larger number
[*]Let s be the smaller number
[/LIST]
We're given two equations:
[LIST=1]
[*]l = s + 4
[*]l + s = 40
[/LIST]
To get this problem in terms of the larger number l, we rearrange equation (1) in terms of l.
Subtract 4 from each side in equation (1)
l - 4 = s + 4 - 4
Cancel the 4's and we get:
s = l - 4
Our given equations are now:
[LIST=1]
[*]s = l - 4
[*]l + s = 40
[/LIST]
Substitute equation (1) into equation (2) for s:
l + l - 4 = 40
Grouping like terms for l, we get:
2l - 4 = 40
Add 4 to each side:
2l - 4 + 4 = 40 + 4
Cancelling the 4's on the left side, we get
2l = 44
Divide each side of the equation by 2 to isolate l:
2l/2 = 44/2
Cancel the 2's on the left side and we get:
l = [B]22[/B]
Largest Possible NumberLargest Possible Number Calculator - Calculates the largest possible number from a given set of digits
Larry is buying new clothes for his return to school. He is buying shoes for $57 and shirts cost $15Larry is buying new clothes for his return to school. He is buying shoes for $57 and shirts cost $15 each. He has $105 to spend. Which of the following can be solved to find the number of shirts he can afford?
Let s be the number of shirts. Since shoes are a one-time fixed cost, we have:
15s + 57 = 105
We want to solve this equation for s. We [URL='https://www.mathcelebrity.com/1unk.php?num=15s%2B57%3D105&pl=Solve']type it in our math engine[/URL] and we get:
s = [B]3.2 or 3 whole shirts[/B]
Last week at the business where you work, you sold 120 items. The business paid $1 per item and solLast week at the business where you work, you sold 120 items. The business paid $1 per item and sold them for $3 each. What profit did the business make from selling the 120 items?
Let n be the number of items. We have the following equations:
Cost Function C(n) = n
For n = 120, we have C(120) = 120
Revenue Function R(n) = 3n
For n = 120, we have R(120) = 3(120) = 360
Profit = Revenue - Cost
Profit = 360 - 120
Profit = [B]240[/B]
last week, bill drove 252 miles. This week, he drove m miles. Using m , write an expression for thelast week, bill drove 252 miles. This week, he drove m miles. Using m, write an expression for the total number of miles he drove in the two weeks
We add the distance driven:
[B]252 + m[/B]
Last year, Greg biked 524 miles. This year, he biked m miles. Using m , write an expression for theLast year, Greg biked 524 miles. This year, he biked m miles. Using m , write an expression for the total number of miles he biked.
We add both years to get our algebraic expression of miles biked:
[B]m + 524[/B]
Last year, Maria biked M miles. This year, she biked 390 miles. Using m , write an expression for thLast year, Maria biked M miles. This year, she biked 390 miles. Using m , write an expression for the total number of miles she biked.
[U]Calculate Total miles biked[/U]
Total miles biked = Last Year + This year
Total miles biked = [B]m + 390[/B]
Last year, the 6th grade had 200 students. This year the number decreased 35% How many students areLast year, the 6th grade had 200 students. This year the number decreased 35% How many students are in this year's 6th grade class?
[URL='https://www.mathcelebrity.com/percentoff.php?p1=&m=35&p2=200&pl=Calculate']200 decreased by 35%[/URL] is [B]130[/B]
Lebron James scored 288 points in 9 games this season. Assuming he continues to score at this constaLebron James scored 288 points in 9 games this season. Assuming he continues to score at this constant rate, write a linear equation that represents the scenario.
288 points / 9 games = 32 points per game
Let g be the number of games Lebron plays. We build an equation for his season score:
Lebron's Season Score = Points per game * number of games
Lebron's Season Score = [B]32g[/B]
Leilani can read 20 pages in 2 minutes. if she can maintain this page, how many pages can she read iLeilani can read 20 pages in 2 minutes. if she can maintain this page, how many pages can she read in an hour?
We know that 1 hour is 60 minutes.
Let p be the number of pages Leilani can read in 1 hour (60 minutes)
The read rate is constant, so we can build a proportion.
20 pages /2 minutes = p/60
We can cross multiply:
Numerator 1 * Denominator 2 = Denominator 1 * Numerator 2
[SIZE=5][B]Solving for Numerator 2 we get:[/B][/SIZE]
Numerator 2 = Numerator 1 * Denominator 2/Denominator 1
[SIZE=5][B]Evaluating and simplifying using your input values we get:[/B][/SIZE]
p = 20 * 60/ 2
p = 1200/2
p = [B]600[/B]
Leo collects 4 green apples each day for 10 days. How many apples does Leo collect?Leo collects 4 green apples each day for 10 days. How many apples does Leo collect?
Apples Collected = Apples per day * number of days
Apples Collected = 10 * 4
Apples Collected = [B]40 apples[/B]
Leonard earned $100 from a bonus plus $15 per day (d) at his job this week. Which of the following eLeonard earned $100 from a bonus plus $15 per day (d) at his job this week. Which of the following expressions best represents Leonards income for the week?
We set up an income function I(d), were d is the number of days Leonard works:
[B]I(d) = 15d + 100
[/B]
Each day, Leonard earns $15. Then we add on the $100 bonus
Leslie has 8 pencils. She has 9 fewer pencils than Michelle. How many pencils does Michelle have?Let m = the number of pencils Michelle has.
So, Leslie has m - 9 = 8.
Add 9 to both sides:
m = 17. So Michelle has 17 pencils, and Leslie has 8, which is 9 fewer than 17
Let n be an integer. If n^2 is odd, then n is oddLet n be an integer. If n^2 is odd, then n is odd
Proof by contraposition:
Suppose that n is even. Then we can write n = 2k
n^2 = (2k)^2 = 4k^2 = 2(2k) so it is even
[I]So an odd number can't be the square of an even number. So if an odd number is a square it must be the square of an odd number.[/I]
Let n be the middle number of three consecutive integersLet n be the middle number of three consecutive integers
This means:
[LIST]
[*]n is the second of three consecutive integers
[*]The first consecutive integer is n - 1
[*]The third consecutive integer is n + 1
[/LIST]
The sum is found by:
n - 1 + n + n + 1
Simplifying, we get:
(n + n + n) + 1 - 1
[B]3n[/B]
Let P(n) and S(n) denote the product and the sum, respectively, of the digits of the integer n. ForLet P(n) and S(n) denote the product and the sum, respectively, of the digits of the integer n. For example, P(23) = 6 and S(23) = 5. Suppose N is a two-digit number such that N = P(N) + S(N). What could N be? Is there more than one answer?
For example, for 23 P(23) = 6 and S(23) = 5, but 23 could not be the N that we want since 23 <> 5 + 6
Let t = tens digit and o = ones digit
P(n) = to
S(n) = t + o
P(n) + S(n) = to + t + o
N = 10t + o
Set them equal to each other N = P(N) + S(N)
10t + o = to + t + o
o's cancel, so we have
10t = to + t
Subtract t from each side, we have
9t = to
Divide each side by t
o = 9
So any two-digit number with 9 as the ones digit will work:
[B]{19,29,39,49,59,69,79,89,99}[/B]
Let x be an integer. If x is odd, then x^2 is oddLet x be an integer. If x is odd, then x^2 is odd
Proof: Let x be an odd number. This means that x = 2n + 1 where n is an integer.
[U]Squaring x, we get:[/U]
x^2 = (2n + 1)^2 = (2n + 1)(2n + 1)
x^2 = 4n^2 + 4n + 1
x^2 = 2(2n^2 + 2n) + 1
2(2n^2 + 2n) is an even number since 2 multiplied by any integer is even
So adding 1 is an odd number
[MEDIA=youtube]GlzV80M33x0[/MEDIA]
Letter Arrangements in a WordFree Letter Arrangements in a Word Calculator - Given a word, this determines the number of unique arrangements of letters in the word.
Liam, a 19th century cowboy, carries an 1847 Colt single action 6 shooter revolver. So proficient isLiam, a 19th century cowboy, carries an 1847 Colt single action 6 shooter revolver. So proficient is he with this weapon that when he fires all 6 shots in a row, the time between the first bullet and the last is 40 seconds. How long would it take him to fire 4 shots?
We set up a proportion of shots to seconds where s is the number of seconds it takes to fire 4 shots:
6/40 = 4/s
Using our [URL='https://www.mathcelebrity.com/prop.php?num1=6&num2=4&den1=40&den2=s&propsign=%3D&pl=Calculate+missing+proportion+value']proportion calculator[/URL], we get:
s = [B]26.67[/B]
License plate that is made up of 4 letters followed by 2 numbersLicense plate that is made up of 4 letters followed by 2 numbers
Using the fundamental rule of counting, we have:
26 possible letters * 26 possible letters * 26 possible letters * 26 possible letters * 10 possible numbers * 10 possible numbers = [B]45,697,600 license plate combinations[/B]
license plate with 4 letter combinations and 3 number combinationslicense plate with 4 letter combinations and 3 number combinations
There are 26 total letters and 10 digits [0-9].
We have 26 C 4 * 10 C 3.
[URL='http://www.mathcelebrity.com/permutation.php?num=26&den=4&pl=Combinations']26 C 4[/URL] = 14,950
[URL='http://www.mathcelebrity.com/permutation.php?num=10&den=3&pl=Combinations']10 C 3[/URL] = 120
Total license plate combinations:
14,950 * 120 = [B]1,794,000[/B]
License plates are made using 3 letters followed by 3 digits. How many plates can be made of repetitLicense plates are made using 3 letters followed by 3 digits. How many plates can be made of repetition of letters and digits is allowed
We have 26 letters in the alphabet
We have 10 digits [0-9]
The problem asks for the following license plate scenario of Letters (L) and Digits (D)
LLLDDD
The number of plates we can make using L = 26 and D = 10 using the fundamental rule of counting is:
Number of License Plates = 26 * 26 * 26 * 10 * 10 * 10
Number of License Plates = [B]17,576,000[/B]
Lily needs an internet connectivity package for her firm. She has a choice between CIVISIN and GOMILily needs an internet connectivity package for her firm. She has a choice between CIVISIN and GOMI with the following monthly billing policies. Each company's monthly billing policy has an initial operating fee and charge per megabyte.
Operating Fee charge per Mb
CIVSIN 29.95 0.14
GOMI 4.95 0.39
(i) Write down a system of equations to model the above situation
(ii) At how many Mb is the monthly cost the same? What is the equal monthly cost of the two plans?
(i) Set up a cost function C(m) for CIVSIN where m is the number of megabytes used:
C(m) = charge per Mb * m + Operating Fee
[B]C(m) = 0.14m + 29.95[/B]
Set up a cost function C(m) for GOMI where m is the number of megabytes used:
C(m) = charge per Mb * m + Operating Fee
[B]C(m) = 0.39m + 4.95
[/B]
(ii) At how many Mb is the monthly cost the same?
Set both cost functions equal to each other:
0.14m + 29.95 = 0.39m + 4.95
We [URL='https://www.mathcelebrity.com/1unk.php?num=0.14m%2B29.95%3D0.39m%2B4.95&pl=Solve']type this equation into our search engine[/URL] and we get:
m = [B]100[/B]
(ii) What is the equal monthly cost of the two plans?
CIVSIN - We want C(100) from above where m = 100
C(100) = 0.14(100) + 29.95
C(100) = 14 + 29.95
C(100) = [B]43.95[/B]
GOMI - We want C(100) from above where m = 100
C(100) = 0.39(100) + 4.95
C(100) = 39 + 4.95
C(100) = [B]43.95[/B]
Linda estimates that her business is growing at a rate of 6% per year. Her profits is 2002 were $30,Linda estimates that her business is growing at a rate of 6% per year. Her profits is 2002 were $30,000. To the nearest hundred dollars, estimate her profits for 2011.
Calculate the number of years of appreciation:
Appreciation years = 2011 - 2002
Appreciation years = 9
So we want 30000 to grow for 9 years at 6%. We [URL='https://www.mathcelebrity.com/apprec-percent.php?num=30000togrowfor9yearsat6%.whatisthevalue&pl=Calculate']type this into our search engine[/URL] and we get:
[B]$50,684.37[/B]
Linda takes classes at both Westside Community College and Pinewood Community College. At Westside,Linda takes classes at both Westside Community College and Pinewood Community College. At Westside, class fees are $98 per credit hour, and at Pinewood, class fees are $115 per credit hour. Linda is taking a combined total of 18 credit hours at the two schools. Suppose that she is taking w credit hours at Westside. Write an expression for the combined total dollar amount she paid for her class fees.
Let p be the number of credit hours at Pinewood. We have two equations:
[LIST]
[*]98w for Westside
[*]115p at Pinewood
[*]w + p = 18
[*]Total fees: [B]98w + 115p[/B]
[/LIST]
Lindsey took a total of 8 quizzes over the course of 2 weeks. After attending 5 weeks of school thisLindsey took a total of 8 quizzes over the course of 2 weeks. After attending 5 weeks of school this quarter, how many quizzes will Lindsey have taken in total? Assume the relationship is directly proportional.
Since the relationship is directly proportional, set up a proportion of quizzes to weeks, where q is the number of quizzes Lindsey will take in 5 weeks:
8/2 = q/5
[URL='https://www.mathcelebrity.com/prop.php?num1=8&num2=q&den1=2&den2=5&propsign=%3D&pl=Calculate+missing+proportion+value']We type this proportion into our search engine[/URL], and we get:
[B]q = 20
[/B]
Another way to look at this is, Lindsey takes 8 quizzes over 2 weeks. This means she takes 4 per week since 8/2 = 4.
So if she takes 4 quizzes per week, then in 5 weeks, she takes 4*5 = 20 quizzes.
Linear Congruential GeneratorFree Linear Congruential Generator Calculator - Using the linear congruential generator algorithm, this generates a list of random numbers based on your inputs
Lisa has $150 at most to spend on clothes. She wants to buy a pair of jeans for $58 and will spend tLisa has $150 at most to spend on clothes. She wants to buy a pair of jeans for $58 and will spend the rest on t-shirts that cost $14 each.
Let the number of t-shirts be t. Lisa can spend up to, but not more than 150. We have the following inequality:
14t + 58 <= 150
To solve this inequality, we [URL='https://www.mathcelebrity.com/1unk.php?num=14j%2B58%3C%3D150&pl=Solve']type it in our search engine[/URL] and we get:
t <= 6.57
To round to a whole number, we round down to [B]t = 6 [/B]
Lisa wants to rent a boat and spend less than $52. The boat costs $7 per hour, and Lisa has a discouLisa wants to rent a boat and spend less than $52. The boat costs $7 per hour, and Lisa has a discount coupon for $4 off. What are the possible numbers of hours Lisa could rent the boat?
Calculate discounted cost:
Discounted cost = Full Cost - Coupon
Discounted cost = 52 - 7
Discounted cost = 45
Since price equals rate * hours (h), and we want the inequality (less than) we have:
7h < 52
Using our [URL='https://www.mathcelebrity.com/interval-notation-calculator.php?num=7h%3C52&pl=Show+Interval+Notation']inequality calculator,[/URL] we see that:
[B]h < 7.42[/B]
list the natural numbers less than 70 that are divisible by 8list the natural numbers less than 70 that are divisible by 8
Natural numbers are {1, 2, 3, ...
We want natural numbers less than 70 which are divisible by 8:
[LIST]
[*]8 * 1 = 8
[*]8 * 2 = 16
[*]8 * 3 = 24
[*]8 * 4 = 32
[*]8 * 5 = 40
[*]8 * 6 = 48
[*]8 * 7 = 56
[*]8 * 8 = 64
[/LIST]
Our answer is:
[B]{8, 16, 24, 32, 40, 48, 56, 64}[/B]
Liz harold has a jar in her office that contains 47 coins. Some are pennies and the rest are dimes.Liz harold has a jar in her office that contains 47 coins. Some are pennies and the rest are dimes. If the total value of the coins is 2.18, how many of each denomination does she have?
[U]Set up two equations where p is the number of pennies and d is the number of dimes:[/U]
(1) d + p = 47
(2) 0.1d + 0.01p = 2.18
[U]Rearrange (1) into (3) by solving for d[/U]
(3) d = 47 - p
[U]Substitute (3) into (2)[/U]
0.1(47 - p) + 0.01p = 2.18
4.7 - 0.1p + 0.01p = 2.18
[U]Group p terms[/U]
4.7 - 0.09p = 2.18
[U]Add 0.09p to both sides[/U]
0.09p + 2.18 = 4.7
[U]Subtract 2.18 from both sides[/U]
0.09p = 2.52
[U]Divide each side by 0.09[/U]
[B]p = 28[/B]
[U]Now substitute that back into (3)[/U]
d =47 - 28
[B]d = 19[/B]
log5 = 0.699, log2 = 0.301. Use these values to evaluate log40log5 = 0.699, log2 = 0.301. Use these values to evaluate log40.
One of the logarithmic identities is: log(ab) = log(a) + log(b). Using the numbers 2 and 5, we somehow need to get to 40.
[URL='http://www.mathcelebrity.com/factoriz.php?num=40&pl=Show+Factorization']List factors of 40[/URL].
On the link above, take a look at the bottom where it says prime factorization. We have:
40 = 2 x 2 x 2 x 5
Using our logarithmic identity, we have:
log40 = log(2 x 2 x 2 x 5)
Rewriting this using our identity, we have:
log40 = log2 + log2 + log2 + log5
log40 = 0.301 + 0.301 + 0.301 + 0.699
log40 = [B]1.602
[MEDIA=youtube]qyG_Jkf9VDc[/MEDIA][/B]
Logarithms and Natural Logarithms and Eulers Constant (e)Free Logarithms and Natural Logarithms and Eulers Constant (e) Calculator - This calculator does the following:
* Takes the Natural Log base e of a number x Ln(x) → logex
* Raises e to a power of y, ey
* Performs the change of base rule on logb(x)
* Solves equations in the form bcx = d where b, c, and d are constants and x is any variable a-z
* Solves equations in the form cedx=b where b, c, and d are constants, e is Eulers Constant = 2.71828182846, and x is any variable a-z
* Exponential form to logarithmic form for expressions such as 53 = 125 to logarithmic form
* Logarithmic form to exponential form for expressions such as Log5125 = 3
Look at this sequence: 53, 53, 40, 40, 27, 27, ... What number should come next?Look at this sequence: 53, 53, 40, 40, 27, 27, ... What number should come next?
This looks like a sequence where we subtract 13 and then 0, 13 and then 0 from the prior number.
Since the last group of 27 repeated, our next number is found by subtracting 13:
27 - 13 = [B]14[/B]
Lotto Drawing ProbabilityFree Lotto Drawing Probability Calculator - Given a lotto drawing with a Pick(x) out of (y) total choices, this calculates the probability of winning that lottery picking all (x) correct numbers.
Lucas has nickels,dimes,and quarters in the ratio 1:3:2. If 10 of Lucas coins are quarters, how manyLucas has nickels,dimes,and quarters in the ratio 1:3:2. If 10 of Lucas coins are quarters, how many nickels and dimes does Lucas have?
1 + 3 + 2 = 6.
Quarters account for 2/6 which is 1/3 of the total coin count. Let x be the total number of coins. We have:
1/3x = 10
Multiply each side by 3
x = 30
We have the following ratios and totals:
[LIST]
[*]Nickels: 1/6 * 30 = [B]5 nickels[/B]
[*]Dimes: 3/6 * 30 = [B]15 dimes[/B]
[*]Quarters: 2/6 * 30 = [B]10 quarters[/B]
[/LIST]
Lucas NumbersFree Lucas Numbers Calculator - Generates a list of the first 100 Lucas numbers.
Lucy is thinking of a number. The number is greater than two hundred twenty-five. Her number is lessLucy is thinking of a number. The number is greater than two hundred twenty-five. Her number is less than 2 hundreds, 2 tens, and 7 ones. What is Lucy's number?
Let the number be n.
n > 225
Also:
n < 2(100) + 2(10) + 7(1)
n < 200 + 20 + 7
n < 227
Combine these, we get:
225 < n < 227
Only one number satisfies this:
n = [B]226
[MEDIA=youtube]-LFbAZFy13o[/MEDIA][/B]
M deck of cards . Each deck has 52 cards . The total number of cardsM deck of cards . Each deck has 52 cards . The total number of cards.
[B]52M[/B]
M decreased by the sum of 13 and the number P is less than 12M decreased by the sum of 13 and the number P is less than 12
The sum of 13 and the number P
13 + P
M decreased by the sum of 13 and the number P
M - (13 + P)
Less than 12 means we set this entire expression less than 12 as an inequality
[B]M - (13 + P) < 12[/B]
m is inversely proportional to the square of p-1 when p=4 m=5 find m when p=6m is inversely proportional to the square of p-1 when p=4 and m=5. find m when p=6
Inversely proportional means there is a constant k such that:
m = k/(p - 1)^2
When p = 4 and m = 5, we have:
5 = k/(4 - 1)^2
5 = k/3^2
5 = k/9
[U]Cross multiply:[/U]
k = 45
[U]The problems asks for m when p = 6. And we also now know that k = 45. So plug in the numbers:[/U]
m = k/(p - 1)^2
m = 45/(6 - 1)^2
m = 45/5^2
m = 45/25
m = [B]1.8[/B]
Mackenzie baked 12 cookies with 2 scoops of flour. How many scoops of flour does Mackenzie need in oMackenzie baked 12 cookies with 2 scoops of flour. How many scoops of flour does Mackenzie need in order to bake 18 cookies? Assume the relationship is directly proportional.
Set up a proportion of cookies to scoops with s as the number of scoops needed for 18 cookies:
12/2 = 18/s
To solve for s, we [URL='https://www.mathcelebrity.com/prop.php?num1=12&num2=18&den1=2&den2=s&propsign=%3D&pl=Calculate+missing+proportion+value']type this proportion into our search engine[/URL] and we get:
s = [B]3
[/B]
Maggie earns $10 each hour she works at the pet store and $0.25 for each phone call she answers. MagMaggie earns $10 each hour she works at the pet store and $0.25 for each phone call she answers. Maggie answered 60 phone calls and earned $115 last week
Set up an equation where c is the number of phone calls Maggie answers and h is the number of hours Maggie worked:
0.25c + 10h = 115
We're given c = 60, so we have:
0.25(60) + 10h = 115
15 + 10h = 115
We want to solve for h. So we[URL='https://www.mathcelebrity.com/1unk.php?num=15%2B10h%3D115&pl=Solve'] type this equation into our search engine[/URL] and we get:
h = [B]10[/B]
maggie has two job offers. The first job offers to pay her $50 per week and 10 1/2 cents per flier.maggie has two job offers. The first job offers to pay her $50 per week and 10 1/2 cents per flier. The second job offer will pay only $30 per week but gives 20 cents per flier. Write and solve an equation to find how many fliers must she deliver so that the two offers pay the same per week?
Let the number of fliers be f.
First job:
0.105f + 50
Second job:
20f + 30
Set them equal to each other:
0.105f + 50 = 20f + 30
[URL='https://www.mathcelebrity.com/1unk.php?num=0.105f%2B50%3D20f%2B30&pl=Solve']Typing this equation into our search engine[/URL], we get:
[B]f = 1[/B]
Marcela is having a presidential debate watching party with all of her friends, She will be making cMarcela is having a presidential debate watching party with all of her friends, She will be making chicken wings and hot dogs. Each chicken wing costs $2 to make and each hot dog costs $3. She needs to spend at least $500. Marcela knows that she will make more than 50 chicken wings and hot dogs combined. She also knows that she will make less than 120 chicken wings and less that 100 hot dogs. What are her inequalities?
Let c be the number of chicken wings and h be the number of hot dogs. Set up the given inequalities:
[LIST=1]
[*]c + h > 50 [I]Marcela knows that she will make more than 50 chicken wings and hot dogs combined.[/I]
[*]2c + 3h >= 500 [I]She needs to spend at least $500[/I]
[*]c < 120 [I]She also knows that she will make less than 120 chicken wings[/I]
[*]h < 100 [I]and less that 100 hot dogs[/I]
[/LIST]
Marco puts his coins into stacks. Each stack has 10 coins. He makes 17 stacks of quarters. He makesMarco puts his coins into stacks. Each stack has 10 coins. He makes 17 stacks of quarters. He makes 11 stacks of dimes. He makes 8 stacks of nickels. How much money does Marco have in his stacks of coins?
[U]Value of Quarters:[/U]
Quarter Value = Value per quarter * coins per stack * number of stacks
Quarter Value = 0.25 * 10 * 17
Quarter Value = 42.5
[U]Value of Dimes:[/U]
Dime Value = Value per dime * coins per stack * number of stacks
Dime Value = 0.10 * 10 * 11
Dime Value = 11
[U]Value of Nickels:[/U]
Nickel Value = Value per nickel * coins per stack * number of stacks
Nickel Value = 0.05 * 10 * 8
Nickel Value = 4
[U]Calculate total value of Marco's coin stacks[/U]
Total value of Marco's coin stacks = Quarter Value + Dime Value + Nickel Value
Total value of Marco's coin stacks = 42.5 + 11 + 4
Total value of Marco's coin stacks = [B]57.5[/B]
Marco takes 2 quizzes each week. Write an equation that shows the relationship between the number ofMarco takes 2 quizzes each week. Write an equation that shows the relationship between the number of weeks x and the total number of quizzes y. Write your answer as an equation with y first, followed by an equals sign.
Our total quizzes equal 2 times the number of weeks (x):
[B]y = 2x[/B]
Maria bought 7 boxes. A week later half of all her boxes were destroyed in a fire. There are now onlMaria bought 7 boxes. A week later half of all her boxes were destroyed in a fire. There are now only 22 boxes left. With how many did she start?
[U]Let x be the starting box number. We have:[/U]
(x + 7)/2 = 22
[U]Cross multiply[/U]
x + 7 = 44
[U]Subtract 7 from each side[/U]
[B]x = 37[/B]
Maria bought seven boxes. A week later half of all her boxes were destroyed in a fire. There are nowMaria bought seven boxes. A week later half of all her boxes were destroyed in a fire. There are now only 22 boxes left. With how many did she start?
Let the number of boxes Maria started with be b. We're given the following pieces:
[LIST]
[*]She starts with b
[*]She bought 7 boxes. So we add 7 to b: b + 7
[*]If half the boxes were destroyed, she's left with 1/2. So we divide (b + 7)/2
[*]Only 22 boxes left means we set (b + 7)/2 equal to 22
[/LIST]
(b + 7)/2 = 22
Cross multiply:
b + 7 = 22 * 2
b + 7 = 44
[URL='https://www.mathcelebrity.com/1unk.php?num=b%2B7%3D44&pl=Solve']Type this equation into our search engine[/URL] to solve for b and we get:
b = [B]37[/B]
Maria is saving money to buy a bike that cost 133$. She has 42$ and will save an additional 7 each wMaria is saving money to buy a bike that cost 133$. She has 42$ and will save an additional 7 each week.
Set up an equation with w as the number of weeks. We want to find w such that:
7w + 42 = 133
[URL='https://www.mathcelebrity.com/1unk.php?num=7w%2B42%3D133&pl=Solve']Typing this equation into our search engine[/URL], we get:
w = [B]13[/B]
Maria runs each lap in 5 minutes. She will run less than 7 laps today. What are the possible numbersMaria runs each lap in 5 minutes. She will run less than 7 laps today. What are the possible numbers of minutes she will run today?
Total Time < Laps * minutes per laps
Total Time < 7 * 5
[B]Total Time < 35[/B]
Marissa has 24 coins in quarters and nickels. She has 3 dollars. How many of the coins are quarters?Let n be the number of nickels and q be the number of quarters.
We have two equations:
(1) n + q = 24
(2) 0.05n + 0.25q = 3
Rearrange (1) to solve for n in terms of q for another equation (3)
(3) n = 24 - q
Plug (3) into (2)
0.05(24 - q) + 0.25q = 3
Multiply through:
1.2 - 0.05q + 0.25q = 3
Combine q terms
0.2q + 1.2 = 3
Subtract 1.2 from each side:
0.2q = 1.8
Divide each side by 0.2
[B]q = 9[/B]
Marla wants to rent a bike Green Lake Park has an entrance fee of $8 and charges $2 per hour for bikMarla wants to rent a bike Green Lake Park has an entrance fee of $8 and charges $2 per hour for bike Oak Park has an entrance fee of $2 and charges $5 per hour for bike rentals she wants to know how many hours are friend will make the costs equal
[U]Green Lake Park: Set up the cost function C(h) where h is the number of hours[/U]
C(h) = Hourly Rental Rate * h + Entrance Fee
C(h) = 2h + 8
[U]Oak Park: Set up the cost function C(h) where h is the number of hours[/U]
C(h) = Hourly Rental Rate * h + Entrance Fee
C(h) = 5h + 2
[U]Marla wants to know how many hours make the cost equal, so we set Green Lake Park's cost function equal to Oak Parks's cost function:[/U]
2h + 8 = 5h + 2
To solve for h, we [URL='https://www.mathcelebrity.com/1unk.php?num=2h%2B8%3D5h%2B2&pl=Solve']type this equation into our search engine[/URL] and we get:
h = [B]2[/B]
Mary owns a store that sells computers. Her profit in dollars is represented by the function P(x) =Mary owns a store that sells computers. Her profit in dollars is represented by the function P(x) = x^3 - 22x^2 - 240x, where x is the number of computers sold. Mary hopes to make a profit of at least $10,000 by the time she sells 36 computers. Explain whether Mary will meet her goal. Justify your reasoning.
Calculate P(10):
P(10) = 10^3 - 22(10)^2 - 240(10)
P(10) = 1000 - 2200 - 2400
P(10) = -3600
Mary will [B]not[/B] meet her goal of making a profit of at least $10,000 when she sells 36 computers because her profit is in the negative.
Mary went bowling on the weekend. Each game cost $2.50, and the shoe rental $2.00. She spent $14.50Mary went bowling on the weekend. Each game cost $2.50, and the shoe rental $2.00. She spent $14.50 total. How many games did she bowl?
Set up the equation where g is the number of games. We add the shoe rental fee to the cost per games
2.5g + 2 = 14.50
To solve for g, we [URL='https://www.mathcelebrity.com/1unk.php?num=2.5g%2B2%3D14.50&pl=Solve']type this equation into our search engine[/URL] and we get:
g = [B]5[/B]
Math Problem Solving (Help Please)Volume of rectangular prism is:
V = lwh
Plugging in the numbers you gave:
195 = (6)(5)h
195 = 30h
Divide each side by 30
h = 6.5
6.5 feet is 6 feet, 6 inches. This is 2 inches more than your actor, so [B]yes[/B], he will fit in the box standing up.
Matt has $100 dollars in a checking account and deposits $20 per month. Ben has $80 in a checking acMatt has $100 dollars in a checking account and deposits $20 per month. Ben has $80 in a checking account and deposits $30 per month. Will the accounts ever be the same balance? explain
Set up the Balance account B(m), where m is the number of months since the deposit.
Matt:
B(m) = 20m + 100
Ben:
B(m) = 80 + 30m
Set both balance equations equal to each other to see if they ever have the same balance:
20m + 100 = 80 + 30m
To solve for m, [URL='https://www.mathcelebrity.com/1unk.php?num=20m%2B100%3D80%2B30m&pl=Solve']we type this equation into our search engine[/URL] and we get:
m = [B]2
So yes, they will have the same balance at m = 2[/B]
Matthew's pay increases by 20% each month. If his first pay is $450, determine the amount of his payMatthew's pay increases by 20% each month. If his first pay is $450, determine the amount of his pay in month 5.
Let me be the number of months. We have a pay functionalists P(m) as:
P(m) = Initial Pay * (1 + Increase %/100)^m
With m = 5, initial pay = 450, and Increase % = 20, we have
P(5) = 450 * (1.2)^5
P(5) = 450 * 2.48832
P(5) = [B]1,119.74[/B]
Megan has $50 and saves $5.50 each week. Connor has $18.50 and saves $7.75 each week. After how manyMegan has $50 and saves $5.50 each week. Connor has $18.50 and saves $7.75 each week. After how many weeks will megan and connor have saved the same amount
[U]Set up the Balance function B(w) where w is the number of weeks for Megan:[/U]
B(w) = savings per week * w + Current Balance
B(w) = 5.50w + 50
[U]Set up the Balance function B(w) where w is the number of weeks for Connor:[/U]
B(w) = savings per week * w + Current Balance
B(w) = 7.75w + 18.50
The problem asks for w when both B(w) are equal. So we set both B(w) equations equal to each other:
5.50w + 50 = 7.75w + 18.50
To solve this equation for w, we[URL='https://www.mathcelebrity.com/1unk.php?num=5.50w%2B50%3D7.75w%2B18.50&pl=Solve'] type it in our search engine[/URL] and we get:
w = [B]14[/B]
Melissa runs a landscaping business. She has equipment and fuel expenses of $264 per month. If she cMelissa runs a landscaping business. She has equipment and fuel expenses of $264 per month. If she charges $53 for each lawn, how many lawns must she service to make a profit of at $800 a month?
Melissa has a fixed cost of $264 per month in fuel. No variable cost is given. Our cost function is:
C(x) = Fixed Cost + Variable Cost. With variable cost of 0, we have:
C(x) = 264
The revenue per lawn is 53. So R(x) = 53x where x is the number of lawns.
Now, profit is Revenue - Cost. Our profit function is:
P(x) = 53x - 264
To make a profit of $800 per month, we set P(x) = 800.
53x - 264 = 800
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=53x-264%3D800&pl=Solve']equation solver[/URL], we get:
[B]x ~ 21 lawns[/B]
Melissa’s flower shop got a shipment of 252 tuilps. She wants to make bouquets of 12 tulips each. HoMelissa’s flower shop got a shipment of 252 tuilps. She wants to make bouquets of 12 tulips each. How many bouquets can Melissa make?
Number of bouquets = Total tulips in shipment / tulips per bouquet
Number of bouquets = 252/12
Number of bouquets = [B]21[/B]
Miguel bought 8 boxes of chocolate. Each box cost 6.36. How much did he spendMiguel bought 8 boxes of chocolate. Each box cost 6.36. How much did he spend?
Total spend = Number of boxes * cost per box
Total spend = 8 * 6.36
Total spend = [B]$50.88[/B]
Miguel has $80 in his bank and saves $2 a week. Jesse has $30 in his bank but saves $7 a week. In hoMiguel has $80 in his bank and saves $2 a week. Jesse has $30 in his bank but saves $7 a week. In how many weeks will Jesse have more in his bank than Miguel?
[U]Set up the Bank value B(w) for Miguel where w is the number of weeks[/U]
B(w) = Savings Per week * w + Current Bank Balance
B(w) = 2w + 80
[U]Set up the Bank value B(w) for Jesse where w is the number of weeks[/U]
B(w) = Savings Per week * w + Current Bank Balance
B(w) = 7w + 30
The problem asks when Jesse's account will be more than Miguel's. So we set up an inequality where:
7w + 30 > 2w + 80
To solve this inequality, we [URL='https://www.mathcelebrity.com/1unk.php?num=7w%2B30%3E2w%2B80&pl=Solve']type it in our search engine[/URL] and we get:
[B]w > 10[/B]
Mike cut 2 acres of grass in 30 minutes on his tractor. Which proportion would determine how many acMike cut 2 acres of grass in 30 minutes on his tractor. Which proportion would determine how many acres of grass Mike cut in 60 minutes?
Let a be the number of acres of grass cut by Mike in 60 minutes. We have the following proportion:
2/30 = a/60
[URL='https://www.mathcelebrity.com/prop.php?num1=2&num2=a&den1=30&den2=60&propsign=%3D&pl=Calculate+missing+proportion+value']Typing this problem into our search engine[/URL], we get [B]a = 4[/B].
mike went to canalside with $40 to spend. he rented skates for $10 and paid $3 per hour to skate.whamike went to canalside with $40 to spend. he rented skates for $10 and paid $3 per hour to skate.what is the greatest number of hours Mike could have skated?
Let h be the number of hours of skating. We have the cost function C(h):
C(h) = Hourly skating rate * h + rental fee
C(h) = 3h + 10
The problem asks for h when C(h) = 40:
3h + 10 = 40
To solve this equation for h, we [URL='https://www.mathcelebrity.com/1unk.php?num=3h%2B10%3D40&pl=Solve']type it in our search engine[/URL] and we get:
h = [B]10[/B]
Mike writes a book and gets 15% royalty of total sales. He sells 50,000 books at a cost of $35 per bMike writes a book and gets 15% royalty of total sales. He sells 50,000 books at a cost of $35 per book. What is the royalty he receives? Remember to put the $ symbol in your answer. For example, if your answer is 10 dollars, write $10 in the answer box.
[U]Calculate total sales:[/U]
Total Sales = Number of Books * Price per book
Total Sales = 50,000 * $35
Total Sales = $1,750,000
[U]Now calculate Mike's royalties:[/U]
Royalties = Total Sales * Royalty Percent
Royalties = $1,750,000 * 15%
[URL='https://www.mathcelebrity.com/perc.php?num=+5&den=+8&num1=+16&pct1=+80&pct2=15&den1=1750000&pcheck=3&pct=+82&decimal=+65.236&astart=+12&aend=+20&wp1=20&wp2=30&pl=Calculate']Royalties[/URL] = [B]$262,500[/B]
Milan plans to watch 2 movies each month. Write an equation to represent the total number of moviesMilan plans to watch 2 movies each month. Write an equation to represent the total number of movies n that he will watch in m months.
Number of movies equals movies per month times the number of months. So we have:
[B]n = 2m[/B]
Mimi just started her tennis class three weeks ago. On average, she is able to return 20% of her oppMimi just started her tennis class three weeks ago. On average, she is able to return 20% of her opponent's serves. Assume her opponent serves 8 times. Show all work. Let X be the number of returns that Mimi gets. As we know, the distribution of X is a binomial probability distribution.
a) What is the number of trials (n), probability of successes (p) and probability of failures (q), respectively?
b) Find the probability that that she returns at least 1 of the 8 serves from her opponent.
(c) How many serves can she expect to return?
a) [B]n = 8
p = 0.2[/B]
q = 1 - p
q = 1 - 0.2
[B]q = 0.8
[/B]
b) [B]0.4967[/B] on our [URL='http://www.mathcelebrity.com/binomial.php?n=+8&p=0.2&k=1&t=+5&pl=P%28X+>+k%29']binomial calculator[/URL]
c) np = 8(0.2) = 1.6 ~ [B]2[/B] using the link above
Mindy and troy combined ate 9 pieces of the wedding cake. Mindy ate 3 pieces of cake and troy had 1Mindy and troy combined ate 9 pieces of the wedding cake. Mindy ate 3 pieces of cake and troy had 1/4 of the total cake. Write an equation to determine how many pieces of cake (c) that were in total
Let c be the total number of pieces of cake. Let m be the number of pieces Mindy ate. Let t be the number of pieces Troy ate. We have the following given equations:
[LIST]
[*]m + t = 9
[*]m = 3
[*]t = 1/4c
[/LIST]
Combining (2) and (3) into (1), we have:
3 + 1/4c = 9
Subtract 3 from each side:
1/4c = 6
Cross multiply:
[B]c = 24
[MEDIA=youtube]aeqWQXr5f_Y[/MEDIA][/B]
Morse Code TranslatorFree Morse Code Translator Calculator - Given a phrase with letters, numbers, and most punctuation symbols, the calculator will perform the following duties:
1) Translate that phrase to Morse Code.
2) Translate the Morse Code to a Dit-Dah message
3) Calculate the number of dots in the message
4) Calculate the number of dashes in the message
This also translates from Morse Code back to English.
Mr. Chris’s new app “Tick-Tock” is the hottest thing to hit the app store since...ever. It costs $5Mr. Chris’s new app “Tick-Tock” is the hottest thing to hit the app store since...ever. It costs $5 to buy the app and then $2.99 for each month that you subscribe (a bargain!). How much would it cost to use the app for one year? Write an equation to model this using the variable “m” to represent the number of months that you use the app.
Set up the cost function C(m) where m is the number of months you subscribe:
C(m) = Monthly Subscription Fee * months + Purchase fee
[B]C(m) = 2.99m + 5[/B]
Mr. Crimmins bought 15 apples and 15 oranges. Each apple cost $1.00, each orange cost $1.50. How mucMr. Crimmins bought 15 apples and 15 oranges. Each apple cost $1.00, each orange cost $1.50. How much more did he spend on oranges than apples?
[U]Calculate apple spend:[/U]
Apple Spend = Apple Cost * Number of Apples
Apple Spend = $1.00 * 15
Apple Spend =[B] [/B]$15
[B][/B]
[U]Calculate apple spend:[/U]
Orange Spend = Orange Cost * Number of Oranges
Orange Spend = $1.50 * 15
Orange Spend = $22.50
[B][/B]
[U]Calculate the additional amount spent on oranges over apples:[/U]
Additional Orange Spend = Orange Spend - Apple Spend
Additional Orange Spend = $22.50 - $15.00
Additional Orange Spend = [B]$7.50[/B]
Mr. Demerath has a large collection of Hawaiian shirts. He currently has 42 Hawaiian shirts. He getsMr. Demerath has a large collection of Hawaiian shirts. He currently has 42 Hawaiian shirts. He gets 2 more every month. After how many months will Mr. Demerath have at least 65 Hawaiian shirts?
We set up the function H(m) where m is the number of months that goes by. Mr. Demerath's shirts are found by:
H(m) = 2m + 42
The problem asks for m when H(m) = 65. So we set H(m) = 65:
2m + 42 = 65
To solve this equation for m, we[URL='https://www.mathcelebrity.com/1unk.php?num=2m%2B42%3D65&pl=Solve'] type it in our search engine [/URL]and we get:
m = [B]11.5[/B]
Mr. Elk is secretly a huge fan of Billie Eilish, and is saving up for front row seats. He puts $250Mr. Elk is secretly a huge fan of Billie Eilish, and is saving up for front row seats. He puts $250 in the bank that has an interest rate of 8% compounded daily. After 4 years, Billie is finally hitting up NJ on her tour. How much money does Mr. Elk have in the bank? (rounded to the nearest cent) *
4 years = 365*4 days
4 years = 1,460 days.
Using this number of compounding periods, we [URL='https://www.mathcelebrity.com/compoundint.php?bal=250&nval=1460&int=8&pl=Daily']plug this into our compound interest calculator[/URL] to get:
[B]$344.27[/B]
Mr. Wilson wants to park his carin a parking garage that charges 3 per hour along with a flat fee ofMr. Wilson wants to park his carin a parking garage that charges 3 per hour along with a flat fee of 6. If Mr. Wilson paid 54 to park in the garage, for how many hours did he park there?
[U]Set up an equation, where f is the flat fee, and h is the number of hours parked:[/U]
3h + f = 54
[U]Substitute f = 6 into the equation:[/U]
3h + 6 = 54
[U]Using our [URL='http://www.mathcelebrity.com/1unk.php?num=3h%2B6%3D54&pl=Solve']equation solver[/URL], we get[/U]
[B]h = 16[/B]
Mrs. Evans has 120 crayons and 30 pieces of paper to give her students. What is the largest number oMrs. Evans has 120 crayons and 30 pieces of paper to give her students. What is the largest number of students she can have her class so that each student gets an equal number of crayons and equal number of paper?
[URL='https://www.mathcelebrity.com/gcflcm.php?num1=30&num2=120&num3=&pl=GCF+and+LCM']Using our GCF calculator for the GCF(30, 120)[/URL], we get 30.
So 30 people get the following:
[B]30/30 = 1 piece of paper
120/30 = 4 crayons[/B]
Mrs. Lowe charges $45 an hour with a $10 flat fee for tutoring. Mrs. Smith charges $40 an hour witMrs. Lowe charges $45 an hour with a $10 flat fee for tutoring. Mrs. Smith charges $40 an hour with a $15 flat fee to tutor. Write an equation that represents the situation when the cost is the same to be tutored by Mrs. Lowe and Mrs. Smith.
[U]Set up cost equation for Mrs. Lowe where h is the number of hours tutored:[/U]
Cost = Hourly Rate * number of hours + flat fee
Cost = 45h + 10
[U]Set up cost equation for Mrs. Smith where h is the number of hours tutored:[/U]
Cost = Hourly Rate * number of hours + flat fee
Cost = 40h + 15
[U]Set both cost equations equal to each other:[/U]
45h + 10 = 40h + 15 <-- This is our equation
To solve for h if the problem asks, we [URL='https://www.mathcelebrity.com/1unk.php?num=45h%2B10%3D40h%2B15&pl=Solve']type this equation into our search engine[/URL] and we get:
h = 1
Mrs. Taylor is making identical costumes for the dancers in the dance club. She uses 126 pink ribbonMrs. Taylor is making identical costumes for the dancers in the dance club. She uses 126 pink ribbons and 108 yellow ribbons.
a) What is the maximum possible number of costumes she can make?
b) How many pink and how many yellow ribbons are on each costume?
a), we want the greatest common factor (GCF) of 108 and 126. [URL='https://www.mathcelebrity.com/gcflcm.php?num1=108&num2=126&num3=&pl=GCF+and+LCM']Using our GCF calculator[/URL] we get:
[B]a) 18 costumes
[/B]
b)
Pink Ribbons per costume = Total Pink Ribbons / GCF in question a
Pink Ribbons per costume = 126/18
Pink Ribbons per costume = [B]7[/B]
[B][/B]
Yellow Ribbons per costume = Total Yellow Ribbons / GCF in question a
Yellow Ribbons per costume = 108/18
Yellow Ribbons per costume = [B]6[/B]
Multiplicative Identity PropertyFree Multiplicative Identity Property Calculator - Demonstrates the Multiplicative Identity property using a number.
Numerical Properties
Multiplicative Inverse PropertyFree Multiplicative Inverse Property Calculator - Demonstrates the Multiplicative Inverse property using a number.
Numerical Properties
multiply a number by 4 and then subtract the answer from 30multiply a number by 4 and then subtract the answer from 30
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
Multiply this number by 4:
4x
Subtract the answer from 30:
[B]30 - 4x[/B]
Multiply a number by 6 and subtracting 6 gives the same result as multiplying the number by 3 and suMultiply a number by 6 and subtracting 6 gives the same result as multiplying the number by 3 and subtracting 4. Find the number
The phrase [I]a number [/I]means an arbitrary variable, let's call it x.
multiply a number by 6 and subtract 6:
6x - 6
Multiply a number by 3 and subtract 4:
3x - 4
The phrase [I]gives the same result[/I] means an equation. So we set 6x - 6 equal to 3x - 4
6x - 6 = 3x - 4
To solve this equation for x, we type it in our search engine and we get:
x = [B]2/3[/B]
Multiply Even Numbers by 5 No Calculator ShortcutTake the number being multiplied by 5.
Divide it in half
Add a zero
14 * 5
Divide 14/2 = 7
Add a 0 --> 70
[MEDIA=youtube]lOJmx0Ygpz8[/MEDIA]
Multiplying a number by 6 is equal to the number increased by 9Multiplying a number by 6 is equal to the number increased by 9.
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
Multiply it by 6 --> 6x
We set this equal to the same number increased by 9. Increased by means we add:
[B]6x = x + 9 <-- This is our algebraic expression
[/B]
To solve this equation, we [URL='https://www.mathcelebrity.com/1unk.php?num=6x%3Dx%2B9&pl=Solve']type it into the search engine [/URL]and get x = 1.8.
Murray makes $12.74 per hour. How much does he earn in 38 hours?Murray makes $12.74 per hour. How much does he earn in 38 hours?
[U]Calculate Earnings:[/U]
Earnings = Hourly Rate * Number of hours worked
Earnings = $12.74 * 38
Earnings = [B]$484.12[/B]
N-GramsFree N-Grams Calculator - Takes a phrase and displays chracter unigrams, character bigrams, character trigrams, and character n-grams as well as word unigrams, word bigrams, word trigrams, and word n-grams. (ngrams)
Also performs frequency analysis (number of instances of each letter)
Nancy shot a 16 on 4 holes of golf. At this rate, what can she expect her score to be if she plays 1Nancy shot a 16 on 4 holes of golf. At this rate, what can she expect her score to be if she plays 18 holes? Round to the nearest whole number
Set up a proportion of score to holes of golf where s is the score for 18 holes:
16/4 = s/18
To solve this proportion for s, we [URL='https://www.mathcelebrity.com/prop.php?num1=16&num2=s&den1=4&den2=18&propsign=%3D&pl=Calculate+missing+proportion+value']type it in our search engine[/URL] and we get:
s = [B]72[/B]
Nancy started the year with $435 in the bank and is saving $25 a week. Shane started with $875 and iNancy started the year with $435 in the bank and is saving $25 a week. Shane started with $875 and is spending $15 a week. [I]When will they both have the same amount of money in the bank?[/I]
[I][/I]
Set up the Account equation A(w) where w is the number of weeks that pass.
Nancy (we add since savings means she accumulates [B]more[/B]):
A(w) = 25w + 435
Shane (we subtract since spending means he loses [B]more[/B]):
A(w) = 875 - 15w
Set both A(w) equations equal to each other to since we want to see what w is when the account are equal:
25w + 435 = 875 - 15w
[URL='https://www.mathcelebrity.com/1unk.php?num=25w%2B435%3D875-15w&pl=Solve']Type this equation into our search engine to solve for w[/URL] and we get:
w =[B] 11[/B]
nandita earned $224 last month. she earned $28 by selling cards at a craft fair and the rest of thenandita earned $224 last month. she earned $28 by selling cards at a craft fair and the rest of the money by babysitting. Complete an equation that models the situation and can be used to determine x, the number of dollars nandita earned last month by babysitting.
We know that:
Babysitting + Card Sales = Total earnings
Set up the equation where x is the dollars earned from babysitting:
[B]x + 28 = 224[/B]
To solve this equation for x, we [URL='https://www.mathcelebrity.com/1unk.php?num=x%2B28%3D224&pl=Solve']type it in our math engine[/URL] and we get:
x = [B]196[/B]
Natural Logarithm TableFree Natural Logarithm Table Calculator - Generates a natural logarithm table for the first (n) numbers rounded to (r) digits
Natural NumbersFree Natural Numbers Calculator - Shows a set amount of natural numbers and cumulative sum
natural numbers that are factors of 16natural numbers that are factors of 16
Natural numbers are positive integers starting at 1.
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
Of these, [URL='https://www.mathcelebrity.com/factoriz.php?num=16&pl=Show+Factorization']the only factors of 16[/URL] are:
{[B]1, 2, 4, 8, 16}[/B]
Need Help on this problemWhat do you want to do with this number set? Express it as representation of integers?
Nine less than a number is no more than 8 and no less than 3Nine less than a number is no more than 8 and no less than 3
A number is denoted as an arbitrary variable, let's call it x.
We have a double inequality:
[LIST=1]
[*]No more than 8 means less than or equal to 8
[*]No less than 3 means greater than or equal to 3
[/LIST]
[B]3 <= x <= 8[/B]
Nine times the sum of a number and 6Nine times the sum of a number and 6
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
The sum of a number and 6 means we add 6 to x:
x + 6
9 times the sum:
[B]9(x + 6)[/B]
Nine workers are hired to harvest potatoes from a field. Each is given a plot which is 5x5 feet in sNine workers are hired to harvest potatoes from a field. Each is given a plot which is 5x5 feet in size. What is the total area of the field?
Area of each plot is 5x5 = 25 square feet.
Total area = Area per plot * number of plots
Total area = 25 sq ft * 9
Total area = [B]225 sq ft[/B]
Ning prepared 16 kilograms of dough after working 4 hours. How many hours did Ning work if he preparNing prepared 16 kilograms of dough after working 4 hours. How many hours did Ning work if he prepared 28 kilograms of dough? Assume the relationship is directly proportional.
Set up a proportion of kilograms of dough to working hours. We have:
16/4 = 28/h where h is the number of hours worked.
Typing this in our [URL='http://www.mathcelebrity.com/prop.php?num1=16&num2=28&den1=4&den2=h&propsign=%3D&pl=Calculate+missing+proportion+value']proportion calculator[/URL], we get [B]h = 7[/B].
Nonagonal NumberFree Nonagonal Number Calculator - This calculator determines the nth nonagonal number
Notebooks cost $1.39 each. What are the possible numbers of notebooks that can be purchased with $10Notebooks cost $1.39 each. What are the possible numbers of notebooks that can be purchased with $10?
Let n be the number of notebooks you can purchase. We have the following inequality:
1.39n <= 10
Divide each side by 1.39
n <= 7.194
We want whole notebooks, we cannot buy fractions of notebooks, so we have:
n <= 7
The question asks for the possible numbers of notebooks we can buy. This implies we buy at least 1, but our inequality says not more than 7. So our number set is:
[B]N = {1, 2, 3, 4, 5, 6, 7}[/B]
Number BondsFree Number Bonds Calculator - Adds or subtracts 2 numbers and using grouping by 10 or 100. Also called number bonds or addition facts. Multiplies two numbers using tape diagrams.
Number InformationFree Number Info Calculator - Calculates number info for a positive integer
Number LineFree Number Line Calculator - Counts from a point going left and right on a number line
Number Line MidpointFree Number Line Midpoint Calculator - Calculates a midpoint between 2 points on a number line or finds the second endpoint if one endpoint and midpoint are given.
Number of cents in q quarters is 275Number of cents in q quarters is 275
Each quarter makes 25 cents. We write this as 0.25q.
Now set this equal to 275
0.25q = 275
Typing this [URL='http://www.mathcelebrity.com/1unk.php?num=0.25q%3D275&pl=Solve']equation in the search engine[/URL], we get [B]q = 1,100[/B].
Number PropertyFree Number Property Calculator - This calculator determines if an integer you entered has any of the following properties:
* Even Numbers or Odd Numbers (Parity Function or even-odd numbers)
* Evil Numbers or Odious Numbers
* Perfect Numbers, Abundant Numbers, or Deficient Numbers
* Triangular Numbers
* Prime Numbers or Composite Numbers
* Automorphic (Curious)
* Undulating Numbers
* Square Numbers
* Cube Numbers
* Palindrome Numbers
* Repunit Numbers
* Apocalyptic Power
* Pentagonal
* Tetrahedral (Pyramidal)
* Narcissistic (Plus Perfect)
* Catalan
* Repunit
Numbers Word ProblemsFree Numbers Word Problems Calculator - Solves various basic math and algebra word problems with numbers
n^2+n = oddn^2+n = odd
Factor n^2+n:
n(n + 1)
We have one of two scenarios:
[LIST=1]
[*]If n is odd, then n + 1 is even. The product of an odd and even number is an even number
[*]If n is even, then n + 1 is odd. The product of an even and odd number is an even number
[/LIST]
n^2-n = evenn^2-n = even
Factor n^2-n:
n(n - 1)
We have one of two scenarios:
[LIST=1]
[*]If n is odd, then n - 1 is even. The product of an odd and even number is an even number
[*]If n is even, then n - 1 is odd. The product of an even and odd number is an even number
[/LIST]
Oceanside Bike Rental Shop charges $15.00 plus $9.00 per hour for renting a bike. Dan paid $51.00 toOceanside Bike Rental Shop charges $15.00 plus $9.00 per hour for renting a bike. Dan paid $51.00 to rent a bike. How many hours was he hiking for?
Set up the cost equation C(h) where h is the number of hours needed to rent the bike:
C(h) = Cost per hour * h + rental charge
Using our given numbers in the problem, we have:
C(h) = 9h + 15
The problem asks for h, when C(h) = 51.
9h + 15 = 51
To solve for h, we [URL='https://www.mathcelebrity.com/1unk.php?num=9h%2B15%3D51&pl=Solve']plug this equation into our search engine[/URL] and we get:
h = [B]4[/B]
Oceanside Bike Rental Shop charges 16 dollars plus 6 dollars an hour for renting a bike. Mary paid 5Oceanside Bike Rental Shop charges 16 dollars plus 6 dollars an hour for renting a bike. Mary paid 58 dollars to rent a bike. How many hours did she pay to have the bike checked out ?
Set up the cost function C(h) where h is the number of hours you rent the bike:
C(h) = Hourly rental cost * h + initial rental charge
C(h) = 6h + 16
Now the problem asks for h when C(h) = 58, so we set C(h) = 58:
6h + 16 = 58
To solve this equation for h, we [URL='https://www.mathcelebrity.com/1unk.php?num=6h%2B16%3D58&pl=Solve']type it in our math engine[/URL] and we get:
h = [B]7 hours[/B]
Octagonal NumberFree Octagonal Number Calculator - This calculator determines the nth octagonal number
Odd NumbersFree Odd Numbers Calculator - Shows a set amount of odd numbers and cumulative sum
Of the 20 boats at the Mariana, 10 were from Massachusetts. What is the probability that a randomlyOf the 20 boats at the Mariana, 10 were from Massachusetts. What is the probability that a randomly selected boat will be from Massachusetts?
P(Boat from Massachusetts) = Number of Massachusetts boats / Total Boats at the Mariana
P(Boat from Massachusetts) = 10/20
[URL='https://www.mathcelebrity.com/fraction.php?frac1=10%2F20&frac2=3%2F8&pl=Simplify']Simplifying this fraction, we get[/URL]:
P(Boat from Massachusetts) = [B]1/2[/B]
Olga wrote all the natural numbers from 1 to k. Including 1 and k. How many numbers did she write?Olga wrote all the natural numbers from 1 to k. Including 1 and k. How many numbers did she write?
The formula for the number of numbers including A to B is:
B - A + 1
With A = 1 and B = k, we have:
k - 1 + 1
[B]k[/B]
Oliver earns $50 per day plus $7.50 for each package he delivers. If his paycheck for the first dayOliver earns $50 per day plus $7.50 for each package he delivers. If his paycheck for the first day was $140, how many packages did he deliver that day?
His total earnings per day are the Flat Fee of $50 plus $7.50 per package delivered. We have:
50 + 7.50p = 140 where p = the number of packages delivered
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=50%2B7.50p%3D140&pl=Solve']equation solver[/URL], we have:
[B]p = 12[/B]
Omar mows lawns for $9.25 an hour. He spends $7.50 on gas for the mower. How much does he make if heOmar mows lawns for $9.25 an hour. He spends $7.50 on gas for the mower. How much does he make if he works h hours?
His revenue R(h) where h is the number of hours is denoted by:
R(h) = Hourly Rate * h - Gas cost
[B]R(h) = 9.25h - 7.50[/B]
Omar mows lawns for $9.25 per hour. He spends $7.50 on gas for the mower. How much does he make if hOmar mows lawns for $9.25 per hour. He spends $7.50 on gas for the mower. How much does he make if he works h hours?
We have the following profit equation:
Profit = Revenue - Cost:
Revenue = Hourly rate * number of hours
[B]9.25h - 7.50[/B]
On a Friday evening a pizza shop had orders for 4 pepperoni, 97 vegetable, and 335 cheese pizzas. IfOn a Friday evening a pizza shop had orders for 4 pepperoni, 97 vegetable, and 335 cheese pizzas. If the 4 cooks each made an equal number of pizzas, how many pizzas did each cook make?
Total Pizzas Made = 4 pepperoni + 97 vegetable + 335 cheese
Total Pizzas Made = 436
Equal number of pizzas per cook = 436 pizzas / 4 cooks
Equal number of pizzas per cook = [B]109[/B]
On a Math test, 12 students earned an A. This number is exactly 25% of the total number of studentsOn a Math test, 12 students earned an A. This number is exactly 25% of the total number of students in the class. How many students are in the class?
Let the total number of students be s. Since 25% is 0.25 as a decimal, We have an equation:
0.25s = 12
[URL='https://www.mathcelebrity.com/1unk.php?num=0.25s%3D12&pl=Solve']Type this equation into our search engine[/URL], and we get:
s = [B]48[/B]
On a particular road map, 1/2 inch represents 18 miles. About how many miles apart are 2 towns thatOn a particular road map, 1/2 inch represents 18 miles. About how many miles apart are 2 towns that are 2 1/2 inches apart on this map?
A) 18
B) 22 1/2
C) 36
D) 45
E) 90
Set up a proportion of inches to miles where m is the number of miles for 2 1/2 inches. Note: 1/2 = 0.5 and 2 1/2 = 2.5
0.5/18 = 2.5/m
[URL='https://www.mathcelebrity.com/prop.php?num1=0.5&num2=2.5&den1=18&den2=m&propsign=%3D&pl=Calculate+missing+proportion+value']Typing this proportion into the search engine[/URL], we get:
[B]m = 90 Answer E[/B]
On Monday 208 student went on a trip to the zoo . All 5 buses were filled and 8 student had to traveOn Monday 208 student went on a trip to the zoo . All 5 buses were filled and 8 student had to travel in car . How many student were in each bus?
Calculate the number of students who traveled by bus:
Total bus Students = Total Students - Total Car Students
Total bus Students = 208 - 8
Total bus Students = 200
Figure how the students per bus:
Students per bus = Total Bus Students / Number of Filled Busses
Students per bus = 200/5
Students per bus = [B]40[/B]
On Monday the office staff at your school paid 8.77 for 4 cups of coffee and 7 bagels. On WednesdayOn Monday the office staff at your school paid 8.77 for 4 cups of coffee and 7 bagels. On Wednesday they paid 15.80 for 8 cups of coffee and 14 bagels. Can you determine the cost of a bagel
Let the number of cups of coffee be c
Let the number of bagels be b.
Since cost = Price * Quantity, we're given two equations:
[LIST=1]
[*]7b + 4c = 8.77
[*]14b + 8c = 15.80
[/LIST]
We have a system of equations. We can solve this 3 ways:
[LIST=1]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=7b+%2B+4c+%3D+8.77&term2=14b+%2B+8c+%3D+15.80&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=7b+%2B+4c+%3D+8.77&term2=14b+%2B+8c+%3D+15.80&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=7b+%2B+4c+%3D+8.77&term2=14b+%2B+8c+%3D+15.80&pl=Cramers+Method']Cramer's Rule[/URL]
[/LIST]
No matter which method we use, we get the same answer
[LIST]
[*]The system is inconsistent. Therefore, we have no answer.
[/LIST]
On the first day of school each student in the class of 26 will bring 4 writing books and 2 maths boOn the first day of school each student in the class of 26 will bring 4 writing books and 2 maths books. How many books will they have altogether?
Each student has 4 books plus 2 math books = 6 total books per student
Calculate total books
Total Books = Number of students * books per student
Total Books = 26 * 6
Total Books = [B]156[/B]
On the first day of ticket sales the school sold 3 senior citizen tickets and 10 child tickets for aOn the first day of ticket sales the school sold 3 senior citizen tickets and 10 child tickets for a total of $82. The school took in $67 on the second day by selling 8 senior citizen tickets And 5 child tickets. What is the price of each ticket?
Let the number of child tickets be c
Let the number of senior citizen tickets be s
We're given two equations:
[LIST=1]
[*]10c + 3s = 82
[*]5c + 8s = 67
[/LIST]
We have a system of simultaneous equations. We can solve it using any one of 3 ways:
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=10c+%2B+3s+%3D+82&term2=5c+%2B+8s+%3D+67&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=10c+%2B+3s+%3D+82&term2=5c+%2B+8s+%3D+67&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=10c+%2B+3s+%3D+82&term2=5c+%2B+8s+%3D+67&pl=Cramers+Method']Cramer's Rule[/URL]
[/LIST]
No matter what method we choose, we get:
[LIST]
[*][B]c = 7[/B]
[*][B]s = 4[/B]
[/LIST]
One and one third less xOne and one-third can be written as 4/3.
Less x means minus x, or subtract x.
4/3 - x
Or in mixed number notation:
1 & 1/3 - x
One fifth of the square of a numberOne fifth of the square of a number
We have an algebraic expression. Let's break this into parts.
[LIST=1]
[*]The phrase [I]a number[/I] means an arbitrary variable, let's call it x
[*]The square of a number means we raise it to the power of 2. So we have x^2
[*]One-fifth means we have a fraction, where we divide our x^2 in Step 2 by 5. So we get our final answer below:
[/LIST]
[B]x^2/5[/B]
One number exceeds another by 15. The sum of the numbers is 51. What are these numbersOne number exceeds another by 15. The sum of the numbers is 51. What are these numbers?
Let the first number be x, and the second number be y. We're given two equations:
[LIST=1]
[*]x = y + 15
[*]x + y = 51
[/LIST]
Plug (1) into (2)
(y + 15) + y = 51
Combine like terms:
2y + 15 = 51
[URL='https://www.mathcelebrity.com/1unk.php?num=2y%2B15%3D51&pl=Solve']Plug this equation into the search engine[/URL] and we get:
[B]y = 18[/B]
Now plug this into (1) to get:
x = 18 + 15
[B]x = 33[/B]
One number is 1/4 of another number. The sum of the two numbers is 25. Find the two numbers. Use a cOne number is 1/4 of another number. The sum of the two numbers is 25. Find the two numbers. Use a comma to separate your answers.
Let the first number be x and the second number be y. We're given:
[LIST=1]
[*]x = 1/4y
[*]x + y = 25
[/LIST]
Substitute (1) into (2)
1/4y + y = 25
Since 1/4 = 0.25, we have:
0.25y + y = 25
[URL='https://www.mathcelebrity.com/1unk.php?num=0.25y%2By%3D25&pl=Solve']Type this equation into the search engine[/URL] to get:
[B]y = 20
[/B]
Now, substitute this into (1) to solve for x:
x = 1/4y
x = 1/4(20)
[B]x = 5
[/B]
The problem asks us to separate the answers by a comma. So we write this as:
[B](x, y) = (5, 20)[/B]
One number is 1/5 of another number. The sum of the two numbers is 18. Find the two numbers.One number is 1/5 of another number. The sum of the two numbers is 18. Find the two numbers.
Let the two numbers be x and y. We're given:
[LIST=1]
[*]x = 1/5y
[*]x + y = 18
[/LIST]
Substitute (1) into (2):
1/5y + y = 18
1/5 = 0.2, so we have:
1.2y = 18
[URL='https://www.mathcelebrity.com/1unk.php?num=1.2y%3D18&pl=Solve']Type 1.2y = 18 into the search engine[/URL], and we get [B]y = 15[/B].
Which means from equation (1) that:
x = 15/5
[B]x = 3
[/B]
Our final answer is [B](x, y) = (3, 15)[/B]
One number is 3 times another. Their sum is 44.One number is 3 times another. Their sum is 44.
Let the first number be x, and the second number be y. We're given:
[LIST=1]
[*]x = 3y
[*]x + y = 44
[/LIST]
Substitute (1) into (2):
3y + y = 44
[URL='https://www.mathcelebrity.com/1unk.php?num=3y%2By%3D44&pl=Solve']Type this equation into the search engine[/URL], and we get:
[B]y = 11[/B]
Plug this into equation (1):
x = 3(11)
[B]x = 33[/B]
one number is 3 times as large as another. Their sum is 48. Find the numbersone number is 3 times as large as another. Their sum is 48. Find the numbers
Let the first number be x. Let the second number be y. We're given two equations:
[LIST=1]
[*]x = 3y
[*]x + y = 48
[/LIST]
Substitute equation (1) into equation (2):
3y + y = 48
To solve for y, [URL='https://www.mathcelebrity.com/1unk.php?num=3y%2By%3D48&pl=Solve']we type this equation into the search engine[/URL] and we get:
[B]y = 12[/B]
Now, plug y = 12 into equation (1) to solve for x:
x = 3(12)
[B]x = 36[/B]
One number is 4 times the other numberLet one number be x, and the other number be y
[B]x = 4y[/B]
One number is 8 times another number. The numbers are both positive and have a difference of 70.One number is 8 times another number. The numbers are both positive and have a difference of 70.
Let the first number be x, the second number be y. We're given:
[LIST=1]
[*]x = 8y
[*]x - y = 70
[/LIST]
Substitute(1) into (2)
8y - y = 70
[URL='https://www.mathcelebrity.com/1unk.php?num=8y-y%3D70&pl=Solve']Plugging this equation into our search engine[/URL], we get:
[B]y = 10[/B] <-- This is the smaller number
Plug this into Equation (1), we get:
x = 8(10)
[B]x = 80 [/B] <-- This is the larger number
One number is equal to the square of another. Find the numbers if both are positive and their sum isOne number is equal to the square of another. Find the numbers if both are positive and their sum is 650
Let the number be n. Then the square is n^2. We're given:
n^2 + n = 650
Subtract 650 from each side:
n^2 + n - 650 = 0
We have a quadratic equation. [URL='https://www.mathcelebrity.com/quadratic.php?num=n%5E2%2Bn-650%3D0&pl=Solve+Quadratic+Equation&hintnum=+0']We type this into our search engine[/URL] and we get:
n = 25 and n = -26
Since the equation asks for a positive solution, we use [B]n = 25[/B] as our first solution.
the second solution is 25^2 = [B]625[/B]
one number is twice a second number. the sum of those numbers is 45one number is twice a second number. the sum of those numbers is 45.
Let the first number be x and the second number be y. We're given:
[LIST=1]
[*]x = 2y
[*]x + y = 45
[/LIST]
Substitute Equation (1) into Equation (2):
2y + y = 45
[URL='https://www.mathcelebrity.com/1unk.php?num=2y%2By%3D45&pl=Solve']Typing this equation into our search engine[/URL], we get:
[B]y = 15[/B]
Plug this into equation (1) to solve for x, and we get:
x = 2(15)
[B]x = 30[/B]
One positive number is one-fifth of another number. The difference between the two numbers is 192, fOne positive number is one-fifth of another number. The difference between the two numbers is 192, find the numbers.
Let the first number be x and the second number be y. We're given two equations:
[LIST=1]
[*]x = y/5
[*]x + y = 192
[/LIST]
Substitute equation 1 into equation 2:
y/5 + y = 192
Since 1 equals 5/5, we rewrite our equation like this:
y/5 = 5y/5 = 192
We have fractions with like denominators, so we add the numerators:
(1 + 5)y/5 = 192
6y/5 = 192
[URL='https://www.mathcelebrity.com/prop.php?num1=6y&num2=192&den1=5&den2=1&propsign=%3D&pl=Calculate+missing+proportion+value']Type this equation into our search engine[/URL], and we get:
[B]y = 160[/B]
Substitute this value into equation 1:
x = 160/5
x = [B]32[/B]
One third of the bagels in a bakery are sesame bagels. There are 72 sesame bagels.One third of the bagels in a bakery are sesame bagels. There are 72 sesame bagels.
Set up our equation where b is the number of total bagels
72 = b/3
Multiply each side by 3
[B]b = 216[/B]
one-fifth of forty-fiveone-fifth of forty-five
one-fifth is 1/4
forty-five is 45
When you see a fraction then the word of and then a number, it means you multiply:
1/5 * 45
45/5
[B]9[/B]
One-half a number is fiftyThe phrase [I]a number[/I] means an arbitrary variable. We can pick any letter a-z except for i and e.
Let's choose x.
One-half a number means we divide x by2:
x/2
The word [I]is[/I] means equal to. We set x/2 equal to 50 for our algebraic expression
[B]x/2 = 50
[/B]
If the problem asks us to solve for x, we cross multiply:
x = 2 * 50
x = [B]100[/B]
One-half a number times fifteenThe phrase [I]a number[/I] means an arbitrary variable. We can pick any letter a-z except for i and e.
Let's choose x.
One-half a number means we multiply x by 1/2:
x/2
Times fifteen means we multiply:
[B]15x/2[/B]
One-third a number less twoThe phrase [I]a number[/I] means an arbitrary variable. We can pick any letter a-z except for i and e.
Let's choose x.
One-third a number means we multiply x by 1/3:
x/3
Less two means we subtract 2
[B]x/3 - 2[/B]
Opposite NumbersFree Opposite Numbers Calculator - Given a positive or negative integer (n), this calculates the opposite number of n
Orange Theory is currently offering a deal where you can buy a fitness pass for $100 and then each cOrange Theory is currently offering a deal where you can buy a fitness pass for $100 and then each class is $13, otherwise it is $18 for each class. After how many classes is the total cost with the fitness pass the same as the total cost without the fitness pass?
Let the number of classes be c.
For the fitness pass plan, we have the total cost of:
13c + 100
For the flat rate plan, we have the total cost of:
18c
The question asks for c when both plans are equal. So we set both costs equal and solve for c:
13c + 100 = 18c
We [URL='https://www.mathcelebrity.com/1unk.php?num=13c%2B100%3D18c&pl=Solve']type this equation into our math engine[/URL] and we get:
c = [B]20[/B]
Ordering NumbersFree Ordering Numbers Calculator - Given a list of numbers, this will order the list ascending (lowest to highest or least to greatest) or descending (highest to lowest or greatest to least)
Ordinal NumberFree Ordinal Number Calculator - This calculator determines the ordinal number of an integer
Oscar makes a large purchase at Home Depot and plans to rent one of its trucks to take his suppliesOscar makes a large purchase at Home Depot and plans to rent one of its trucks to take his supplies home. The most he wants to spend on the truck is $56.00. If Home Depot charges $17.00 for the first 75 minutes and $5.00 for each additional 15 min, for how long can Oscar keep the truck and remain within his budget?
Set up the cost equation C(m) where m is the number of minutes for rental:
C(m) = 17 * min(m, 75) + max(0, 5(m - 75))
If Oscar uses the first 75 minutes, he spends $17. So he's left with:
$56 - $17 = $38
$38 / $5 = 7 Remainder 3
We remove the remainder 3, since it's not a full 15 minute block. So Oscar can rent the truck for:
7 * 15 minute blocks = [B]105 minutes[/B]
our recipe calls for 2 eggs and 3 cups of sugar. if we want to use 5 eggs, how much sugar will we neOur recipe calls for 2 eggs and 3 cups of sugar. if we want to use 5 eggs, how much sugar will we need?
Set up a relational proportion for eggs to cups of sugar where s is the number of cups of sugar we need for 5 eggs.
2/3 = 5/s
[URL='https://www.mathcelebrity.com/prop.php?num1=2&num2=5&den1=3&den2=s&propsign=%3D&pl=Calculate+missing+proportion+value']Plugging this into the search engine[/URL], we get [B]7.5 cups of sugar[/B].
Out of the 485 Cookies for the bake sale, 2/5 were chocolate chip. Estimate the number of chocolateOut of the 485 Cookies for the bake sale, 2/5 were chocolate chip. Estimate the number of chocolate chips
We want 2/5 of 485. We [URL='https://www.mathcelebrity.com/fraction.php?frac1=485&frac2=2/5&pl=Multiply']type this in our search engine[/URL] and we get;
[B]194[/B]
P is the natural numbers that are factors of 25P is the natural numbers that are factors of 25
we type in [I][URL='https://www.mathcelebrity.com/factoriz.php?num=25&pl=Show+Factorization']factor 25[/URL][/I] into our math engine and we get:
{1, 5, 25}
Since [U]all[/U] of these are natural numbers, our answer is:
[B]{1, 5, 25}[/B]
p(t)=6t represent the number of people p(t) that a number of turkeys can feed at Thanksgiving. How mp(t)=6t represent the number of people p(t) that a number of turkeys can feed at Thanksgiving. How many people can 6 turkeys feed?
Plug in t = 6
p(6) = 6(6)
p(6) = 36
p(x)=2x-5 find the domainp(x)=2x-5 find the domain
Using our[URL='http://www.mathcelebrity.com/function-calculator.php?num=2x-5&pl=Calculate'] function calculator[/URL]:
[B]All real numbers[/B]
Paper sells for 21 cents per pad. What will 5 pads cost?Total Cost = Cost Per Pad * Number of Pads
Total Cost = 0.21 * 5
Total Cost = [B]$1.05[/B]
Partial QuotientFree Partial Quotient Calculator - Divides 2 numbers using the Partial Quotient
Partial SumFree Partial Sum Calculator - Calculates a partial sum for 2 numbers.
Paul can walk 15 steps in 5 minutes How long does it take Paul to walk 75 steps at the same speedPaul can walk 15 steps in 5 minutes How long does it take Paul to walk 75 steps at the same speed
Set up a proportion of steps to minutes where m is the number of minutes to walk 75 steps:
15/5 = 75/m
To solve this proportion for m, we [URL='https://www.mathcelebrity.com/prop.php?num1=15&num2=75&den1=5&den2=m&propsign=%3D&pl=Calculate+missing+proportion+value']type it in our search engine[/URL] and we get:
m = [B]25[/B]
Penny bought a new car for $25,000. The value of the car has decreased in value at rate of 3% eachPenny bought a new car for $25,000. The value of the car has decreased in value at rate of 3% each year since. Let x = the number of years since 2010 and y = the value of the car. What will the value of the car be in 2020? Write the equation, using the variables above, that represents this situation and solve the problem, showing the calculation you did to get your solution. Round your answer to the nearest whole number.
We have the equation y(x):
y(x) = 25,000(0.97)^x <-- Since a 3 % decrease is the same as multiplying the starting value by 0.97
The problem asks for y(2020). So x = 2020 - 2010 = 10.
y(10) = 25,000(0.97)^10
y(10) = 25,000(0.73742412689)
y(10) = [B]18,435.60[/B]
Pentagonal NumberFree Pentagonal Number Calculator - This calculator determines the nth pentagonal number
Percent MathFree Percent Math Calculator - Simplifies expressions involving numbers and percents with respect to addition and subtraction
Percentage-Decimal-Fraction RelationsFree Percentage-Decimal-Fraction Relations Calculator - Calculates the relational items between a fraction, a decimal (including repeating decimal and terminating decimal), a percentage, and the numerator and denominator piece of that fraction. Also calculates the percentage change going from one number to another or the amount increase or decrease of a percentage above/below a number. Round decimals. decimals into fractions
Permutations and CombinationsFree Permutations and Combinations Calculator - Calculates the following:
Number of permutation(s) of n items arranged in r ways = nPr
Number of combination(s) of n items arranged in r unique ways = nCr including subsets of sets
Pet supplies makes a profit of $5.50 per bag, if the store wants to make a profit of no less than $5Pet supplies makes a profit of $5.50 per bag, if the store wants to make a profit of no less than $5225, how many bags does it need to sell?
5.5ob >= $5,225
Divide each side of the inequality by $5.50
b >=9.5 bags, so round up to a whole number of 10 bags.
Peter has $500 in his savings account. He purchased an iPhone that charged him $75 for his activatioPeter has $500 in his savings account. He purchased an iPhone that charged him $75 for his activation fee and $40 per month to use the service on the phone. Write an equation that models the number of months he can afford this phone.
Let m be the number of months. Our equation is:
[B]40m + 75 = 500 [/B] <-- This is the equation
[URL='https://www.mathcelebrity.com/1unk.php?num=40m%2B75%3D500&pl=Solve']Type this equation into the search engine[/URL], and we get:
m = [B]10.625[/B]
Since it's complete months, it would be 10 months.
Peter was thinking of a number. Peter doubles it and adds 0.8 to get an answer of 31. Form an equatiPeter was thinking of a number. Peter doubles it and adds 0.8 to get an answer of 31. Form an equation with x from the information.
Take this algebraic expression in parts, starting with the unknown number x:
[LIST]
[*]x
[*][I]Double it [/I]means we multiply x by 2: 2x
[*]Add 0.8: 2x + 0.8
[*]The phrase [I]to get an answer of[/I] means an equation. So we set 2x + 0.8 equal to 31
[/LIST]
Build our final algebraic expression:
[B]2x + 0.8 = 31[/B]
[B][/B]
If you have to solve for x, then we [URL='https://www.mathcelebrity.com/1unk.php?num=2x%2B0.8%3D31&pl=Solve']type this equation into our search engine[/URL] and we get:
x = 15.1
Peter’s Lawn Mowing Service charges $10 per job and $0.20 per square yard. Peter earns $25 for a jobPeter’s Lawn Mowing Service charges $10 per job and $0.20 per square yard. Peter earns $25 for a job.
Let y be the number of square yards. We have the following equation:
0.2y + 10 = 25
To solve for y, we[URL='https://www.mathcelebrity.com/1unk.php?num=0.2y%2B10%3D25&pl=Solve'] type this equation into our search engine [/URL]and we get:
y = [B]75[/B]
Phone Number TranslatorFree Phone Number Translator Calculator - Given a phone number with letters in it, this calculator will determine the numeric phone number for you to dial.
Place ValueFree Place Value Calculator - Given a whole number or a decimal, the calculator will perform place number analysis on each place in your number.
For the whole and decimal portion, the calculator goes out to the 100 trillion mark.
please answer this word problemTime 1, distance apart is 105 + 85 = 190
So every hour, the distance between them is 190 * t where t is the number of hours. Set up our distance function:
D(t) = 190t
We want D(t) = 494
190t = 494
Divide each side by 190
[B]t = 2.6 hours[/B]
please solve the fifth word problemFind what was used:
Used Money = Prepaid original cost - Remaining Credit
Used Money = 20 - 17.47
Used Money = 2.53
Using (m) as the number of minutes, we have the following cost equation:
C(m) = 0.11m
C(m) = 2.53, so we have:
0.11m = 2.53
Divide each side by 0.11
[B]m = 23[/B]
please solve the fourth word problemThe sum of three numbers is
105
. The first number is
5
less than the second. The third number is
3
times the second. What are the numbers?
please solve the fourth word problemLet x be the first number, y be the second number, and z be the number. We have the following equations:
[LIST=1]
[*]x + y + z = 305
[*]x = y - 5
[*]z = 3y
[/LIST]
Substitute (2) and (3) into (1)
(y - 5) + y + (3y) = 305
Combine like terms:
5y - 5 = 305
Use our [URL='http://www.mathcelebrity.com/1unk.php?num=5y-5%3D305&pl=Solve']equation solver[/URL]
[B]y = 62
[/B]
Substitute y = 62 into (3)
z = 3(62)
[B]z = 186
[/B]
x = (62) - 5
[B]x = 57[/B]
Point P is located at -15 and point Q is located at 6 on a number line. Which value would representPoint P is located at -15 and point Q is located at 6 on a number line. Which value would represent point T, the midpoint of PQ?
Using our [URL='https://www.mathcelebrity.com/mptnline.php?ept1=-15&empt=&ept2=6&pl=Calculate+missing+Number+Line+item']midpoint calculator[/URL], we get:
T = [B]-4.5[/B]
Poisson DistributionFree Poisson Distribution Calculator - Calculates the probability of 3 separate events that follow a poisson distribution.
It calculates the probability of exactly k successes P(x = k)
No more than k successes P (x <= k)
Greater than k successes P(x >= k)
Each scenario also calculates the mean, variance, standard deviation, skewness, and kurtosis.
Calculates moment number t using the moment generating function
PolygonsFree Polygons Calculator - Using various input scenarios of a polygon such as side length, number of sides, apothem, and radius, this calculator determines Perimeter or a polygon and Area of the polygon.
This also determines interior angles of a polygon and diagonals of a polygon as well as the total number of 1 vertex diagonals.
porportion problemsSet up a proportion of miles to minutes where m is the number of miles walked in 110 minutes:
5/60 = m/110
Use our [URL='http://www.mathcelebrity.com/prop.php?num1=5&num2=m&den1=60&den2=110&propsign=%3D&pl=Calculate+missing+proportion+value']proportion calculator[/URL], we get:
[B]m = 9.1667 miles[/B]
positive even numbers less than 10positive even numbers less than 10
First, list out all positive even numbers less than 10.
Less than 10 means we do [U]not[/U] include 10.
[B]{2, 4, 6, 8}
[MEDIA=youtube]5YsPQo_2dpI[/MEDIA][/B]
Positive numbers less than 4Update, this has been added to our shortcuts.
You can type any expression in the form, positive numbers less than x where x is any integer.
You can also type positive numbers greater than x where x is any integer.
Same with less than or equal to and greater than or equal to.
Powers OfFree Powers Of Calculator - Determines the powers of a number from 1 to n.
PredecessorFree Predecessor Calculator - Calculates the predecessor number to a given number
Prime NumbersFree Prime Numbers Calculator - Shows up to 3000 prime numbers and a cumulative sum
Primitive RootFree Primitive Root Calculator - Given a prime number p and a potential root of b, this determines if b is a primitive root of p.
Prizes hidden on a game board with 10 spaces. One prize is worth $100, another is worth $50, and twImagine you are in a game show. Prizes hidden on a game board with 10 spaces. One prize is worth $100, another is worth $50, and two are worth $10. You have to pay $20 to the host if your choice is not correct. Let the random variable x be the winning
(a) What is your expected winning in this game?
(b) Determine the standard deviation of x. (Round the answer to two decimal places)
(a) 100(0.1) + 50(0.1) + 10(0.2) - 20 = 10 + 5 + 2 - 20 = [B]-3[/B]
(b) 3.3 using our [URL='http://www.mathcelebrity.com/statbasic.php?num1=+100,50,10&num2=+0.1,0.1,0.2&usep=usep&pl=Number+Set+Basics']standard deviation calculator[/URL]
product of a number and its reciprocal is increased by 7product of a number and its reciprocal is increased by 7
The phrase [I]a number[/I] means an arbitrary variable, let's call it x:
x
Its reciprocal means we take the reciprocal of x:
1/x
product of a number and its reciprocal:
x * 1/x
x/x
The x's cancel giving us:
1
is increased by 7 means we add 7:
1 + 7
[B]8[/B]
Product of Consecutive NumbersFree Product of Consecutive Numbers Calculator - Finds the product of (n) consecutive integers, even or odd as well. Examples include:
product of 2 consecutive integers
product of 2 consecutive numbers
product of 2 consecutive even integers
product of 2 consecutive odd integers
product of 2 consecutive even numbers
product of 2 consecutive odd numbers
product of two consecutive integers
product of two consecutive odd integers
product of two consecutive even integers
product of two consecutive numbers
product of two consecutive odd numbers
product of two consecutive even numbers
product of 3 consecutive integers
product of 3 consecutive numbers
product of 3 consecutive even integers
product of 3 consecutive odd integers
product of 3 consecutive even numbers
product of 3 consecutive odd numbers
product of three consecutive integers
product of three consecutive odd integers
product of three consecutive even integers
product of three consecutive numbers
product of three consecutive odd numbers
product of three consecutive even numbers
product of 4 consecutive integers
product of 4 consecutive numbers
product of 4 consecutive even integers
product of 4 consecutive odd integers
product of 4 consecutive even numbers
product of 4 consecutive odd numbers
product of four consecutive integers
product of four consecutive odd integers
product of four consecutive even integers
product of four consecutive numbers
product of four consecutive odd numbers
product of four consecutive even numbers
product of 5 consecutive integers
product of 5 consecutive numbers
product of 5 consecutive even integers
product of 5 consecutive odd integers
product of 5 consecutive even numbers
product of 5 consecutive odd numbers
product of five consecutive integers
product of five consecutive odd integers
product of five consecutive even integers
product of five consecutive numbers
product of five consecutive odd numbers
product of five consecutive even numbers
Prove 0! = 1Prove 0! = 1
Let n be a whole number, where n! represents the product of n and all integers below it through 1.
The factorial formula for n is:
n! = n · (n - 1) * (n - 2) * ... * 3 * 2 * 1
Written in partially expanded form, n! is:
n! = n * (n - 1)!
[U]Substitute n = 1 into this expression:[/U]
n! = n * (n - 1)!
1! = 1 * (1 - 1)!
1! = 1 * (0)!
For the expression to be true, 0! [U]must[/U] equal 1. Otherwise, 1! <> 1 which contradicts the equation above
Prove 0! = 1[URL='https://www.mathcelebrity.com/proofs.php?num=prove0%21%3D1&pl=Prove']Prove 0! = 1[/URL]
Let n be a whole number, where n! represents:
The product of n and all integers below it through 1.
The factorial formula for n is
n! = n · (n - 1) · (n - 2) · ... · 3 · 2 · 1
Written in partially expanded form, n! is:
n! = n · (n - 1)!
[SIZE=5][B]Substitute n = 1 into this expression:[/B][/SIZE]
n! = n · (n - 1)!
1! = 1 · (1 - 1)!
1! = 1 · (0)!
For the expression to be true, 0! [U]must[/U] equal 1.
Otherwise, 1! ≠ 1 which contradicts the equation above
[MEDIA=youtube]wDgRgfj1cIs[/MEDIA]
Prove sqrt(2) is irrationalUse proof by contradiction. Assume sqrt(2) is rational.
This means that sqrt(2) = p/q for some integers p and q, with q <>0.
We assume p and q are in lowest terms.
Square both side and we get:
2 = p^2/q^2
p^2 = 2q^2
This means p^2 must be an even number which means p is also even since the square of an odd number is odd.
So we have p = 2k for some integer k. From this, it follows that:
2q^2 = p^2 = (2k)^2 = 4k^2
2q^2 = 4k^2
q^2 = 2k^2
q^2 is also even, therefore q must be even.
So both p and q are even.
This contradicts are assumption that p and q were in lowest terms.
So sqrt(2) [B]cannot be rational.
[MEDIA=youtube]tXoo9-8Ewq8[/MEDIA][/B]
Prove the sum of any two rational numbers is rationalTake two integers, r and s.
We can write r as a/b for integers a and b since a rational number can be written as a quotient of integers
We can write s as c/d for integers c and d since a rational number can be written as a quotient of integers
Add r and s:
r + s = a/b + c/d
With a common denominator bd, we have:
r + s = (ad + bc)/bd
Because a, b, c, and d are integers, ad + bc is an integer since rational numbers are closed under addition and multiplication.
Since b and d are non-zero integers, bd is a non-zero integer.
Since we have the quotient of 2 integers, r + s is a rational number.
[MEDIA=youtube]0ugZSICt_bQ[/MEDIA]
Prove there is no integer that is both even and oddLet us take an integer x which is both even [I]and[/I] odd.
[LIST]
[*]As an even integer, we write x in the form 2m for some integer m
[*]As an odd integer, we write x in the form 2n + 1 for some integer n
[/LIST]
Since both the even and odd integers are the same number, we set them equal to each other
2m = 2n + 1
Subtract 2n from each side:
2m - 2n = 1
Factor out a 2 on the left side:
2(m - n) = 1
By definition of divisibility, this means that 2 divides 1.
But we know that the only two numbers which divide 1 are 1 and -1.
Therefore, our original assumption that x was both even and odd must be false.
[MEDIA=youtube]SMM9ubEVcLE[/MEDIA]
Put the number 123456789 exactly ones in the bubble so that each edge adds up to say numberPut the number 123456789 exactly ones in the bubble so that each edge adds up to say number
[B]
Each side adds up to 17
[IMG]https://www.mathcelebrity.com/images/triangle_sum_17.png[/IMG]
[/B]
Q is a point on segment PR. If PQ = 2.7 and PR = 6.1, what is QR?Q is a point on segment PR. If PQ = 2.7 and PR = 6.1, what is QR?
From segment addition, we know that:
PQ + QR = PR
Plugging our given numbers in, we get:
2.7 + QR = 6.1
Subtract 2.7 from each side, and we get:
2.7 - 2.7 + QR = 6.1 - 2.7
Cancelling the 2.7 on the left side, we get:
QR = [B]3.4[/B]
quotient of the sum of 2 numbers and 6quotient of the sum of 2 numbers and 6
The phrase [I]two numbers[/I] means we choose 2 arbitrary variables, let's call them x and y
x, y
The sum of 2 numbers:
x + y
quotient of the sum of 2 numbers and 6
[B](x + y)/6[/B]
quotient of the sum of 3 numbers and 3quotient of the sum of 3 numbers and 3
The phrase [I]3 numbers[/I] means we choose 3 arbitrary variables:
a, b,c
The sum of the 3 numbers:
a + b + c
quotient of the sum of 3 numbers and 3
[B](a + b + c)/3[/B]
Rachel buys some scarves that cost $10 each and 2 purses that cost $16 each. The cost of Rachel's toRachel buys some scarves that cost $10 each and 2 purses that cost $16 each. The cost of Rachel's total purchase is $62. What equation can be used to find n, the number of scarves that Rebecca buys
Scarves Cost + Purses Cost = Total Cost
[U]Calculate Scarves Cost[/U]
Scarves cost = Cost per scarf * number of scarves
Scarves cost = 10n
[U]Calculate Purses Cost[/U]
Purses cost = Cost per purse * number of purses
Purses cost = 16 * 2
Purses cost = 32
Total Cost = 62. Plug in our numbers and values to the Total Cost equation :
10n + 32 = 62
Solve for [I]n[/I] in the equation 10n + 32 = 62
[SIZE=5][B]Step 1: Group constants:[/B][/SIZE]
We need to group our constants 32 and 62. To do that, we subtract 32 from both sides
10n + 32 - 32 = 62 - 32
[SIZE=5][B]Step 2: Cancel 32 on the left side:[/B][/SIZE]
10n = 30
[SIZE=5][B]Step 3: Divide each side of the equation by 10[/B][/SIZE]
10n/10 = 30/10
n = [B]3[/B]
Rachel runs each lap in 6 minutes. She will run less than 8 laps today. What are the possible numberRachel runs each lap in 6 minutes. She will run less than 8 laps today. What are the possible numbers of minutes she will run today
Less than means an inequality.
6 minutes per lap * 8 laps = 48 minutes.
If m is the number of minutes Rachel runs, then we have:
[B]m < 48[/B]
Rachel saved $200 and spends $25 each week. Roy just started saving $15 per week. At what week willRachel saved $200 and spends $25 each week. Roy just started saving $15 per week. At what week will they have the same amount?
Let Rachel's account value R(w) where w is the number of weeks be:
R(w) = 200 - 25w <-- We subtract -25w because she spends it every week, decreasing her balance.
Let Roy's account value R(w) where w is the number of weeks be:
R(w) = 15w
Set them equal to each other:
200 - 25w = 15w
To solve this equation, [URL='https://www.mathcelebrity.com/1unk.php?num=200-25w%3D15w&pl=Solve']we type it into our search engine[/URL] and get:
[B]w = 5[/B]
Rachel works at a bookstore. On Tuesday, she sold twice as many books as she did on Monday. On WedneRachel works at a bookstore. On Tuesday, she sold twice as many books as she did on Monday. On Wednesday, she sold 6 fewer books than she did on Tuesday. During the 3 days Rachel sold 19 books. Create an equation that can be used to find m, a number of books Rachel sold on Monday.
Let me be the number of books Rachel sold on Monday. We're given Tuesday's book sales (t) and Wednesday's books sales (w) as:
[LIST=1]
[*]t = 2m
[*]w = t - 6
[*]m + t + w = 19
[/LIST]
Plug (1) and (2) into (3):
Since t = 2m and w = t - 6 --> 2m - 6, we have:
m + 2m + 2m - 6 = 19
Combine like terms:
5m - 6 = 19
[URL='https://www.mathcelebrity.com/1unk.php?num=5m-6%3D19&pl=Solve']Plugging this equation into our search engine[/URL], we get:
[B]m = 5[/B]
Rafael is a software salesman. His base salary is $1900 , and he makes an additional $40 for every cRafael is a software salesman. His base salary is $1900 , and he makes an additional $40 for every copy of Math is Fun he sells. Let p represent his total pay (in dollars), and let c represent the number of copies of Math is Fun he sells. Write an equation relating to . Then use this equation to find his total pay if he sells 22 copies of Math is Fun.
We want a sales function p where c is the number of copies of Math is Fun
p = Price per sale * c + Base Salary
[B]p = 40c + 1900
[/B]
Now, we want to know Total pay if c = 22
p = 40(22) + 1900
p = 880 + 1900
p = [B]2780[/B]
Random Number GeneratorFree Random Number Generator Calculator - This program generates (n) random numbers between a set of values you specify.
Example: Generate 5 random numbers between 0 and 100.
Ratio Word ProblemsFree Ratio Word Problems Calculator - Solves a ratio word problem using a given ratio of 2 items in proportion to a whole number.
Rational Number SubtractionFree Rational Number Subtraction Calculator - Subtracting 2 numbers, this shows an equivalent operations is adding the additive inverse. p - q = p + (-q)
Rational NumbersFree Rational Numbers Calculator - This lesson walks you through what rational numbers are, how to write rational numbers, rational number notation, and what's included in rational numbers
Rational Numbers BetweenFree Rational Numbers Between Calculator - This calculator determines all rational numbers between two numbers
Rational,Irrational,Natural,Integer PropertyFree Rational,Irrational,Natural,Integer Property Calculator - This calculator takes a number, decimal, or square root, and checks to see if it has any of the following properties:
* Integer Numbers
* Natural Numbers
* Rational Numbers
* Irrational Numbers
Handles questions like:
Irrational or rational numbers
Rational or irrational numbers
rational and irrational numbers
Rational number test
Irrational number test
Integer Test
Natural Number Test
Reagan bought t T-shirts. The shirts came in 8 packages. Write an expression that shows how many T-sReagan bought t T-shirts. The shirts came in 8 packages. Write an expression that shows how many T-shirts were in each package.
T-shirts per package = number of packages / number of t-shirts per package
T-shirts per package = [B]8/t[/B]
Real NumbersFree Real Numbers Calculator - This lesson walks you through what real numbers are, how to write real numbers, real numbers notation, and what's included in real numbers
Rectangular NumberFree Rectangular Number Calculator - This calculator determines the nth rectangular number
Reece made a deposite into an account that earns 8% simple interest. After 8 years reece has earnedReece made a deposite into an account that earns 8% simple interest. After 8 years Reece has earned 400 dollars. How much was Reece's initial deposit?
Simple interest formula:
A = P(1 + it) where P is the amount of principal to be invested, i is the interest rate, t is the time, and A is the amount accumulated with interest.
Plugging in our numbers, we get:
400 = P(1 + 0.08(8))
400 = P(1 + 0.64)
400 = 1.64P
1.64P = 400
[URL='https://www.mathcelebrity.com/1unk.php?num=1.64p%3D400&pl=Solve']Typing this problem into our search engine[/URL], we get:
P = [B]$243.90[/B]
Refer to a bag containing 13 red balls numbered 1-13 and 5 green balls numbered 14-18. You choose aRefer to a bag containing 13 red balls numbered 1-13 and 5 green balls numbered 14-18. You choose a ball at random.
a. What is the probability that you choose a red or even numbered ball?
b. What is the probability you choose a green ball or a ball numbered less than 5?
a. The phrase [I]or[/I] in probability means add. But we need to subtract even reds so we don't double count:
We have 18 total balls, so this is our denonminator for our fractions.
Red and Even balls are {2, 4, 6, 8, 10, 12}
Our probability is:
P(Red or Even) = P(Red) + P(Even) - P(Red and Even)
P(Red or Even) = 13/18 + 9/18 - 6/18
P(Red or Even) = 16/18
Using our [URL='https://www.mathcelebrity.com/fraction.php?frac1=16%2F18&frac2=3%2F8&pl=Simplify']Fraction Simplify Calculator[/URL], we have:
P(Red or Even) = [B]16/18[/B]
[B][/B]
b. The phrase [I]or[/I] in probability means add. But we need to subtract greens less than 5 so we don't double count:
We have 18 total balls, so this is our denonminator for our fractions.
Green and less than 5 does not exist, so we have no intersection
Our probability is:
P(Green or Less Than 5) = P(Green) + P(Less Than 5) - P(Green And Less Than 5)
P(Green or Less Than 5) = 5/18 + 4/18 - 0
P(Green or Less Than 5) = 9/18
Using our [URL='https://www.mathcelebrity.com/fraction.php?frac1=9%2F18&frac2=3%2F8&pl=Simplify']Fraction Simplify Calculator[/URL], we have:
P(Red or Even) = [B]1/2[/B]
Reflexive PropertyFree Reflexive Property Calculator - Demonstrates the reflexive property of congruence using a number.
Numerical Properties
RegroupingFree Regrouping Calculator - Subtracts two numbers using regrouping
Renee sells 6 gifts in 20 minutes. How many might she sell in 4 hrsRenee sells 6 gifts in 20 minutes. How many might she sell in 4 hrs
What is 4 hours in minutes?
4 hours = 4 * 60 = 240 minutes.
Now we are on a minutes to minutes basis, set up a proportion:
6/20 = x/240 where x is the number of gifts in 240 minutes (4 hours)
Using our [URL='http://www.mathcelebrity.com/prop.php?num1=6&num2=x&den1=20&den2=240&propsign=%3D&pl=Calculate+missing+proportion+value']proportion calculator[/URL], we get:
[B]x = 72[/B]
Represent the number of inches in 7 feetRepresent the number of inches in 7 feet
We [URL='https://www.mathcelebrity.com/linearcon.php?quant=7&pl=Calculate&type=foot']type in 7 feet to our search engine and we get[/URL]:
7 feet = [B]84 inches[/B]
Researchers in Antarctica discovered a warm sea current under the glacier that is causing the glacieResearchers in Antarctica discovered a warm sea current under the glacier that is causing the glacier to melt. The ice shelf of the glacier had a thickness of approximately 450 m when it was first discovered. The thickness of the ice shelf is decreasing at an average rate if 0.06 m per day.
Which function can be used to find the thickness of the ice shelf in meters x days since the discovery?
We want to build an function I(x) where x is the number of days since the ice shelf discovery.
We start with 450 meters, and each day (x), the ice shelf loses 0.06m, which means we subtract this from 450.
[B]I(x) = 450 - 0.06x[/B]
Rick sold a total of 75 books during the first 22 days of May. If he continues to sell books at theRick sold a total of 75 books during the first 22 days of May. If he continues to sell books at the same rate, how many books will he sell during the month of May?
Set up a proportion of days to books where n is the number of books sold in May:
22/31 = 75/n
Using our [URL='https://www.mathcelebrity.com/proportion-calculator.php?num1=22&num2=75&den1=31&den2=n&propsign=%3D&pl=Calculate+missing+proportion+value']proportion calculator[/URL] and rounding to the next integer, we get:
n = [B]106[/B]
Ricky reads 20 pages in 50 minutes. How many minutes does it take him to read one pageRicky reads 20 pages in 50 minutes. How many minutes does it take him to read one page
Set up a proportion of pages per minute where m is the number of minutes to read one page:
20/50 = 1/m
To solve this proportion for m, we [URL='https://www.mathcelebrity.com/prop.php?num1=20&num2=1&den1=50&den2=m&propsign=%3D&pl=Calculate+missing+proportion+value']type it in our search engine[/URL] and we get:
m = [B]2.5[/B]
Riley is trying to raise money by selling key chains. each key chain costs $2.50. If riley is tryingRiley is trying to raise money by selling key chains. each key chain costs $2.50. If riley is trying to raise $60. How many key chains will he have to sell
Let the number of key chains be k. We have the following equation:
2.50k = 60
To solve this equation for k, we [URL='https://www.mathcelebrity.com/1unk.php?num=2.50k%3D60&pl=Solve']type it in our search engine[/URL] and we get:
k = [B]24[/B]
Rob has 40 coins, all dimes and quarters, worth $7.60. How many dimes and how many quarters does heRob has 40 coins, all dimes and quarters, worth $7.60. How many dimes and how many quarters does he have?
We have two equations where d is the number of dimes and q is the number of quarters:
[LIST=1]
[*]d + q = 40
[*]0.1d + 0.25q = 7.60
[/LIST]
Using our [URL='http://www.mathcelebrity.com/simultaneous-equations.php?term1=d+%2B+q+%3D+40&term2=0.1d+%2B+0.25q+%3D+7.60&pl=Cramers+Method']simultaneous equation calculator[/URL], we get:
[B]d = 16
q = 24[/B]
Robert has 45 dollars. He buys 6 tshirts and has 7 dollars left over. How much did each tshirt cost?Let x be the price of one t-shirt. Set up an equation:
6 times the number of t-shirts plus 7 dollars left over get him to a total of 45
6x = 45 - 7
6x = 38
Divide each side by 6
[B]x = 6.33[/B]
Roberto has taken 17 photos photos are placed on each odd number page and the newspaper has 10 pagesRoberto has taken 17 photos photos are placed on each odd number page and the newspaper has 10 pages total. The pages with photographs will have 3 or 4 photos each. How many pages has 3 photos and how many pages have 4 photos?
Odd pages are 1, 3, 5, 7, 9
17/5 = 3 with 2 remaining.
So all 5 pages have 3 photos. Then with 2 left over, 2 pages get 4 photos.
So 5 pages have [B]3 photos, and 2 pages have 2 photos[/B]
3(3) + 4(2) = 9 + 8 = 17
Roberto owns a trucking company. He charges $50 hook up fee and $2 per mile. How much to tow your caRoberto owns a trucking company. He charges $50 hook up fee and $2 per mile. How much to tow your car: 1mile , 2miles , 10miles ?
The Cost Function C(m) where m is the number of miles is written as:
C(m) = 2m + 50
The problem asks for C(1), C(2), and C(10)
Calculate C(1)
C(1) = 2(1) + 50
C(1) = 2 + 50
C(1) = [B]52[/B]
Calculate C(2)
C(2) = 2(2) + 50
C(2) = 4 + 50
C(2) = [B]54[/B]
Calculate C(10)
C(10) = 2(10) + 50
C(10) = 20 + 50
C(10) = [B]70[/B]
Roman Numeral ConversionsFree Roman Numeral Conversions Calculator - Converts a Positive integer less than 4000 to a Roman Numeral.
Converts a Roman Numeral with a positive value less than 4000 to a number.
Ronnie, liza, vivien, and vina are classmates. They send each other a Valentines card. Find the numbRonnie, liza, vivien, and vina are classmates. They send each other a Valentines card. Find the number of Valentines cards they send altogether
We've got 4 classmates. Which means each person sends 3 Valentine's cards (to everybody else in the class but themselves):
3 * 3 * 3 * 3 or 4 * 3 = 12 Valentine's cards.
Rose weighs 140 pounds and gains 10%. What percent of her new weight must she lose to get back to 14Rose weighs 140 pounds and gains 10%. What percent of her new weight must she lose to get back to 140 pounds?
Find her new weight after the 10% gain:
New Weight = Starting Weight * (1 + 10%)
Since 10% is 0.1, we have:
New Weight = Starting Weight * (1 + 0.1)
New Weight = Starting Weight * (1.1)
Plug in our numbers:
New Weight = 140 * (1.1)
New Weight = 154
To get back to 140, Rose must lose 154 - 140 = 14 pounds.
As a percentage of her new weight, [URL='https://www.mathcelebrity.com/perc.php?num=14&den=154&pcheck=1&num1=16&pct1=80&pct2=70&den1=80&idpct1=10&hltype=1&idpct2=90&pct=82&decimal=+65.236&astart=12&aend=20&wp1=20&wp2=30&pl=Calculate']we type 14/154 into our search engine[/URL], and get:
[B]9.09%
[/B]
[I]We read this as, Rose must lose 9.09% of her current body weight of 154 pounds to get back to her starting weight of 140 pounds.[/I]
Roster NotationFree Roster Notation Calculator - Given a set of numbers, this displays the roster notation
Roulette Cumulative BettingFree Roulette Cumulative Betting Calculator - This calculator displays the probability and return grid for a roulette scenario where you play x games, betting y per number playing z numbers per game.
RoundingFree Rounding Calculator - Rounds a number to the nearest number of your choice
Rounding to Decimal PlacesFree Rounding to Decimal Places Calculator - Rounds a number to a select number of decimal places
s = tu^2 for us = tu^2 for u
Divide each side by t
u^2 = s/t
Take the square root of each side
[LIST]
[*]u = sqrt(s/t)
[*]u = -sqrt(s/t)
[/LIST]
We have two answers due to negative number squared is positive
Sally and Adam works a different job. Sally makes $5 per hour and Adam makes $4 per hour. They eachSally and Adam works a different job. Sally makes $5 per hour and Adam makes $4 per hour. They each earn the same amount per week but Adam works 2 more hours. How many hours a week does Adam work?
[LIST]
[*]Let [I]s[/I] be the number of hours Sally works every week.
[*]Let [I]a[/I] be the number of hours Adam works every week.
[*]We are given: a = s + 2
[/LIST]
Sally's weekly earnings: 5s
Adam's weekly earnings: 4a
Since they both earn the same amount each week, we set Sally's earnings equal to Adam's earnings:
5s = 4a
But remember, we're given a = s + 2, so we substitute this into Adam's earnings:
5s = 4(s + 2)
Multiply through on the right side:
5s = 4s + 8 <-- [URL='https://www.mathcelebrity.com/expand.php?term1=4%28s%2B2%29&pl=Expand']multiplying 4(s + 2)[/URL]
[URL='https://www.mathcelebrity.com/1unk.php?num=5s%3D4s%2B8&pl=Solve']Typing this equation into the search engine[/URL], we get s = 8.
The problem asks for Adam's earnings (a). We plug s = 8 into Adam's weekly hours:
a = s + 2
a = 8 + 2
[B]a = 10[/B]
Sally found 73 seashells on the beach, she gave Mary some of her seashells. She has 10 left. How manSally found 73 seashells on the beach, she gave Mary some of her seashells. She has 10 left. How many did she give to Mary?
Let the number of seashells Sally gave away as g. We're given:
73 - g = 10
To solve this equation for g, we [URL='https://www.mathcelebrity.com/1unk.php?num=73-g%3D10&pl=Solve']type it in our search engine[/URL] and we get:
g = [B]63[/B]
Sally worked for 35 hours and was paid 8 dollars per hour how much money did she earnSally worked for 35 hours and was paid 8 dollars per hour how much money did she earn?
Total Wages = Number of Hours Worked * Hourly Rate
Total Wages = 35 * 8
Total Wages = [B]280[/B]
Salma purchased a prepaid phone card for 30. Long distance calls cost 9 cents a minute using this caSalma purchased a prepaid phone card for 30. Long distance calls cost 9 cents a minute using this card. Salma used her card only once to make a long distance call. If the remaining credit on her card is 28.38, how many minutes did her call last?
[U]Set up the equation where m is the number of minutes used:[/U]
0.09m = 30 - 28.38
0.09m = 1.62
[U]Divide each side by 0.09[/U]
[B]m = 18[/B]
Sam can pick 56 apples in 30 minutes. How many can he pick in 45 minutes?Sam can pick 56 apples in 30 minutes. How many can he pick in 45 minutes?
We set up a proportion of apples to minutes where a is the number of apples Sam can pick in 45 minutes.
56/30 = a/45
Using our math engine, we [URL='https://www.mathcelebrity.com/prop.php?num1=56&num2=a&den1=30&den2=45&propsign=%3D&pl=Calculate+missing+proportion+value']type this proportion into our search box[/URL] and get:
a = [B]84
[MEDIA=youtube]tpNHh1jh3XE[/MEDIA][/B]
Sam finished 18 problems in one hour. How many hours will it take same to solve 80 problemsSam finished 18 problems in one hour. How many hours will it take same to solve 80 problems
Set up a proportion of problems to hours where h is the number of hours for 80 problems:
18/1 = 80/h
To solve for h, we [URL='https://www.mathcelebrity.com/prop.php?num1=18&num2=80&den1=1&den2=h&propsign=%3D&pl=Calculate+missing+proportion+value']type this proportion into our search engine [/URL]and we get:
h = [B]4.44[/B]
Sam has $2.25 in quarters and dimes, and the total number of coins is 12. How many quarters and howSam has $2.25 in quarters and dimes, and the total number of coins is 12. How many quarters and how many dimes?
Let d be the number of dimes. Let q be the number of quarters. We're given two equations:
[LIST=1]
[*]0.1d + 0.25q = 2.25
[*]d + q = 12
[/LIST]
We have a simultaneous system of equations. We can solve this 3 ways:
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=0.1d+%2B+0.25q+%3D+2.25&term2=d+%2B+q+%3D+12&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=0.1d+%2B+0.25q+%3D+2.25&term2=d+%2B+q+%3D+12&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=0.1d+%2B+0.25q+%3D+2.25&term2=d+%2B+q+%3D+12&pl=Cramers+Method']Cramer's Rule[/URL]
[/LIST]
No matter which method we choose, we get the same answer:
[LIST]
[*][B]d = 5[/B]
[*][B]q = 7[/B]
[/LIST]
Sam is eating a Big Hamburger. The first bite was 20% of the Hamburger, the second bite was 20% of wSam is eating a Big Hamburger. The first bite was 20% of the Hamburger, the second bite was 20% of what is left and so every next bite is 20% of what is left. b Is it possible for Sam to eat it all if he will bite 20% of what it is left?
[B]No, this will go on for infinity.
[/B]
The number gets closer to 0 but never hits 0.
Sam needs to save $300 to buy a video game system. He is able to save $20 per week. How many weeks wSam needs to save $300 to buy a video game system. He is able to save $20 per week. How many weeks will it take till he can buy the video game system?
Let w be the number of weeks. We have the following equation:
20w = 300
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=20w%3D300&pl=Solve']equation solver[/URL], we get:
[B]w = 15[/B]
Sam's plumbing service charges a $50 diagnostic fee and then $20 per hour. How much money does he eaSam's plumbing service charges a $50 diagnostic fee and then $20 per hour. How much money does he earn, m, when he shows up to your house to do a job that takes h hours
[U]Set up the cost equation:[/U]
m = Hourly Rate * h + service charge
[U]Plugging in our numbers, we get:[/U]
[B]m = 20h + 50[/B]
Sara has a box of candies. In the box there are 8 pink candies, 7 purple candies and 5 blue candies.Sara has a box of candies. In the box there are 8 pink candies, 7 purple candies and 5 blue candies. She takes one candy and records its color. She then puts it back in the box and draws another candy. What is the probability of taking out a pink candy followed by a blue candy?
[B][U]Calculate the total number of candies:[/U][/B]
Total candies = Pink + Purple + Blue
Total candies = 8 + 7 + 5
Total candies = 20
[B][U]Calculate the probability of drawing one pink candy:[/U][/B]
P(Pink) = 8/20
Using our [URL='https://www.mathcelebrity.com/fraction.php?frac1=8%2F20&frac2=3%2F8&pl=Simplify']fraction reduction calculator[/URL], we get:
P(Pink) = 2/5
[B][U]Calculate the probability of drawing one blue candy:[/U][/B]
P(Blue) = 5/20 <-- [I]20 options since Sara replaced her first draw[/I]
Using our [URL='https://www.mathcelebrity.com/fraction.php?frac1=5%2F20&frac2=3%2F8&pl=Simplify']fraction reduction calculator[/URL], we get:
P(Blue) = 1/4
The problem asks for the probability of a Pink followed by a Blue. Since each event is independent, we multiply:
P(Pink, Blue) = P(Pink) * P(Blue)
P(Pink, Blue) = 2/5 * 1/4
P(Pink, Blue) = 2/20
Using our [URL='https://www.mathcelebrity.com/fraction.php?frac1=2%2F20&frac2=3%2F8&pl=Simplify']fraction reduction calculator[/URL], we get:
P(Pink, Blue) = [B]1/10 or 10%[/B]
Sarah has $250 in her account. She withdraws $25 per week. How many weeks can she withdraw money froSarah has $250 in her account. She withdraws $25 per week. How many weeks can she withdraw money from her account and still have money left?
Let w be the number of weeks. We have the following equation for the Balance after w weeks:
B(w) = 250 - 25w [I]we subtract for withdrawals[/I]
The ability to withdrawal money means have a positive or zero balance after withdrawal. So we set up the inequality below:
250 - 25w >= 0
To solve this inequality for w, we [URL='https://www.mathcelebrity.com/1unk.php?num=250-25w%3E%3D0&pl=Solve']type it in our search engine[/URL] and we get:
w <= [B]10
So Sarah can withdrawal for up to 10 weeks[/B]
Sarah makes $9 per hour working at a daycare center and $12 per hour working at a restaurant. NextSarah makes $9 per hour working at a daycare center and $12 per hour working at a restaurant. Next week, Sarah is scheduled to work 8 hours at the daycare center. Which of the following inequalities represents the number of hours (h) that Sandra needs to work at the restaurant next week to earn at least $156 from these two jobs?
Set up Sarah's earnings function E(h) where h is the hours Sarah must work at the restaurant:
12h + 9(8) >= 156 <-- The phrase [I]at least[/I] means greater than or equal to, so we set this up as an inequality. Also, the daycare earnings are $9 per hour * 8 hours
Multiplying through and simplifying, we get:
12h + 72 >= 156
We [URL='https://www.mathcelebrity.com/1unk.php?num=12h%2B72%3E%3D156&pl=Solve']type this inequality into the search engine[/URL], and we get:
[B]h>=7[/B]
Sarah starts with $300 in her savings account. She babysits and earns $30 a week to add to her accouSarah starts with $300 in her savings account. She babysits and earns $30 a week to add to her account. Write a linear equation to model this situation? Enter your answer in y=mx b form with no spaces.
Let x be the number of hours Sarah baby sits. Then her account value y is:
y = [B]30x + 300[/B]
Savannah is a salesperson who sells computers at an electronics store. She makes a base pay of $90 eSavannah is a salesperson who sells computers at an electronics store. She makes a base pay of $90 each day and is also paid a commission for each sale she makes. One day, Savannah sold 4 computers and was paid a total of $100. Write an equation for the function P(x), representing Savannah's total pay on a day on which she sells x computers.
If base pay is $90 per day, then the total commission Savannah made for selling 4 computers is:
Commission = Total Pay - Base Pay
Commission = 100 - 90
Commission = $10
Assuming the commission for each computer is equal, we need to find the commission per computer:
Commission per computer = Total Commission / Number of Computers Sold
Commission per computer = 10/4
Commission per computer = $2.50
Now, we build the Total pay function P(x):
Total Pay = Base Pay + Commission * Number of Computers sold
[B]P(x) = 90 + 2.5x[/B]
Scientific NotationFree Scientific Notation Calculator - * Converts a number into scientific notation and determines order of magnitude
* converts scientific notation to a number (standard notation). Also handles scientific notation operations.
Serial numbers for a product are to be using 3 letters followed by 4 digits. The letters are to be tSerial numbers for a product are to be using 3 letters followed by 4 digits. The letters are to be taken from the first 8 letters of the alphabet with no repeats. The digits are taken from numbers 0-9 with no repeats. How many serial numbers can be generated
The serial number is organized with letters (L) and digits (D) like this:
LLLDDDD
Here's how we get the serial number:
[LIST=1]
[*]The first letter can be any of 8 letters A-H
[*]The second letter can be any 7 of 8 letters A-H
[*]The third letter can be any 6 of 8 letters A-H
[*]The fourth digit can be any of 10 digits 0-9
[*]The fifth digit can be any 9 of 10 digits 0-9
[*]The sixth digit can be any 8 of 10 digits 0-9
[*]The seventh digit can be any 7 of 10 digits 0-9
[/LIST]
We multiply all possibilities:
8 * 7 * 6 * 10 * 9 * 8 * 7
[B]1,693,440[/B]
Serial numbers for a product are to made using 4 letters followed by 4 numbers. If the letters are tSerial numbers for a product are to made using 4 letters followed by 4 numbers. If the letters are to be taken from the first 5 letters of the alphabet with repeats possible and the numbers are taken from the digits 0 through 9 with no repeats, how many serial numbers can be generated?
First 5 letters of the alphabet are {A, B, C, D, E}
The 4 letters can be chosen as possible:
5 * 5 * 5 * 5
The number are not repeatable, so the 4 numbers can be chosen as:
10 * 9 * 8 * 7 since we have one less choice with each pick
Grouping letters and numbers together, we have the following serial number combinations:
5 * 5 * 5 * 5 * 10 * 9 * 8 * 7 = [B]3,150,000[/B]
Set C is the set of two-digit even numbers greater than 72 that do not contain the digit 8.Set C is the set of two-digit even numbers greater than 72 that do not contain the digit 8.
First, two-digit numbers mean anything less than 100. Let's, list out our two-digit even numbers greater than 72 but less than 100.
C = {74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98}
The problem asks for numbers that do not contain the digit 8. Let's remove those numbers from the list.
C = {74, 76, [S]78[/S], [S]80, 82, 84, 86, 88[/S], 90, 92, 94, 96, [S]98[/S]}
[B]C = {74, 76, 90, 92, 94, 96}
[MEDIA=youtube]_O6nXX0V4zo[/MEDIA][/B]
Set C is the set of two-digit even numbers less than 56 that are divisible by 5[U]Two digit Numbers less than 56:[/U]
{10, 11, 12, ..., 55}
[U]Two Digit Even Numbers of that Set:[/U]
{10, 12, 14, ..., 54}
[U]Two Digit Even numbers Divisible by 5[/U]
[B]C = {10, 20, 30, 40, 50}[/B]
[I]Note: Even means you can divide it by 2 with no remainder. Divisible by 5 means the number ends in 5 or 0. Since it is even numbers only, end in 0.
[MEDIA=youtube]aQKLVxIB-p4[/MEDIA][/I]
Set D is the set of two-digit even numbers less than 67 that are divisible by 5Set D is the set of two-digit even numbers less than 67 that are divisible by 5
two-digit numbers start at 10. Divisible by 5 means the last digit is either 0 or 5. But even numbers don't end in 5, so we take the two-digit numbers ending in 0:
D = {[B]10, 20, 30, 40, 50, 60}[/B]
Set NotationFree Set Notation Calculator - Given two number sets A and B, this determines the following:
* Union of A and B, denoted A U B
* Intersection of A and B, denoted A ∩ B
* Elements in A not in B, denoted A - B
* Elements in B not in A, denoted B - A
* Symmetric Difference A Δ B
* The Concatenation A · B
* The Cartesian Product A x B
* Cardinality of A = |A|
* Cardinality of B = |B|
* Jaccard Index J(A,B)
* Jaccard Distance Jσ(A,B)
* Dice's Coefficient
* If A is a subset of B
* If B is a subset of A
Set of 2 digit even numbers less than 40Set of 2 digit even numbers less than 40
Knowns and givens:
[LIST]
[*]2 digit numbers start at 10
[*]Less than 40 means we do not include 40
[*]Even numbers are divisible by 2
[/LIST]
[B]{10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38}[/B]
Seth is constantly forgetting the combination to his lock. He has a lock with four dials. (Each ha 1Seth is constantly forgetting the combination to his lock. He has a lock with four dials. (Each has 10 numbers 0-9). If Seth can try one lock combination per second, how many seconds will it take him to try every possible lock combination?
Start with 0001, 0002, all the way to 9999
[URL='https://www.mathcelebrity.com/inclusnumwp.php?num1=0&num2=9999&pl=Count']When you do this[/URL], you get 10,000 combinations. One per second = 10,000 seconds
Seven less than 1/4 of a number is 9.Seven less than 1/4 of a number is 9.
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
1/4 of a number means we multiply x by 1/4:
x/4
Seven less than this means we subtract 7 from x/4:
x/4 - 7
The word [I]is[/I] means an equation, so we set x/4 - 7 equal to 9:
[B]x/4 - 7 = 9[/B]
Seven subtracted from the product of 3 and a number is greater than or equal to -26Seven subtracted from the product of 3 and a number is greater than or equal to -26
[LIST=1]
[*]A number means an arbitrary variable, let's call it x.
[*]The product of 3 and a number is written as 3x
[*]Seven subtracted from 3x is written as 3x - 7
[*]Finally, that entire expression is greater than or equal to -26: [B]3x - 7 >= - 26[/B]
[/LIST]
Shalini gave 0.4 of her plums to her brother and 20% to her sister. She kept 16 for herself how manyShalini gave 0.4 of her plums to her brother and 20% to her sister. She kept 16 for herself how many plums did she have at first?
Let p be the number of plums Shalini started with. We have:
[LIST]
[*]0.4 given to her brother
[*]20% which is 0.2 given away to her sister
[*]What this means is she kept 1 - (0.4 + 0.2) = 1 - 0.6 = 0.4 for herself
[/LIST]
0.4p = 16
Divide each side by 0.4
[B]p = 40[/B]
Shalini gave 0.4 of her plums to her brother and 20% to her sister. She kept 16 for herself. How manShalini gave 0.4 of her plums to her brother and 20% to her sister. She kept 16 for herself. How many plums did she have first?
Let's convert everything to decimals. 20% = 0.2
So Shalini gave 0.4 + 0.2 = 0.6 of the plums away. Which means she has 1 = 0.6 = 0.4 or 40% left over.
40% represents 16 plums
So our equation is 0.4p = 16 where p is the number of plums to start with
Divide each side by 0.4
[B]p = 40[/B]
Shanice won 97 pieces of gum playing basketball at the county fair. At school she gave four to everyShanice won 97 pieces of gum playing basketball at the county fair. At school she gave four to every student in her math class. She only has 5 remaining. How many students are in her class?
Let the number of students be s. We have a situation described by the following equation:
4s + 5 = 97 <-- We add 5 since it's left over to get to 97
[URL='https://www.mathcelebrity.com/1unk.php?num=4s%2B5%3D97&pl=Solve']We type this equation into the search engine[/URL] and we get:
s = [B]23[/B]
She earns $20 per hour as a carpenter and $25 per hour as a blacksmith, last week Giselle worked botShe earns $20 per hour as a carpenter and $25 per hour as a blacksmith, last week Giselle worked both jobs for a total of 30 hours, and a total of $690. How long did Giselle work as a carpenter and how long did she work as a blacksmith?
Assumptions:
[LIST]
[*]Let b be the number of hours Giselle worked as a blacksmith
[*]Let c be the number of hours Giselle worked as a carpenter
[/LIST]
Givens:
[LIST=1]
[*]b + c = 30
[*]25b + 20c = 690
[/LIST]
Rearrange equation (1) to solve for b by subtracting c from each side:
[LIST=1]
[*]b = 30 - c
[*]25b + 20c = 690
[/LIST]
Substitute equation (1) into equation (2) for b
25(30 - c) + 20c = 690
Multiply through:
750 - 25c + 20c = 690
To solve for c, we [URL='https://www.mathcelebrity.com/1unk.php?num=750-25c%2B20c%3D690&pl=Solve']type this equation into our search engine[/URL] and we get:
c = [B]12
[/B]
Now, we plug in c = 12 into modified equation (1) to solve for b:
b = 30 - 12
b = [B]18[/B]
Sheila loaded 21 trucks every 28 minutes. At this rate how long will it take to load 12 trucksSheila loaded 21 trucks every 28 minutes. At this rate how long will it take to load 12 trucks.
Let m be the number of minutes it takes Sheila to load 12 trucks. We set up a proportion of trucks to minutes:
21/28 = 12/m
[URL='https://www.mathcelebrity.com/prop.php?num1=21&num2=12&den1=28&den2=m&propsign=%3D&pl=Calculate+missing+proportion+value']Type this proportion into our search engine[/URL],and we get:
m = [B]16[/B]
Sierra borrows $310 from her brother to buy a lawn mower. She will repay $85 to start, and then anotSierra borrows $310 from her brother to buy a lawn mower. She will repay $85 to start, and then another $25 per week. A. Write an equation that can be used to determine w, the number of weeks it will take for Sierra to repay the entire amount.
Let w be the number of weeks. We have the equation:
25w + 85 = 310
[URL='https://www.mathcelebrity.com/1unk.php?num=25w%2B85%3D310&pl=Solve']Type this equation into the search engine[/URL], and we get:
w = [B]9[/B]
Sieve of EratosthenesFree Sieve of Eratosthenes Calculator - Using the Sieve of Eratosthenes algorithm, this will show how many prime numbers are less than a number (n).
Sign TestFree Sign Test Calculator - This will determine whether to accept or reject a null hypothesis based on a number set, mean value, alternative hypothesis, and a significance level using the Sign Test.
Significant FiguresFree Significant Figures Calculator - Rounds a number to a select number of significant figures
Since pounds are smaller than tons, i need to ______ the number of pounds by _____Since pounds are smaller than tons, i need to ______ the number of pounds by _____
[B]Divide[/B] the number of pounds by [B]2,000[/B]
Six friends went out to dinner. Each person ordered the same dinner, which costs $15.85. The friendsSix friends went out to dinner. Each person ordered the same dinner, which costs $15.85. The friends left a combined tip of $14. What was the total of the bill and tip?
When all six friends eat the same meal, we calculate the total meal bill before the tip:
Total meal bill = Cost per Meal * Number of Friends
Total meal bill = 15.85 * 6
Total meal bill = $95.10
Calculate the Total bill and Tip:
Total Bill and Tip = Total Meal Bill + Tip
Total Bill and Tip = $95.10 + $14
Total Bill and Tip = [B]$109.10[/B]
Six Less than the total of three times a number and negative eightSix Less than the total of three times a number and negative eight.
Let's take this in pieces:
Three times a number = 3x
The total of this and negative eight means we subtract eight
3x - 8
Six Less than this total means we subtract 6
3x - 8 - 6
Simplify by combining like terms:
[B]3x - 14[/B]
Six less than twice a number is at least -1 and at most 1First, the phrase [I]a number[/I] means we choose an arbitrary variable, let's call it x.
Twice a number means we multiply it by 2.
2x
Six less than that means we subtract 6
2x - 6
Now, the last piece, we set up an inequality. At least -1 means greater than or equal to 1. At most 1 means less than or equal to 1. Notice, for both points, we include the number.
-1 <= 2x - 6 <= 1
Sixteen subtracted from five times a number equals the number plus fourThe phrase [I]a number[/I] means an arbitrary variable. We can pick any letter a-z except for i and e.
Let's choose x.
5 times a number
5x
Sixteen subtracted from five times a number
5x - 16
the number plus 4:
x + 4
Equals means we set 5x - 16 equals to x + 4 for our algebraic expression:
[B]5x - 16 = x + 4[/B]
[B][/B]
If you have to solve for x, [URL='https://www.mathcelebrity.com/1unk.php?num=5x-16%3Dx%2B4&pl=Solve']type this expression into our math solver[/URL] and we get:
x = [B]5[/B]
slope is 0 and whose y-intercept is 9.slope is 0 and whose y-intercept is 9.
The standard line equation is y = mx + b where m is the slope and b is the y-intercept is b.
Plugging in our numbers, we get:
y = 0x + 9
y = [B]9[/B]
Small pizzas were $3 and large pizzas were $5. To feed the throng, it was necessary to spend $475 foSmall pizzas were $3 and large pizzas were $5. To feed the throng, it was necessary to spend $475 for 125 pizzas. How many small pizzas were purchased?
Let s be the number of small pizzas and l be the number of large pizzas. We have two given equations:
[LIST=1]
[*]l + s = 125
[*]3s + 5l = 475
[/LIST]
Using our [URL='http://www.mathcelebrity.com/simultaneous-equations.php?term1=l+%2B+s+%3D+125&term2=3s+%2B+5l+%3D+475&pl=Cramers+Method']simultaneous equation calculator[/URL], we get [B]s = 75[/B]:
Smallest Possible NumberSmallest Possible Number Calculator - Calculates the smallest possible number from a given set of numbers
Soda cans are sold in a local store for 50 cents each. The factory has $900 in fixed costs plus 25 cSoda cans are sold in a local store for 50 cents each. The factory has $900 in fixed costs plus 25 cents of additional expense for each soda can made. Assuming all soda cans manufactured can be sold, find the break-even point.
Calculate the revenue function R(c) where s is the number of sodas sold:
R(s) = Sale Price * number of units sold
R(s) = 50s
Calculate the cost function C(s) where s is the number of sodas sold:
C(s) = Variable Cost * s + Fixed Cost
C(s) = 0.25s + 900
Our break-even point is found by setting R(s) = C(s):
0.25s + 900 = 50s
We [URL='https://www.mathcelebrity.com/1unk.php?num=0.25s%2B900%3D50s&pl=Solve']type this equation into our search engine[/URL] and we get:
s = [B]18.09[/B]
Solving word problems with the matrix method?Hello everyone.
I am stuck on a work question that we are required to solve using the matrix (or Gauss-Jordan) method.
[CENTER]"A car rental company wants to buy 100 new cars. Compact cars cost $12,000 each,
intermediate size cars cost $18,000 each, full size cars cost $24,000 each, and the company
has a budget of $1,500,000. If they purchase twice as many compact cars as intermediate
sized cars, determine the number of cars of each type that they buy, assuming they
spend the entire budget."
[/CENTER]
I am fairly certain that I could solve this easily, except I cannot figure out the proper three equations that correspond to this question. I someone could help me figure them out, it would be greatly appreciated!
Some History teachers at Richmond High School are purchasing tickets for students and their adult chSome History teachers at Richmond High School are purchasing tickets for students and their adult chaperones to go on a field trip to a nearby museum. For her class, Mrs. Yang bought 30 student tickets and 30 adult tickets, which cost a total of $750. Mr. Alexander spent $682, getting 28 student tickets and 27 adult tickets. What is the price for each type of ticket?
Let the number of adult tickets be a
Let the number of student tickets be s
We're given two equations:
[LIST=1]
[*]30a + 30s = 750
[*]27a + 28s = 682
[/LIST]
To solve the simultaneous equations, we can use any of three methods below:
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=30a+%2B+30s+%3D+750&term2=27a+%2B+28s+%3D+682&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=30a+%2B+30s+%3D+750&term2=27a+%2B+28s+%3D+682&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=30a+%2B+30s+%3D+750&term2=27a+%2B+28s+%3D+682&pl=Cramers+Method']Cramer's Rule[/URL]
[/LIST]
No matter what method we use, we get the same answers:
[LIST]
[*][B]a = 18[/B]
[*][B]s = 7[/B]
[/LIST]
Some scientists believe that there are 10^87 atoms in the entire universe. The number googolplex isSome scientists believe that there are 10^87 atoms in the entire universe. The number googolplex is a 1 followed by a googol of zeros. If each atom in the universe is used as a zero, how many universes would you need in order to have enough zeros to write out completely the number googolplex?
10^100 zeros in the entire googolplex and 10^87 atoms in the universe
10^100 / 10^87 = [B]10^13 times as many zeros in the googolplex as there are atoms in the universe[/B]
somen is like conting in 9 s they start from 55 will they say 63somen is like conting in 9 s they start from 55 will they say 63
Next number:
55 + 9 = 64
64 > 63, so [B]no, Somen will never say 63[/B]
Sports Pool GeneratorFree Sports Pool Generator Calculator - This generator produces the following two sports (office) pools with shuffled scoring numbers (0 - 9):
1) Blank Sports Pool: This button generates a blank sports pool grid with shuffled numbers
2) Sports Pool with Names: This sports pool allows you to enter up to 100 names which will be randomly dropped into the blank grid boxes from Option 1 above.
This is easily copied and pasted into a program like Microsoft Word so that you can format it to your liking.
Sports radio stations numbered 220 in 1996. The number of sports radio stations has since increasedSports radio stations numbered 220 in 1996. The number of sports radio stations has since increased by approximately 14.3% per year. Write an equation for the number of sports radio stations for t years after 1996. If the trend continues, predict the number of sports radio stations in 2015.
Equation - where t is the number of years after 1996:
R(t) = 220(1.143)^t
We Want R(t) for 2015
t = 2015 - 1996 = 19
R(19) = 220(1.143)^19
R(19) = 220 * 12.672969
[B]R(19) = 2788.05 ~ 2,788[/B]
Square NumberFree Square Number Calculator - This calculator determines the nth square number
Square Root TableFree Square Root Table Calculator - Generates a square root table for the first (n) numbers rounded to (r) digits
Square Roots and ExponentsFree Square Roots and Exponents Calculator - Given a number (n), or a fraction (n/m), and/or an exponent (x), or product of up to 5 radicals, this determines the following:
* The square root of n denoted as √n
* The square root of the fraction n/m denoted as √n/m
* n raised to the xth power denoted as nx (Write without exponents)
* n raised to the xth power raised to the yth power denoted as (nx)y (Write without exponents)
* Product of up to 5 square roots: √a√b√c√d√e
* Write a numeric expression such as 8x8x8x8x8 in exponential form
Squaring a number equals 5 times that numberSquaring a number equals 5 times that number.
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
Squaring this number:
x^2
5 times this number means we multiply by 5:
5x
The phrase [I]equals[/I] means we set both expressions equal to each other:
[B]x^2 = 5x [/B] <-- This is our algebraic expression
If you want to solve for x, then we subtract 5x from each side:
x^2 - 5x = 5x - 5x
Cancel the 5x on the right side, leaving us with 0:
x^2 - 5x = 0
Factor out x:
x(x - 5)
So we get x = 0 or [B]x = 5[/B]
Stanley earns $1160 a month. He spends $540 every month and saves the rest. How much will he save inStanley earns $1160 a month. He spends $540 every month and saves the rest. How much will he save in 4 years?
[U]Calculate savings amount per month:[/U]
Savings amount per month = Earnings - Spend
Savings amount per month = 1160 - 540
Savings amount per month = 620
[U]Convert years to months[/U]
4 years = 12 * 4 months
4 years = 48 months
[U]Calculate total savings:[/U]
Total Savings = Savings per month * number of months saved
Total Savings = 620 * 48
Total Savings = [B]$29,760
[MEDIA=youtube]sbzRra8dSFs[/MEDIA][/B]
Static Determinacy and StabilityFree Static Determinacy and Stability Calculator - Given a number of joints (j) and a number of members (m), this determines if a truss is statically determinate, statically indeterminate, or unstable
Stock A is worth 4.5. Stock B is worth 8.0. Stock C is worth 10.0. She purchased half as many sharesStock A is worth 4.5. Stock B is worth 8.0. Stock C is worth 10.0. She purchased half as many shares of B as A and half as many shares of C as B. If her investments are worth 660, how many shares of each stock does she own?
Let s be the number of shares in Stock A. We have:
[LIST=1]
[*]A: 4.5s
[*]B: 8s/2 = 4s
[*]C: 10s/4 = 2.5s
[/LIST]
Value equation: 4.5s + 4s + 2.5s = 660
Combining like terms:
11s = 660
Using the [URL='http://www.mathcelebrity.com/1unk.php?num=11s%3D660&pl=Solve']equation calculator[/URL], we get [B]s = 60[/B] for Stock A
Stock B shares is equal to 1/2A = [B]30[/B]
Stock C shares is equal to 1/2B = [B]15[/B]
Students stuff envelopes for extra money. Their initial cost to obtain the information for the job wStudents stuff envelopes for extra money. Their initial cost to obtain the information for the job was $140. Each envelope costs $0.02 and they get paid $0.03per envelope stuffed. Let x represent the number of envelopes stuffed. (a) Express the cost C as a function of x. (b) Express the revenue R as a function of x. (c) Determine analytically the value of x for which revenue equals cost.
a) Cost Function
[B]C(x) = 140 + 0.02x[/B]
b) Revenue Function
[B]R(x) = 0.03x[/B]
c) Set R(x) = C(x)
140 + 0.02x = 0.03x
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=140%2B0.02x%3D0.03x&pl=Solve']equation solver[/URL], we get x = [B]14,000[/B]
subtract half of a number from 10subtract half of a number from 10
The phrase [I]a number[/I] means an arbitrary variable, let's call it x:
x
half of a number means we divide x by 2:
x/2
subtract half of a number from 10
[B]10 - x/2[/B]
Subtracting 9s shortcutSubtracting 9s shortcut
Add the digits of the larger number
[LIST]
[*]10 - 9 = 1 + 0 = 1
[*]11 - 9 = 1 + 1 = 2
[*]12 - 9 = 1 + 2 = 3
[*]13 - 9 = 1 + 3 = 4
[*]14 - 9 = 1 + 4= 5
[*]15 - 9=. 1 + 5 = 6
[*]16 - 9 = 1 + 6= 7
[*]17 - 9= 1 + 7 = 8
[*]18 - 9 = 1 + 8 = 9
[*]19 - 9 = 1 + 9 = 10
[/LIST]
[MEDIA=youtube]YOHcJ6UG1D8[/MEDIA]
SuccessorFree Successor Calculator - Calculates the successor number to a given number
sum of 3 consecutive odd integers equals 1 hundred 17sum of 3 consecutive odd integers equals 1 hundred 17
The sum of 3 consecutive odd numbers equals 117. What are the 3 odd numbers?
1) Set up an equation where our [I]odd numbers[/I] are n, n + 2, n + 4
2) We increment by 2 for each number since we have [I]odd numbers[/I].
3) We set this sum of consecutive [I]odd numbers[/I] equal to 117
n + (n + 2) + (n + 4) = 117
[SIZE=5][B]Simplify this equation by grouping variables and constants together:[/B][/SIZE]
(n + n + n) + 2 + 4 = 117
3n + 6 = 117
[SIZE=5][B]Subtract 6 from each side to isolate 3n:[/B][/SIZE]
3n + 6 - 6 = 117 - 6
[SIZE=5][B]Cancel the 6 on the left side and we get:[/B][/SIZE]
3n + [S]6[/S] - [S]6[/S] = 117 - 6
3n = 111
[SIZE=5][B]Divide each side of the equation by 3 to isolate n:[/B][/SIZE]
3n/3 = 111/3
[SIZE=5][B]Cancel the 3 on the left side:[/B][/SIZE]
[S]3[/S]n/[S]3 [/S]= 111/3
n = 37
Call this n1, so we find our other 2 numbers
n2 = n1 + 2
n2 = 37 + 2
n2 = 39
n3 = n2 + 2
n3 = 39 + 2
n3 = 41
[SIZE=5][B]List out the 3 consecutive odd numbers[/B][/SIZE]
([B]37, 39, 41[/B])
37 ← 1st number, or the Smallest, Minimum, Least Value
39 ← 2nd number
41 ← 3rd or the Largest, Maximum, Highest Value
sum of a number and 7 is subtracted from 15 the result is 6.Sum of a number and 7 is subtracted from 15 the result is 6.
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
We take this expression in pieces. Sum of a number and 7
x + 7
Subtracted from 15
15 - (x + 7)
The result is means an equation, so we set this expression above equal to 6
[B]15 - (x + 7) = 6 <-- This is our algebraic expression[/B]
If the problem asks you to solve for x, we Group like terms
15 - x - 7 = 6
8 - x = 6
[URL='https://www.mathcelebrity.com/1unk.php?num=8-x%3D6&pl=Solve']Type 8 - x = 6 into the search engine[/URL], and we get [B]x = 2[/B]
Sum of a number and it's reciprocal is 6. What is the number?Sum of a number and it's reciprocal is 6. What is the number?
Let the number be n.
The reciprocal is 1/n.
The word [I]is[/I] means an equation, so we set n + 1/n equal to 6
n + 1/n = 6
Multiply each side by n to remove the fraction:
n^2 + 1 = 6n
Subtract 6n from each side:
[B]n^2 - 6n + 1 = 0 [/B]<-- This is our algebraic expression
If the problem asks you to solve for n, then you [URL='https://www.mathcelebrity.com/quadratic.php?num=n%5E2-6n%2B1%3D0&pl=Solve+Quadratic+Equation&hintnum=+0']type this quadratic equation into our search engine[/URL].
Sum of Consecutive NumbersFree Sum of Consecutive Numbers Calculator - Finds the sum of (n) consecutive integers, even or odd as well. Examples include:
sum of 2 consecutive integers
sum of 2 consecutive numbers
sum of 2 consecutive even integers
sum of 2 consecutive odd integers
sum of 2 consecutive even numbers
sum of 2 consecutive odd numbers
sum of two consecutive integers
sum of two consecutive odd integers
sum of two consecutive even integers
sum of two consecutive numbers
sum of two consecutive odd numbers
sum of two consecutive even numbers
sum of 3 consecutive integers
sum of 3 consecutive numbers
sum of 3 consecutive even integers
sum of 3 consecutive odd integers
sum of 3 consecutive even numbers
sum of 3 consecutive odd numbers
sum of three consecutive integers
sum of three consecutive odd integers
sum of three consecutive even integers
sum of three consecutive numbers
sum of three consecutive odd numbers
sum of three consecutive even numbers
sum of 4 consecutive integers
sum of 4 consecutive numbers
sum of 4 consecutive even integers
sum of 4 consecutive odd integers
sum of 4 consecutive even numbers
sum of 4 consecutive odd numbers
sum of four consecutive integers
sum of four consecutive odd integers
sum of four consecutive even integers
sum of four consecutive numbers
sum of four consecutive odd numbers
sum of four consecutive even numbers
sum of 5 consecutive integers
sum of 5 consecutive numbers
sum of 5 consecutive even integers
sum of 5 consecutive odd integers
sum of 5 consecutive even numbers
sum of 5 consecutive odd numbers
sum of five consecutive integers
sum of five consecutive odd integers
sum of five consecutive even integers
sum of five consecutive numbers
sum of five consecutive odd numbers
sum of five consecutive even numbers
Sum of Five Consecutive IntegersFree Sum of Five Consecutive Integers Calculator - Finds five consecutive integers, if applicable, who have a sum equal to a number.
Sum of 5 consecutive integers
Sum of Four Consecutive IntegersFree Sum of Four Consecutive Integers Calculator - Finds four consecutive integers, if applicable, who have a sum equal to a number.
Sum of 4 consecutive integers
Sum of the First (n) NumbersFree Sum of the First (n) Numbers Calculator - Determines the sum of the first (n)
* Whole Numbers
* Natural Numbers
* Even Numbers
* Odd Numbers
* Square Numbers
* Cube Numbers
* Fourth Power Numbers
Sum of Three Consecutive IntegersFree Sum of Three Consecutive Integers Calculator - Finds three consecutive integers, if applicable, who have a sum equal to a number.
Sum of 3 consecutive integers
Sum of two consecutive numbers is always oddSum of two consecutive numbers is always odd
Definition:
[LIST]
[*]A number which can be written in the form of 2 m where m is an integer, is called an even integer.
[*]A number which can be written in the form of 2 m + 1 where m is an integer, is called an odd integer.
[/LIST]
Take two consecutive integers, one even, and one odd:
2n and 2n + 1
Now add them
2n + (2n+ 1) = 4n + 1 = 2(2 n) + 1
The sum is of the form 2n + 1 (2n is an integer because the product of two integers is an integer)
Therefore, the sum of two consecutive integers is an odd number.
SuperFit Gym charges $14 per month, as well as a one-time membership fee of $25 to join. After how mSuperFit Gym charges $14 per month, as well as a one-time membership fee of $25 to join. After how many months will I spend a total of $165?
[U]Let the number of months be m. We have a total spend T of:[/U]
cost per month * m + one-time membership fee = T
[U]Plugging in our numbers, we get:[/U]
14m + 25 = 165
To solve this equation for m, we [URL='https://www.mathcelebrity.com/1unk.php?num=14m%2B25%3D165&pl=Solve']type it in our search engine[/URL] and we get:
m = [B]10[/B]
Suppose a city's population is 740,000. If the population grows by 12,620 per year, find the populatSuppose a city's population is 740,000. If the population grows by 12,620 per year, find the population of the city in 7 years
Set up the population function P(y) where y is the number of years since now:
P(y) = Current population + Growth per year * y
Plugging in our numbers at y = 7, we get:
P(7) = 740000 + 12620(7)
P(7) = 740000 + 88340
P(7) = [B]828,340[/B]
Suppose a city's population is 740,000. If the population grows by 12,620 per year, find the populatSuppose a city's population is 740,000. If the population grows by 12,620 per year, find the population of the city in 7 years.
We setup the population function P(y) where y is the number of years of population growth, g is the growth per year, and P(0) is the original population.
P(y) = P(0) + gy
Plugging in our numbers of y = 7, g = 12,620, and P(0) = 740,000, we have:
P(7) = 740,000 + 12,620 * 7
P(7) = 740,000 + 88,340
P(7) = [B]828,340[/B]
Suppose Briley has 10 coins in quarters and dimes and has a total of 1.45. How many of each coin doeSuppose Briley has 10 coins in quarters and dimes and has a total of 1.45. How many of each coin does she have?
Set up two equations where d is the number of dimes and q is the number of quarters:
(1) d + q = 10
(2) 0.1d + 0.25q = 1.45
Rearrange (1) into (3) to solve for d
(3) d = 10 - q
Now plug (3) into (2)
0.1(10 - q) + 0.25q = 1.45
Multiply through:
1 - 0.1q + 0.25q = 1.45
Combine q terms
0.15q + 1 = 1.45
Subtract 1 from each side
0.15q = 0.45
Divide each side by 0.15
[B]q = 3[/B]
Plug our q = 3 value into (3)
d = 10 - 3
[B]d = 7[/B]
Suppose that J and K are on the number line. If JK=9 and J lies at 4 where could K be located?Suppose that J and K are on the number line. If JK=9 and J lies at 4 where could K be located?
We'd need 9 spaces to the right of 4 or 9 spaces to the left of 4 to have JK be 9.
To the right:
K = 4 + 9
K = [B]13[/B]
K = 4 - 9
K = [B]-5[/B]
Suppose that the weight (in pounds) of an airplane is a linear function of the amount of fuel (in gaSuppose that the weight (in pounds) of an airplane is a linear function of the amount of fuel (in gallons) in its tank. When carrying 20 gallons of fuel, the airplane weighs 2012 pounds. When carrying 55 gallons of fuel, it weighs 2208 pounds. How much does the airplane weigh if it is carrying 65 gallons of fuel?
Linear functions are written in the form of one dependent variable and one independent variable. Using g as the number of gallons and W(g) as the weight, we have:
W(g) = gx + c where c is a constant
We are given:
[LIST]
[*]W(20) = 2012
[*]W(55) = 2208
[/LIST]
We want to know W(65)
Using our givens, we have:
W(20) = 20x + c = 2012
W(55) = 55x + c = 2208
Rearranging both equations, we have:
c = 2012 - 20x
c = 2208 - 55x
Set them both equal to each other:
2012 - 20x = 2208 - 55x
Add 55x to each side:
35x + 2012 = 2208
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=35x%2B2012%3D2208&pl=Solve']equation solver[/URL], we see that x is 5.6
Plugging x = 5.6 back into the first equation, we get:
c = 2012 - 20(5.6)
c = 2012 - 112
c = 2900
Now that we have all our pieces, find W(65)
W(65) = 65(5.6) + 2900
W(65) = 264 + 2900
W(65) = [B]3264[/B]
Suppose we need 4 eggs to make a cake. If there are 24 eggs, write an inequality representing the poSuppose we need 4 eggs to make a cake. If there are 24 eggs, write an inequality representing the possible number of cakes we can make.
Set up a proportion of eggs to cakes where c is the number of cakes per 24 eggs:
4/1 <= 24/c
[URL='https://www.mathcelebrity.com/prop.php?num1=4&num2=24&den1=1&den2=c&propsign=%3C&pl=Calculate+missing+proportion+value']Typing this proportion inequality into our search engine[/URL], we get:
[B]c <= 6[/B]
Suppose x is a natural number. When you divide x by 7 you get a quotient of q and a remainder of 6.Suppose x is a natural number. When you divide x by 7 you get a quotient of q and a remainder of 6. When you divide x by 11 you get the same quotient but a remainder of 2. Find x.
[U]Use the quotient remainder theorem[/U]
A = B * Q + R where 0 ≤ R < B where R is the remainder when you divide A by B
Plugging in our numbers for Equation 1 we have:
[LIST]
[*]A = x
[*]B = 7
[*]Q = q
[*]R = 6
[*]x = 7 * q + 6
[/LIST]
Plugging in our numbers for Equation 2 we have:
[LIST]
[*]A = x
[*]B = 11
[*]Q = q
[*]R = 2
[*]x = 11 * q + 2
[/LIST]
Set both x values equal to each other:
7q + 6 = 11q + 2
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=7q%2B6%3D11q%2B2&pl=Solve']equation calculator[/URL], we get:
q = 1
Plug q = 1 into the first quotient remainder theorem equation, and we get:
x = 7(1) + 6
x = 7 + 6
[B]x = 13[/B]
Plug q = 1 into the second quotient remainder theorem equation, and we get:
x = 11(1) + 2
x = 11 + 2
[B]x = 13[/B]
Suppose you have $28.00 in your bank account and start saving $18.25 every week. Your friend has $16Suppose you have $28.00 in your bank account and start saving $18.25 every week. Your friend has $161.00 in his account and is withdrawing $15 every week. When will your account balances be the same?
Set up savings and withdrawal equations where w is the number of weeks. B(w) is the current balance
[LIST]
[*]You --> B(w) = 18.25w + 28
[*]Your friend --> B(w) = 161 - 15w
[/LIST]
Set them equal to each other
18.25w + 28 = 161 - 15w
[URL='http://www.mathcelebrity.com/1unk.php?num=18.25w%2B28%3D161-15w&pl=Solve']Type that problem into the search engine[/URL], and you get [B]w = 4[/B].
Suppose you write a book. The printer charges $4 per book to print it, and you spend 5500 on advertiSuppose you write a book. The printer charges $4 per book to print it, and you spend 5500 on advertising. You sell the book for $15 a copy. How many copies must you sell to break even.
Profit per book is:
P = 15 - 4
P = 11
We want to know the number of books (b) such that:
11b = 5500 <-- Breakeven means cost equals revenue
[URL='https://www.mathcelebrity.com/1unk.php?num=11b%3D5500&pl=Solve']Typing this equation into the search engine[/URL], we get:
b = [B]500[/B]
Susan makes and sells purses. The purses cost her $15 each to make, and she sells them for $30 each.Susan makes and sells purses. The purses cost her $15 each to make, and she sells them for $30 each. This Saturday, she is renting a booth at a craft fair for $50. Write an equation that can be used to find the number of purses Susan must sell to make a profit of $295
Set up the cost function C(p) where p is the number of purses:
C(p) = Cost per purse * p + Booth Rental
C(p) = 15p + 50
Set up the revenue function R(p) where p is the number of purses:
R(p) = Sale price * p
R(p) = 30p
Set up the profit function which is R(p) - C(p) equal to 295
30p - (15p + 50) = 295
To solve this equation, [URL='https://www.mathcelebrity.com/1unk.php?num=30p-%2815p%2B50%29%3D295&pl=Solve']we type it into our search engine[/URL] and we get:
p = [B]23[/B]
Susan works as a tutor for $14 an hour and as a waitress for $13 an hour. This month, she worked a cSusan works as a tutor for $14 an hour and as a waitress for $13 an hour. This month, she worked a combined total of 104 hours at her two jobs. Let t be the number of hours Susan worked as a tutor this month. Write an expression for the combined total dollar amount she earned this month.
Let t be the number of hours for math tutoring and w be the number of hours for waitressing. We're given:
[LIST=1]
[*]t + w = 104
[*]14t + 13w = D <-- Combined total dollar amount
[/LIST]
Symmetric PropertyFree Symmetric Property Calculator - Demonstrates the Symmetric property using a number.
Numerical Properties
T-BillFree T-Bill Calculator - Calculates any of the four items of the T-Bill (Treasury Bill or TBill) formula:
1) Price (P)
2) Face Value (F)
3) Number of Weeks (w)
4) Yield Rate (y)
T-shirts sell for $19.97 and cost $14.02 to produce. Which equation represents p, the profit, in terT-shirts sell for $19.97 and cost $14.02 to produce. Which equation represents p, the profit, in terms of x, the number of t-shirts sold?
A) p = $19.97x - $14.02
B) p = x($19.97 - $14.02)
C) p = $19.97 + $14.02x
D) p = x($19.97 + $14.02)
[B]B) p = x($19.97 - $14.02)[/B]
[B][/B]
[LIST]
[*]Profit is Revenue - Cost
[*]Each shirt x generates a profit of 19.97 - 14.02
[/LIST]
Take a look at the following sums: 1 = 1 1 + 3 = 4 1 + 3 + 5 = 9 1 + 3 + 5 + 7 = 16 1 + 3 + 5 + 7 +Take a look at the following sums:
1 = 1
1 + 3 = 4
1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16
1 + 3 + 5 + 7 + 9 = 25
a. Come up with a conjecture about the sum when you add the first n odd numbers. For example, when you added the first 5 odd numbers (1 + 3 + 5 + 7 + 9), what did you get? What if wanted to add the first 10 odd numbers? Or 100?
b. Can you think of a geometric interpretation of this pattern? If you start with one square and add on three more, what can you make? If you now have 4 squares and add on 5 more, what can you make?
c. Is there a similar pattern for adding the first n even numbers?
2 = 2
2 + 4 = 6
2 + 4 + 6 = 12
2 + 4 + 6 + 8 = 20
a. The formula is [B]n^2[/B].
The sum of the first 10 odd numbers is [B]100[/B] seen on our s[URL='http://www.mathcelebrity.com/sumofthefirst.php?num=10&pl=Odd+Numbers']um of the first calculator[/URL]
The sum of the first 100 odd numbers is [B]10,000[/B] seen on our [URL='http://www.mathcelebrity.com/sumofthefirst.php?num=100&pl=Odd+Numbers']sum of the first calculator[/URL]
b. Geometric is 1, 4, 9 which is our [B]n^2[/B]
c. The sum of the first n even numbers is denoted as [B]n(n + 1)[/B] seen here for the [URL='http://www.mathcelebrity.com/sumofthefirst.php?num=+10&pl=Even+Numbers']first 10 numbers[/URL]
Ted tossed a number cube and rolled a die. How many possible outcomes are there?Ted tossed a number cube and rolled a die. How many possible outcomes are there?
A number cube has 6 possible outcomes
A die has 6 possible outcomes.
We have 6 * 6 = [B]36 possible outcomes[/B].
Ten FrameFree Ten Frame Calculator - Builds a ten frame (dot card) for a number and shows numbers more and less.
Ten subtracted from the product of 9 and a number is less than −24Ten subtracted from the product of 9 and a number is less than −24.
A number means an arbitrary variable, let's call it x
x
The product of 9 and a number:
9x
Ten subtracted from that
9x - 10
Finally, is less than means we set our entire expression less than -24
[B]9x - 10 < -24[/B]
Ten times the sum of twice a number and sixThe phrase [I]a number[/I] means an arbitrary variable. We can pick any letter a-z except for i and e.
Let's choose x.
Twice a number means we multiply x by 2:
2x
The sum of twice a number and 6:
2x + 6
Ten times the sum of twice a number and six
[B]10(2x + 6)[/B]
Terry recorded the temperature every hour from 8 AM to 1 PM. The temperature at 8 AM was 19˚. The teTerry recorded the temperature every hour from 8 AM to 1 PM. The temperature at 8 AM was 19˚. The temperature dropped 4˚ every hour. What was the temperature at 1 PM? Group of answer choices 1 degree
Set up our temperature function T(h) where h is the number of hours since 8 AM:
T(h) = 19 - 4h <-- We subtract 4h since each hour, the temperature drops 4 degrees
The questions asks for the temperature at 1PM. We need to figure out how many hours pass since 8 AM:
8 AM to 12 PM is 4 hours
12 PM to 1 PM is 1 hour
Total time is 5 hours
So we want T(5):
T(5) = 19 - 4(5)
T(5) = 19 - 20
T(5) = [B]-1˚[/B]
The 4/7 part of a number is 84 . What is the number?The 4/7 part of a number is 84 . What is the number?
We multiply 4/7 * 84.
7 goes into 84 12 times, so we have:
4 * 12 = [B]48[/B]
the absolute value of a number is its _____ from 0the absolute value of a number is its _____ from 0
The answer is [B]distance[/B].
As an example: 2 and -2 are 2 units away from 0.
The admission fee at an amusement park is $1.50 for children and $4 for adults. On a certain day, 32The admission fee at an amusement park is $1.50 for children and $4 for adults. On a certain day, 327 people entered the park , and the admission fee collected totaled 978.00 dollars . How many children and how many adults were admitted?
Let the number of children's tickets be c. Let the number of adult tickets be a. We're given two equations:
[LIST=1]
[*]a + c = 327
[*]4a + 1.50c = 978
[/LIST]
We can solve this system of equation 3 ways:
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=a+%2B+c+%3D+327&term2=4a+%2B+1.50c+%3D+978&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=a+%2B+c+%3D+327&term2=4a+%2B+1.50c+%3D+978&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=a+%2B+c+%3D+327&term2=4a+%2B+1.50c+%3D+978&pl=Cramers+Method']Cramer's Rule[/URL]
[/LIST]
No matter which method we choose, we get the same answers:
[LIST]
[*][B]a = 195[/B]
[*][B]c = 132[/B]
[/LIST]
The admission fee at an amusement park is $1.50 for children and $4.00 for adults. On a certain day,The admission fee at an amusement park is $1.50 for children and $4.00 for adults. On a certain day, 281 people entered the park, and the admission fees collected totaled $784 . How many children and how many adults were admitted?
Let c be the number of children and a be the number of adults. We have two equations:
[LIST=1]
[*]a + c = 281
[*]4a + 1.5c = 784
[/LIST]
Using our [URL='http://www.mathcelebrity.com/simultaneous-equations.php?term1=a%2Bc%3D281&term2=4a+%2B+1.5c+%3D+784&pl=Cramers+Method']simultaneous equations calculator[/URL], we get:
[LIST]
[*][B]a = 145[/B]
[*][B]c = 136[/B]
[/LIST]
The age of three sister are consecutive intergers the sum of their age is 45 what is their agesThe age of three sister are consecutive intergers the sum of their age is 45 what is their ages
Type this into the search engine: [URL='https://www.mathcelebrity.com/sum-of-consecutive-numbers.php?num=thesumofthreeconsecutivenumbersis45&pl=Calculate']The sum of three consecutive numbers is 45[/URL].
We get [B]14, 15, 16[/B].
The ages of three siblings are all consecutive integers. The sum of of their ages is 39.The ages of three siblings are all consecutive integers. The sum of of their ages is 39.
Let the age of the youngest sibling be n. This means the second sibling is n + 1. This means the oldest/third sibling is n + 2.
So what we want is the[URL='https://www.mathcelebrity.com/sum-of-consecutive-numbers.php?num=sumof3consecutiveintegersequalto39&pl=Calculate'] sum of 3 consecutive integers equal to 39[/URL]. We type this command into our search engine. We get:
n = 12. So the youngest sibling is [B]12[/B].
The next sibling is 12 + 1 = [B]13[/B]
The oldest/third sibling is 12 + 2 = [B]14[/B]
The arithmetic mean (average) of 17, 26, 42, and 59 is equal to the arithmetic mean of 19 and N. WhaThe arithmetic mean (average) of 17, 26, 42, and 59 is equal to the arithmetic mean of 19 and N. What is the value of N ?
Average of the first number set is [URL='https://www.mathcelebrity.com/statbasic.php?num1=17%2C26%2C42%2C59&num2=+0.2%2C0.4%2C0.6%2C0.8%2C0.9&pl=Number+Set+Basics']using our average calculator[/URL] is:
36
Now, the mean (average) or 19 and N is found by adding them together an dividing by 2:
(19 + N)/2
Since both number sets have equal means, we set (19 + N)/2 equal to 36:
(19 + N)/2 = 36
Cross multiply:
19 + N = 36 * 2
19 + n = 72
To solve for n, we [URL='https://www.mathcelebrity.com/1unk.php?num=19%2Bn%3D72&pl=Solve']type this equation into our search engine[/URL] and we get:
n = [B]53[/B]
The auditorium can hold a maximum of 150 peopleThe auditorium can hold a maximum of 150 people
We want an inequality for the number of people (p) in the auditorium.
The word [I]maximum[/I] means [I]no more than[/I] or [I]less than or equal to[/I]. So we have:
[B]p <= 150[/B]
The auto repair shop took 2.5 hours to repair Victoria’s car. The cost of parts was $93, and the totThe auto repair shop took 2.5 hours to repair Victoria’s car. The cost of parts was $93, and the total bill was $248. What is the shops charge per hour.
Calculate Labor Cost:
Labor Cost = Total bill - Parts
Labor Cost = $248 - $93
Labor Cost = $155
Calculate labor hourly rate:
Labor Hourly Rate = Labor Cost / Number of Labor Hours
Labor Hourly Rate = 155/2.5
Labor Hourly Rate = [B]$62[/B]
The average cost of printing a book in a publishing company is c(x) = 5.5x+kx , where x is the numbeThe average cost of printing a book in a publishing company is c(x) = 5.5x+kx , where x is the number of books printed that day and k is a constant. Find k, if on the day when 200 were printed the average cost was $9 per book.
We are given: c(200) = 9, so we have:
9 = 5.5(200) + k(200)
200k + 1100 = 9
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=200k%2B1100%3D9&pl=Solve']equation solver[/URL], we get:
[B]k = -5.455[/B]
The average height of a family of 6 is 6 feet. After the demise of the mother, the average height reThe average height of a family of 6 is 6 feet. After the demise of the mother, the average height remained the same. What is the height of the mother?
[LIST]
[*]Let the height of the family without the mom be f. Let the height of the mother be m.
[*]Averages mean we add the heights and divide by the number of people who were measured.
[/LIST]
We're given two equations:
[LIST=1]
[*](f + m)/6 = 6
[*]f/5 = 6
[/LIST]
Cross multiplying equation (2), we get:
f = 5 * 6
f = 30
Plug f = 30 into equation (1), we get:
(30 + m)/6 = 6
Cross multiplying, we get:
m + 30 = 6 * 6
m + 30 = 36
To solve this equation for m, we [URL='https://www.mathcelebrity.com/1unk.php?num=m%2B30%3D36&pl=Solve']type it in our search engine[/URL] and we get:
m = [B]6[/B]
[SIZE=3][FONT=Arial][COLOR=rgb(34, 34, 34)][/COLOR][/FONT][/SIZE]
The average of 16 and x is 21. Find x.The average of 16 and x is 21. Find x.
The average of 2 numbers is the sum of the 2 numbers divided by 2. So we have:
(16 + x)/2 = 21
Cross multiply:
16 + x = 21*2
16 + x = 42
To solve this equation, [URL='https://www.mathcelebrity.com/1unk.php?num=16%2Bx%3D42&pl=Solve']we type this expression into the search engine[/URL] and get [B]x = 26[/B].
Check our work by restating our answer:
The average of 16 and 26 is 21. TRUE.
The average of 171 and x?The average of 171 and x?
The phrase [I]average[/I] means add up all the items in the number set, divided by the count of items in the number set.
Our number set in this case is {171, x} which has 2 elements. Therefore, our average is:
[B](171 + x)/2[/B]
The average of 20 numbers is 18 while the average of 18 numbers is 20. What is the average of the 38The average of 20 numbers is 18 while the average of 18 numbers is 20. What is the average of the 38 numbers?
The average of averages is found by getting the sum of both groups of numbers and dividing by the count of numbers.
Calculate the sum of the first group of numbers S1:
Average = S1 / n1
18 = S1 / 20
S1 = 20 * 18
S1 =360
Calculate the sum of the second group of numbers S2:
Average = S2 / n2
20 = S2 / 18
S2 = 18 * 20
S2 =360
Our average of averages is found by the following:
A = (S1 + S2)/(n1 + n2)
A = (360 + 360)/(20 + 18)
A = 720/38
[B]A = 18.947[/B]
The average of a number and double the number is 25.5Let x equal "a number".
Double the number is 2x.
The average is (x + 2x)/2
Combine the terms in the numerator:
3x/2
The word [I]is[/I] means equal to, so we set 3x/2 equal to 25.5
3x/2 = 25.5
Cross multiply the 2:
3x = 51
Divide each side by 3
[B]x = 17[/B]
the average of eighty-five and a number m is ninetythe average of eighty-five and a number m is ninety
Average of 2 numbers means we add both numbers and divide by 2:
(85 + m)/2 = 90
Cross multiply:
m + 85 = 90 * 2
m + 85 = 180
To solve this equation for m, we [URL='https://www.mathcelebrity.com/1unk.php?num=m%2B85%3D180&pl=Solve']type it in our math engine [/URL]and we get:
m = [B]95[/B]
the average of two numbers x and ythe average of two numbers x and y
Average is the sum divided by the count:
Sum:
x + y
We have 2 numbers, so we divide (x + y) by 2
[B](x + y)/2[/B]
The baseball coach bought 2 new baseballs for $1 each. The basketball coach bought 7 new basketballsThe baseball coach bought 2 new baseballs for $1 each. The basketball coach bought 7 new basketballs for $10 each. How much more did the basketball coach spend than the baseball coach?
[U]Baseball coach spend:[/U]
Spend = Number of baseballs * cost per baseball
Spend= 2 * $1
Spend = $2
[U]Basketball coach spend:[/U]
Spend = Number of basketballs * cost per basketball
Spend= 7 * $10
Spend = $70
[U]Calculate the difference in spend:[/U]
Difference = Basketball coach spend - Baseball coach spend
Difference= $70 - $2
Difference= [B]$68[/B]
The basketball team is selling candy as a fundraiser. A regular candy bar cost 0.75 and a king sizedThe basketball team is selling candy as a fundraiser. A regular candy bar cost 0.75 and a king sized candy bar costs 1.50. In the first week of the sales the team made 36.00. Exactly 12 regular sized bars were sold that week. How many king size are left?
Let r be the number of regular bars and k be the number of king size bars. Set up our equations:
[LIST=1]
[*]0.75r + 1.5k = 36
[*]r = 12
[/LIST]
[U]Substitute (2) into (1)[/U]
0.75(12) + 1.5k = 36
9 + 1.5k = 36
[U]Use our equation solver, we get:[/U]
[B]k = 18[/B]
The bigger of 2 numbers in 5 larger than the smaller. Twice the smaller, increased by, twice the larThe bigger of 2 numbers in 5 larger than the smaller. Twice the smaller, increased by, twice the larger, is equal to 50. Find each number.
Let the big number be b. Let the small number be s. We're given two equations:
[LIST=1]
[*]b = s + 5
[*]2s + 2b = 50
[/LIST]
Substitute equation (1) into equation (2)
2s + 2(s + 5) = 50
[URL='https://www.mathcelebrity.com/1unk.php?num=2s%2B2%28s%2B5%29%3D50&pl=Solve']Type this equation into our search engine[/URL], and we get:
[B]s = 10[/B]
Now substitute s = 10 into equation (1) to solve for b:
b = 10 + 5
[B]b = 15[/B]
The bill for the repair of a car was $294. The cost of parts was $129, and labor charge was $15 perThe bill for the repair of a car was $294. The cost of parts was $129, and labor charge was $15 per hour. How many hours did it take to repair the car? Write a sentence as your answer.
Let h be the number of hours. We have:
15h + 129 = 294
To solve this equation for h, we [URL='https://www.mathcelebrity.com/1unk.php?num=15h%2B129%3D294&pl=Solve']type it in the search engine [/URL]and we get:
h = [B]11[/B]
The bill from your plumber was $134. The cost for labor was $32 per hour. The cost materials was $46The bill from your plumber was $134. The cost for labor was $32 per hour. The cost materials was $46. How many hours did the plumber work?
Set up the cost equation where h is the number of hours worked:
32h + 46 = 134
[URL='https://www.mathcelebrity.com/1unk.php?num=32h%2B46%3D134&pl=Solve']Typing this equation into our search engine[/URL], we get [B]h = 2.75[/B].
The blue star publishing company produces daily "Star news". It costs $1200 per day to operate regarThe blue star publishing company produces daily "Star news". It costs $1200 per day to operate regardless of whether any newspaper are published. It costs 0.20 to publish each newspaper. Each daily newspaper has $850 worth of advertising and each newspaper is sold for $.30. Find the number of newspaper required to be sold each day for the Blue Star company to 'break even'. I.e all costs are covered.
Build our cost function where n is the number of newspapers sold:
C(n) = 1200+ 0.2n
Now build the revenue function:
R(n) = 850 + 0.3n
Break even is where cost and revenue are equal, so set C(n) = R(n)
1200+ 0.2n = 850 + 0.3n
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=1200%2B0.2n%3D850%2B0.3n&pl=Solve']equation solver[/URL], we get:
[B]n = 3,500[/B]
The Canucks lost 6 of their first 24 games. At this rate how many would the lose in an 84 game schedThe Canucks lost 6 of their first 24 games. At this rate how many would the lose in an 84 game schedule?
Set up a proportion of losses to games where l is the number of losses for 84 games:
6/24 = l/84
[URL='https://www.mathcelebrity.com/prop.php?num1=6&num2=l&den1=24&den2=84&propsign=%3D&pl=Calculate+missing+proportion+value']Typing this proportion into our search engine[/URL], we get:
l = [B]21[/B]
The charge to rent a trailer is $30 for up to 2 hours plus $9 per additional hour or portion of anThe charge to rent a trailer is $30 for up to 2 hours plus $9 per additional hour or portion of an hour. Find the cost to rent a trailer for 2.4 hours, 3 hours, and 8.5 hours.
Set up the cost function C(h), where h is the number of hours to rent the trailer. We have, for any hours greater than 2:
C(h) = 30 + 9(h - 2)
Simplified, we have:
C(h) = 9h - 18 + 30
C(h) = 9h + 12
The question asks for C(2.4), C(3), and C(8.5)
[U]Find C(2.4)[/U]
C(2.4) = 9(2.4) + 12
C(2.4) = 21.6 + 12
C(2.4) = [B]33.6
[/B]
[U]Find C(3)[/U]
C(3) = 9(3) + 12
C(3) = 27 + 12
C(2.4) = [B][B]39[/B][/B]
[U]Find C(8.5)[/U]
C(8.5) = 9(8.5) + 12
C(8.5) = 76.5 + 12
C(8.5) = [B]88.5[/B]
The construction crew has less than 7 days to complete the road repairs. Let d represent the numberThe construction crew has less than 7 days to complete the road repairs. Let d represent the number of days left to complete the road repairs.
Less than means we don't include 7:
[B]d < 7 [/B]
The cost for parking at a parking garage is 2.25 plus an additional 1.50 for each hour. What is theThe cost for parking at a parking garage is 2.25 plus an additional 1.50 for each hour. What is the total cost to park for 5 hours?
Set up our equation where C is cost and h is the number of hours used to park
C = 1.5h + 2.25
With h = 5, we have:
C = 1.5(5) + 2.25
C = 7.5 + 2.25
C = 9.75
The cost of a field trip is $220 plus $7 per student. If the school can spend at most $500, how manyThe cost of a field trip is $220 plus $7 per student. If the school can spend at most $500, how many students can go on the field trip?
Set up the inequality where s is the number of students:
C(s) = 220 + 7s
We want C(s) <= 500, since at most means no more than
220 + 7s <= 500
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=220%2B7s%3C%3D500&pl=Solve']inequality calculator[/URL], we get:
[B]s <= 40[/B]
The cost of a taxi ride is $1.2 for the first mile and $0.85 for each additional mile or part thereoThe cost of a taxi ride is $1.2 for the first mile and $0.85 for each additional mile or part thereof. Find the maximum distance we can ride if we have $20.75.
We set up the cost function C(m) where m is the number of miles:
C(m) = Cost per mile after first mile * m + Cost of first mile
C(m) = 0.8(m - 1) + 1.2
C(m) = 0.8m - 0.8 + 1.2
C(m) = 0.8m - 0.4
We want to know m when C(m) = 20.75
0.8m - 0.4 = 20.75
[URL='https://www.mathcelebrity.com/1unk.php?num=0.8m-0.4%3D20.75&pl=Solve']Typing this equation into our math engine[/URL], we get:
m = 26.4375
The maximum distance we can ride in full miles is [B]26 miles[/B]
The cost of hiring a car for a day is $60 plus 0.25 cents per kilometer. Michelle travels 750 kilomeThe cost of hiring a car for a day is $60 plus 0.25 cents per kilometer. Michelle travels 750 kilometers. What is her total cost
Set up the cost function C(k) where k is the number of kilometers traveled:
C(k) = 60 + 0.25k
The problem asks for C(750)
C(750) = 60 + 0.25(750)
C(750) = 60 + 187.5
C(750) = [B]247.5[/B]
The cost of tuition at Johnson Community College is $160 per credit hour. Each student also has to pThe cost of tuition at Johnson Community College is $160 per credit hour. Each student also has to pay $50 in fees. Model the cost, C, for x credit hours taken.
Set up cost equation, where h is the number of credit hours:
[B]C = 50 + 160h[/B]
the cost of x concert tickets if one concert ticket costs $97the cost of x concert tickets if one concert ticket costs $97
The cost function C(x), where x is the number of concert tickets is:
[B]C(x) = 97x[/B]
The cost of x ice cream if one ice cream cost $9 and the fixed cost is $8142The cost of x ice cream if one ice cream cost $9 and the fixed cost is $8142
Cost function is C(x) is:
C(x) = Cost per ice cream * number of ice creams + Fixed Cost
C(x) = [B]9x + 8142[/B]
The cost of x textbooks if one textbook costs $140The cost of x textbooks if one textbook costs $140.
Set up a cost function where x is the number of textbooks:
[B]C(x) = 140x[/B]
The cost to rent a construction crane is 450 per day plus 150 per hour. What is the maximum number oThe cost to rent a construction crane is 450 per day plus 150 per hour. What is the maximum number of hours the crane can be used each day if the rental cost is not to exceed 1650 per day?
Set up the cost function where h is the number of hours:
C(h) = 150h + 450
We want C(h) <= 1650:
150h + 450 <= 1650
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=150h%2B450%3C%3D1650&pl=Solve']equation/inequality solver[/URL], we get:
[B]h <= 8[/B]
The dance committee of pine bluff middle school earns $72 from a bake sale and will earn $4 for eachThe dance committee of pine bluff middle school earns $72 from a bake sale and will earn $4 for each ticket sold they sell to the Spring Fling dance. The dance will cost $400
Let t be the number of tickets sold. We have a Revenue function R(t):
R(t) = 4t + 72
We want to know t such that R(t) = 400. So we set R(t) = 400:
4t + 72 = 400
[URL='https://www.mathcelebrity.com/1unk.php?num=4t%2B72%3D400&pl=Solve']Typing this equation into our search engine[/URL], we get:
[B]t = 82[/B]
The difference between 2 numbers is 108. 6 times the smaller is equal to 2 more than the larger. Wh?The difference between 2 numbers is 108. 6 times the smaller is equal to 2 more than the larger. What are the numbers?
Let the smaller number be x. Let the larger number be y. We're given:
[LIST=1]
[*]y - x = 108
[*]6x = y + 2
[/LIST]
Rearrange (1) by adding x to each side:
[LIST=1]
[*]y = x + 108
[/LIST]
Substitute this into (2):
6x = x + 108 + 2
Combine like terms
6x = x +110
Subtract x from each side:
5x = 110
[URL='https://www.mathcelebrity.com/1unk.php?num=5x%3D110&pl=Solve']Plugging this equation into our search engine[/URL], we get:
x = [B]22[/B]
the difference between 7 times a number and 9 less than a numberthe difference between 7 times a number and 9 less than a number
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
7 times a number means we multiply x by 7
7x
9 less than a number means we subtract 9 from x
x - 9
The difference between the two expressions means we subtract (x - 9) from 7x
7x - (x - 9)
Simplifying this, we have:
7x - x + 9
Grouping like terms, we get:
[B]6x + 9[/B]
The difference between a number and 9 is 27. Find that numberThe difference between a number and 9 is 27. Find that number
The phrase [I]a number[/I] means an arbitrary variable, let's call it x:
x
The difference between a number and 9
x - 9
The word [I]is[/I] means equal to, so we set x - 9 equal to 27:
x - 9 = 27
To solve this equation for x, we [URL='https://www.mathcelebrity.com/1unk.php?num=x-9%3D27&pl=Solve']type it in our math engine[/URL] and we get:
x = [B]36[/B]
The difference between the opposite of a number and 6.The difference between the opposite of a number and 6.
The phrase [I]a number means[/I] an arbitrary variable, let's call it x.
x
The opposite of a number means we multiply by x by -1
-x
The phrase [I]the difference between[/I] means we subtract 6 from -x:
[B]-x - 6[/B]
The difference between the product of 4 and a number and the square of a numberThe difference between the product of 4 and a number and the square of a number
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
The product of 4 and a number:
4x
The square of a number means we raise x to the power of 2:
x^2
The difference between the product of 4 and a number and the square of a number:
[B]4x - x^2[/B]
The difference between the squares of two consecutive numbers is 141. Find the numbersThe difference between the squares of two consecutive numbers is 141. Find the numbers
Take two consecutive numbers:
n- 1 and n
Given a difference (d) between the squares of two consecutive numbers, the shortcut for this is:
2n - 1 = d
Proof of this:
n^2- (n - 1)^2 = d
n^2 - (n^2 - 2n + 1) = d
n^2 - n^2 + 2n - 1 = d
2n - 1 = d
Given d = 141, we have
2n - 1 = 141
Add 1 to each side:
2n = 142
Divide each side by 2:
2n/2 = 142/2
n = [B]71[/B]
Therefore, n - 1 = [B]70
Our two consecutive numbers are (70, 71)[/B]
Check your work
70^2 = 4900
71^2 = 5041
Difference = 5041 - 4900
Difference = 141
[MEDIA=youtube]vZJtZyYWIFQ[/MEDIA]
the difference between triple a number and double a numberthe difference between triple a number and double a number
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
Triple a number means we multiply x by 3:
3x
Double a number means we multiply x by 2:
2x
The difference means we subtract 2x from 3x:
3x - 2x
Simplifying like terms, we have:
(3 - 2)x = [B]x[/B]
The difference between two numbers is 25. The smaller number is 1/6th of the larger number. What isThe difference between two numbers is 25. The smaller number is 1/6th of the larger number. What is the value of the smaller number
Let the smaller number be s. Let the larger number be l. We're given two equations:
[LIST=1]
[*]l - s = 25
[*]s = l/6
[/LIST]
Plug in equation (2) into equation (1):
l - l/6 = 25
Multiply each side of the equation by 6 to remove the fraction:
6l - l = 150
To solve for l, we [URL='https://www.mathcelebrity.com/1unk.php?num=6l-l%3D150&pl=Solve']type this equation into our search engine[/URL] and we get:
l = 30
To solve for s, we plug in l = 30 into equation (2) above:
s = 30/6
[B]s = 5[/B]
The difference between two numbers is 96. One number is 9 times the other. What are the numbers?The difference between two numbers is 96. One number is 9 times the other. What are the numbers?
Let x be the first number
Let y be the second number
We're given two equations:
[LIST=1]
[*]x - y = 96
[*]x = 9y
[/LIST]
Substitute equation (2) into equation (1) for x
9y - y = 96
[URL='https://www.mathcelebrity.com/1unk.php?num=9y-y%3D96&pl=Solve']Plugging this equation into our math engine[/URL], we get:
y = [B]12
[/B]
If y = 12, then we plug this into equation 2:
x = 9(12)
x = [B]108[/B]
The difference between two positive numbers is 5 and the square of their sum is 169The difference between two positive numbers is 5 and the square of their sum is 169.
Let the two positive numbers be a and b. We have the following equations:
[LIST=1]
[*]a - b = 5
[*](a + b)^2 = 169
[*]Rearrange (1) by adding b to each side. We have a = b + 5
[/LIST]
Now substitute (3) into (2):
(b + 5 + b)^2 = 169
(2b + 5)^2 = 169
[URL='https://www.mathcelebrity.com/community/forums/calculator-requests.7/create-thread']Run (2b + 5)^2 through our search engine[/URL], and you get:
4b^2 + 20b + 25
Set this equal to 169 above:
4b^2 + 20b + 25 = 169
[URL='https://www.mathcelebrity.com/quadratic.php?num=4b%5E2%2B20b%2B25%3D169&pl=Solve+Quadratic+Equation&hintnum=+0']Run that quadratic equation in our search engine[/URL], and you get:
b = (-9, 4)
But the problem asks for [I]positive[/I] numbers. So [B]b = 4[/B] is one of our solutions.
Substitute b = 4 into equation (1) above, and we get:
a - [I]b[/I] = 5
[URL='https://www.mathcelebrity.com/1unk.php?num=a-4%3D5&pl=Solve']a - 4 = 5[/URL]
[B]a = 9
[/B]
Therefore, we have [B](a, b) = (9, 4)[/B]
The difference of 2 positive numbers is 54. The quotient obtained on dividing the 1 by the other isThe difference of 2 positive numbers is 54. The quotient obtained on dividing the 1 by the other is 4. Find the numbers.
Let the numbers be x and y. We have:
[LIST]
[*]x - y = 54
[*]x/y = 4
[*]Cross multiply x/y = 4 to get x = 4y
[*]Now substitute x = 4y into the first equation
[*](4y) - y = 54
[*]3y = 54
[*]Divide each side by 3
[*][B]y = 18[/B]
[*]If x = 4y, then x = 4(18)
[*][B]x = 72[/B]
[/LIST]
The difference of 25 and a number added to triple another numberThe difference of 25 and a number added to triple another number
The phrase [I]a number [/I]means an arbitrary variable, let's call it x:
x
The difference of 25 and a number means we subtract x from 25:
25 - x
The phrase [I]another number[/I] means a different arbitrary variable, let's call it y:
y
Triple another number means we multiply y by 3:
3y
The phrase [I]added to[/I] means we add 25 - x to 3y
[B]25 - x + 3y[/B]
the difference of 4 and the quotient of 18 and a numberthe difference of 4 and the quotient of 18 and a number
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
The quotient of 18 and a number means we divide 18 by the variable x.
18/x
The difference of 4 and the quotient above means we subtract 18/x from 4:
[B]4 - 18/x[/B]
The difference of a number and 6 is the same as 5 times the sum of the number and 2. What is the numThe difference of a number and 6 is the same as 5 times the sum of the number and 2. What is the number?
We have two expressions:
[U]Expression 1: [I]The difference of a number and 6[/I][/U]
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
The difference of a number and 6 means we subtract 6 from x:
x - 6
[U]Expression 2: [I]5 times the sum of the number and 2[/I][/U]
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
The sum of a number and 2 means we add 2 to x:
x + 2
5 times the sum means we multiply x + 2 by 5
5(x + 2)
[U]For the last step, we evaluate the expression [I]is the same as[/I][/U]
This means equal to, so we set x - 6 equal to 5(x + 2)
[B]x - 6 = 5(x + 2)[/B]
The difference of a number times 3 and 6 is equal to 7 . Use the variable w for the unknown nThe difference of a number times 3 and 6 is equal to 7 . Use the variable w for the unknown number.
The phrase a number uses the variable w.
3 times w is written as 3w
The difference of 3w and 6 is written as 3w - 6
Set this equal to 7
[B]3w - 6 = 7
[/B]
This is our algebraic expression. To solve this equation for w, we [URL='http://www.mathcelebrity.com/1unk.php?num=3w-6%3D7&pl=Solve']type the algebraic expression into our search engine[/URL].
The difference of twice a number and 4 is at least -27The difference of twice a number and 4 is at least -27.
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
Twice a number means multiply the number by 2
2x
[I]and 4[/I] means we add 4 to our expression:
2x + 4
[I]Is at least[/I] means an inequality. In this case, it's greater than or equal to:
[B]2x + 4 >= -27
[/B]
To solve this inequality, [URL='https://www.mathcelebrity.com/1unk.php?num=2x%2B4%3E%3D-27&pl=Solve']type it in the search engine[/URL].
The difference of twice a number and 6 is at most 28The difference of twice a number and 6 is at most 28
This is an algebraic expression. Let's take it in parts:
[LIST=1]
[*]The phrase [I]a number[/I], means an arbitrary variable, let's call it x
[*]Twice this number means we multiply x by 2: 2x
[*][I]The difference of[/I] means subtract, so we subtract 6 to 2x: 2x - 6
[*][I]Is at most [/I]means less than or equal to, so we create an inequality where 2x - 6 is less than or equal to 28, using the <= sign
[/LIST]
[B]2x - 6 <= 28
[/B]
If you wish to solve this inequality, [URL='https://www.mathcelebrity.com/1unk.php?num=2x-6%3C%3D28&pl=Solve']click this link[/URL].
the difference of twice a number and 8 is at most -30the difference of twice a number and 8 is at most -30.
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
Twice this number means we multiply by 2, so we have 2x.
We take the difference of 2x and 8, meaning we subtract 8:
2x - 8
Finally, the phrase [I]at most[/I] means an inequality, also known as less than or equal to:
[B]2x - 8 <= 30 <-- This is our algebraic expression
[/B]
To solve this, we [URL='https://www.mathcelebrity.com/1unk.php?num=2x-8%3C%3D30&pl=Solve']type it into the search engine[/URL] and get x <= 19.
The difference of twice a number and 9 is less than 22The difference of twice a number and 9 is less than 22
The phrase a number, means an arbitrary variable, let's call it x.
x
Twice a number
2x
The difference of twice a number and 9
2x - 9
Is less than 22
[B]2x - 9 < 22[/B]
The difference of two numbers is 12 and their mean is 15. Find the two numbersThe difference of two numbers is 12 and their mean is 15. Find the two numbers.
Let the two numbers be x and y. We're given:
[LIST=1]
[*]x - y = 12
[*](x + y)/2 = 15. <-- Mean is an average
[/LIST]
Rearrange equation 1 by adding y to each side:
x - y + y = y + 12
Cancelling the y's on the left side, we get:
x = y + 12
Now substitute this into equation 2:
(y + 12 + y)/2 = 15
Cross multiply:
y + 12 + y = 30
Group like terms for y:
2y + 12 = 30
[URL='https://www.mathcelebrity.com/1unk.php?num=2y%2B12%3D30&pl=Solve']Typing this equation into our search engine[/URL], we get:
[B]y = 9[/B]
Now substitute this into modified equation 1:
x = y + 12
x = 9 + 12
[B]x = 21[/B]
The difference of two numbers is 720. The smaller of the numbers is 119. What is the other number?The difference of two numbers is 720. The smaller of the numbers is 119. What is the other number?
Let the larger number be l. We're given:
l - 119 = 720
[URL='https://www.mathcelebrity.com/1unk.php?num=l-119%3D720&pl=Solve']We type this equation into the search engine[/URL] and we get:
l = [B]839[/B]
The domain of a relation is all even negative integers greater than -9. The range y of the relationThe domain of a relation is all even negative integers greater than -9. The range y of the relation is the set formed by adding 4 to the numbers in the domain. Write the relation as a table of values and as an equation.
The domain is even negative integers greater than -9:
{-8, -6, -4, -2}
Add 4 to each x for the range:
{-8 + 4 = -4, -6 + 4 = -2. -4 + 4 = 0, -2 + 4 = 2}
For ordered pairs, we have:
(-8, -4)
(-6, -2)
(-4, 0)
(-2, 2)
The equation can be written:
y = x + 4 on the domain (x | x is an even number where -8 <= x <= -2)
The enrollment at High School R has been increasing by 20 students per year. High School R currentlyThe enrollment at High School R has been increasing by 20 students per year. High School R currently has 200 students. High School T has 400 students and is decreasing 30 students per year. When will the two school have the same enrollment of students?
Set up the Enrollment function E(y) where y is the number of years.
[U]High School R:[/U]
[I]Increasing[/I] means we add
E(y) = 200 + 20y
[U]High School T:[/U]
[I]Decreasing[/I] means we subtract
E(y) = 400 - 30y
When the two schools have the same enrollment, we set the E(y) functions equal to each other
200 + 20y = 400 - 30y
To solve this equation for y, we [URL='https://www.mathcelebrity.com/1unk.php?num=200%2B20y%3D400-30y&pl=Solve']type it in our search engine[/URL] and we get:
y = [B]4[/B]
The entrance fee to the national park is $30. A campsite fee is $15 per night. Write an equation toThe entrance fee to the national park is $30. A campsite fee is $15 per night. Write an equation to represent the situation.
Let n be the number of nights. We have a cost (C) of:
C = Cost per night * n + entrance fee
C = [B]15n + 50[/B]
the equation of a line is y = mx + 4. find m if the line passes through (-5,0)the equation of a line is y = mx + 4. find m if the line passes through (-5,0)
Plug in our numbers of x = -5, and y = 0:
-5m + 4 = 0
To solve for m, we [URL='https://www.mathcelebrity.com/1unk.php?num=-5m%2B4%3D0&pl=Solve']plug in this equation into our search engine[/URL] and we get:
[B]m = 0.8 or 4/5[/B]
so our line equation becomes:
[B]y = 4/5x + 4[/B]
The first significant digit in any number must be 1, 2, 3, 4, 5, 6, 7, 8, or 9. It was discovered tThe first significant digit in any number must be 1, 2, 3, 4, 5, 6, 7, 8, or 9. It was discovered that first digits do not occur with equal frequency. Probabilities of occurrence to the first digit in a number are shown in the accompanying table. The probability distribution is now known as Benford's Law. For example, the following distribution represents the first digits in 231 allegedly fraudulent checks written to a bogus company by an employee attempting to embezzle funds from his employer.
Digit, Probability
1, 0.301
2, 0.176
3, 0.125
4, 0.097
5, 0.079
6, 0.067
7, 0.058
8, 0.051
9, 0.046
[B][U]Fradulent Checks[/U][/B]
Digit, Frequency
1, 36
2, 32
3, 45
4, 20
5, 24
6, 36
7, 15
8, 16
9, 7
Complete parts (a) and (b).
(a) Using the level of significance α = 0.05, test whether the first digits in the allegedly fraudulent checks obey Benford's Law. Do the first digits obey the Benford's Law?
Yes or No
Based on the results of part (a), could one think that the employe is guilty of embezzlement?
Yes or No
Show frequency percentages
Digit Fraud Probability Benford Probability
1 0.156 0.301
2 0.139 0.176
3 0.195 0.125
4 0.087 0.097
5 0.104 0.079
6 0.156 0.067
7 0.065 0.058
8 0.069 0.051
9 0.03 0.046
Take the difference between the 2 values, divide it by the Benford's Value. Sum up the squares to get the Test Stat of 2.725281277
Critical Value Excel: =CHIINV(0.95,8) = 2.733
Since test stat is less than critical value, we cannot reject, so [B]YES[/B], it does obey Benford's Law and [B]NO[/B], there is not enough evidence to suggest the employee is guilty of embezzlement.
The fixed costs to produce a certain product are 15,000 and the variable costs are $12.00 per item.The fixed costs to produce a certain product are 15,000 and the variable costs are $12.00 per item. The revenue for a certain product is $27.00 each. If the company sells x products, then what is the revenue equation?
R(x) = Revenue per item x number of products sold
[B]R(x) = 27x[/B]
The flu is starting to hit Lanberry. Currently, there are 894 people infected, and that number is grThe flu is starting to hit Lanberry. Currently, there are 894 people infected, and that number is growing at a rate of 5% per day. Overall, how many people will have gotten the flu in 5 days?
Our exponential equation for the Flu at day (d) is:
F(d) = Initial Flu cases * (1 + growth rate)^d
Plugging in d = 5, growth rate of 5% or 0.05, and initial flu cases of 894 we have:
F(5) = 894 * (1 + 0.05)^5
F(5) = 894 * (1.05)^5
F(5) = 894 * 1.2762815625
F(5) = [B]1141[/B]
the fuel tank of a jet used gas at a constant rate of 300 gallons for each hour of flight. the tankthe fuel tank of a jet used gas at a constant rate of 300 gallons for each hour of flight. the tank can hold a maximum of 2400 gallons of gas. write an equation representing the amount of fuel left in the tank as a function of the number of hours spent flying.
We have an equation F(h) where h is the number of hours since the flight took off:
[B]F(h) = 2400 - 300h[/B]
the grass in jamie’s yard grew 16 centimeters in 10 days. how many days did it take for the grass tothe grass in jamie’s yard grew 16 centimeters in 10 days. how many days did it take for the grass to grow 1 centimeter
We set up a proportion of centimeters to days where d is the number of days it takes for the grass to grow 1 centimeter:
16/10 = 1/d
To solve this proportion for d, [URL='https://www.mathcelebrity.com/prop.php?num1=16&num2=1&den1=10&den2=d&propsign=%3D&pl=Calculate+missing+proportion+value']we type it in our search engine[/URL] and we get:
d = [B]0.625 or 5/8[/B]
The Lakewood library has $8,040 to buy science magazines. If each magazine costs $3, how many magaziThe Lakewood library has $8,040 to buy science magazines. If each magazine costs $3, how many magazines will the library be able to buy?
Let number of magazines be m. We know that:
Cost per magazine * m = Total Cost
We're given Total Cost = 8040 and Cost per magazine = 3, so we have
3m = 8040
To solve this equation for m, we [URL='https://www.mathcelebrity.com/1unk.php?num=3m%3D8040&pl=Solve']type it in our math engine[/URL] and we get:
m = [B]2680[/B]
The larger number b exceeds the smaller number c by 45.The larger number b exceeds the smaller number c by 45.
Exceeds means greater than or more than, so we have:
[B]b = c + 45[/B]
The larger of 2 numbers is 1 more than 3 times the smaller numberThe larger of 2 numbers is 1 more than 3 times the smaller number.
Let the larger number be l. Let the smaller number be s. The algebraic expression is:
3 times the smaller number is written as:
3s
1 more than that means we add 1
3s + 1
Our final algebraic expression uses the word [I]is[/I] meaning an equation. So we set l equal to 3s + 1
[B]l = 3s + 1[/B]
The largest American flag ever flown had a perimeter of 1,520 feet and a length of 505 feet. Find thThe largest American flag ever flown had a perimeter of 1,520 feet and a length of 505 feet. Find the width of the flag.
for a rectangle, the Perimeter P is given by:
P = 2l + 2w
P[URL='https://www.mathcelebrity.com/rectangle.php?l=505&w=&a=&p=1520&pl=Calculate+Rectangle']lugging in our numbers for Perimeter and width into our rectangle calculator[/URL], we get:
l =[B] 255[/B]
the left and right page numbers of an open book are two consecutive integers whose number is 235 finthe left and right page numbers of an open book are two consecutive integers whose number is 235 find the page numbers
Using our [URL='https://www.mathcelebrity.com/consecintwp.php?pl=Sum&num=+235']consecutive integer calculator[/URL], we get:
[B]117, 118[/B]
The left and right page numbers of an open book are two consecutive integers whose sum is 403. FindThe left and right page numbers of an open book are two consecutive integers whose sum is 403. Find these page numbers.
Page numbers left and right are consecutive integers. So we want to find a number n and n + 1 where:
n + n + 1 = 403
Combining like terms, we get:
2n + 1 = 403
Typing that equation into our search engine, we get:
[B]n = 201[/B]
This is our left hand page. Our right hand page is:
201 + 1 = [B]202[/B]
The library received 1,125 new books. 45 books fit on each shelf. How many shelves are needed for thThe library received 1,125 new books. 45 books fit on each shelf. How many shelves are needed for the new books?
Shelves needed = Total Books / Number of Shelves
Shelves needed = 1,125/45
Shelves needed = [B]25[/B]
The mean age of 10 women in an office is 30 years old. The mean age of 10 men in an office is 29 yeaThe mean age of 10 women in an office is 30 years old. The mean age of 10 men in an office is 29 years old. What is the mean age (nearest year) of all the people in the office?
Mean is another word for [U]average[/U].
Mean age of women = Sum of all ages women / number of women
We're told mean age of women is 30, so we have:
Sum of all ages women / 10 = 30
Cross multiply, and we get:
Sum of all ages of women = 30 * 10
Sum of all ages of women = 300
Mean age of men = Sum of all ages men / number of men
We're told mean age of men is 29, so we have:
Sum of all ages men / 10 = 29
Cross multiply, and we get:
Sum of all ages of men = 29 * 10
Sum of all ages of men = 290
[U]Calculate mean age (nearest year) of all the people in the office:[/U]
mean age of all the people in the office = Sum of all ages of people in the office (men and women) / Total number of people in the office
mean age of all the people in the office = (300 + 290) / (10 + 10)
mean age of all the people in the office = 590 / 20
mean age of all the people in the office = 29.5
The question asks for nearest year. Since this is a decimal, we round down to either 29 or up to 30.
Because the decimal is greater or equal to 0.5 (halfway), we round [U]up[/U] to [B]30[/B]
The mean age of 5 people in a room is 32 years. A person enters the room. The mean age is now 40. WhThe mean age of 5 people in a room is 32 years. A person enters the room. The mean age is now 40. What is the age of the person who entered the room?
Mean = Sum of Ages in Years / Number of People
32 = Sum of Ages in Years / 5
Cross multiply:
Sum of Ages in Years = 32 * 5
Sum of Ages in Years = 160
Calculate new mean after the next person enters the room.
New Mean = (Sum of Ages in Years + New person's age) / (5 + 1)
Given a new Mean of 40, we have:
40 = (160 + New person's age) / 6
Cross multiply:
New Person's Age + 160 = 40 * 6
New Person's Age + 160 = 240
Let the new person's age be n. We have:
n + 160 = 240
To solve for n, [URL='https://www.mathcelebrity.com/1unk.php?num=n%2B160%3D240&pl=Solve']we type this equation into our search engine[/URL] and we get:
n = [B]80[/B]
The mean age of 5 people in a room is 38 years. A person enters the room. The mean age is now 39. WhThe mean age of 5 people in a room is 38 years. A person enters the room. The mean age is now 39. What is the age of the person who entered the room?
The mean formulas is denoted as:
Mean = Sum of Ages / Total People
We're given Mean = 38 and Total People = 5, so we plug in our numbers:
28 = Sum of Ages / 5
Cross multiply, and we get:
Sum of Ages = 28 * 5
Sum of Ages = 140
One more person enters the room. The mean age is now 39. Set up our Mean formula:
Mean = Sum of Ages / Total People
With a new Mean of 39 and (5 + 1) = 6 people, we have:
39 = Sum of Ages / 6
But the new sum of Ages is the old sum of ages for 5 people plus the new age (a):
Sum of Ages = 140 + a
So we have:
29 = (140 + a)/6
Cross multiply:
140 + a = 29 * 6
140 + a = 174
To solve for a, [URL='https://www.mathcelebrity.com/1unk.php?num=140%2Ba%3D174&pl=Solve']we type this equation into our search engine[/URL] and we get:
a = [B]34[/B]
The mean of 3 numbers is 20. Two of the numbers are 21, and 35. What is the 3rd number?The mean of 3 numbers is 20. Two of the numbers are 21, and 35. What is the 3rd number?
The mean of 3 numbers is the sum of 3 numbers divided by 3. Let the 3rd number be n. We have:
Mean = (21 + 35 + n) / 3
The Mean is given as 20, so we have:
20 = (n + 56) / 3
Cross multiply:
n + 56 = 20 * 3
n + 56 = 60
To solve for n, we [URL='https://www.mathcelebrity.com/1unk.php?num=n%2B56%3D60&pl=Solve']type this number in our search engine [/URL]and we get:
n = [B]4[/B]
The mean of two numbers is 49.1. The first number is 18.3. What is the second numberThe mean of two numbers is 49.1. The first number is 18.3. What is the second number
We call the second number n. Since the mean is an average, in this case 2 numbers, we have:
(18.3 + n)/2 = 49.1
Cross multiply:
18.3 + n = 98.2
[URL='https://www.mathcelebrity.com/1unk.php?num=18.3%2Bn%3D98.2&pl=Solve']Typing this equation into our search engine[/URL], we get:
[B]n = 79.9[/B]
The minimum daily requirement of vitamin C for 14 year olds is at least 50 milligrams per day. An avThe minimum daily requirement of vitamin C for 14 year olds is at least 50 milligrams per day. An average sized apple contains 6 milligrams of vitamin C. How many apples would a person have to eat each day to satisfy this requirement?
Let a be the number of apples required. The phrase [I]at least[/I] means greater than or equal to, so we have the inequality:
6a >= 50
To solve this inequality, we [URL='https://www.mathcelebrity.com/interval-notation-calculator.php?num=6a%3E%3D50&pl=Show+Interval+Notation']type it in our math engine[/URL] and we get:
[B]a >= 8.3333 apples or rounded up to a full number, we get 9 apples[/B]
The next number in the series 2,5,11,20,32,47, isThe next number in the series 2,5,11,20,32,47, is
[LIST]
[*]2 + 3 = 5
[*]5 + 6 = 11
[*]11 + 9 = 20
[*]20 + 12 = 32
[*]32 + 15 = 47
[/LIST]
Notice the addition pattern:
3, 6, 9, 12, 15
This means our next term is:
47 + (15 + 3)
47 + 18
[B]65
[MEDIA=youtube]mAj3tqXUbZs[/MEDIA][/B]
The next number in the series 38 36 30 28 22 isThe next number in the series 38 36 30 28 22 is
Notice the change of factors.
Subtract 2, Subtract 6, Subtract 2, Subtract 6.
So the next number should subtract 2.
22 - 2 = [B]20
[MEDIA=youtube]x7SHk_6-aok[/MEDIA][/B]
The number -2.34 can be found between which two integersThe number -2.34 can be found between which two integers
We want to take the integer of -2.34 which is -2
Since -2.34 is less than 0, we subtract 1: -2 -1 = -3
Therefore, -2.34 lies between [B]-2 and -3[/B]
-3 < -2.34 < -2
The number of days in t weeks and 5 daysThe number of days in t weeks and 5 days
Each week has 7 days, so we have
[B]d = 7t + 5[/B]
the number of minutes in h hours and 32 minutesthe number of minutes in h hours and 32 minutes
60 minutes in each hour, so we have:
[B]60h + 32[/B]
the number of minutes in h hours and 49 minutesthe number of minutes in h hours and 49 minutes
1 hour = 60 minutes
so we have h hours = 60h minutes
Add this to 49 minutes
[B]60h + 49[/B]
the number of students allowed on a trip cannot be greater than 85 let s represent the number of stuthe number of students allowed on a trip cannot be greater than 85 let s represent the number of students
x <= 85
The ones digit of a two-digit number is three, while the tens digit is four.The ones digit of a two-digit number is three, while the tens digit is four.
We write this as tens digit ones digit:
[B]43[/B]
The pieces of a 500 piece puzzle are stored in three containers. 220 pieces are in the first containThe pieces of a 500 piece puzzle are stored in three containers. 220 pieces are in the first container and 180 pieces are in the second container. What percentage of the pieces is in the third container?
[U]Calculate the number of pieces in the 3rd container:[/U]
Pieces in container 3 = Total Puzzle Pieces - Pieces in container 2 - Pieces in container 1
Pieces in container 3 = 500 - 220 - 180
Pieces in container 3 = 100
Calculate the percentage of pieces in the 3rd container:
Percentage of pieces in container 3 = 100% * Pieces in container 3 / Total puzzle pieces
Percentage of pieces in container 3 = 100% * 100 / 500
Percentage of pieces in container 3 = 100% * 0.2
Percentage of pieces in container 3 = [B]20%[/B]
THE PLAYER CHOSE 20 OUT OF 70 NUMBERS IN A GAME OF CHANCE. ...WHEN THE SHOW BEGIN,THE BANKER WILLTHE PLAYER CHOSE 20 OUT OF 70 NUMBERS IN A GAME OF CHANCE. ...WHEN THE SHOW BEGIN,THE BANKER WILL THEN RAFFLE OR DO A DRAW WHERE IN THE BANKER PICKS AS WELL 20 OUT OF 70 NUMBERS. .....NOW HERES THE TRICK, FOR YOU TO BEAT THE BANKER .YOUR CHOSEN 20 NUMBERS SHOULD NOT MATCH ANY OF THE BANKER 20 0UT OF 70 NUMBERS THAT HAD BEEN DRAWS IN THE GAME OF SHOW. IF THE 20 NUMBERS YOU HAVE ARE TOTALLY DIFFERENT FROM THE BANKERS 20 NUMBERS DRAWN THEN YOU WIN THE PRICE.
Banker Draw Numbers not matching Total numbers Probability Probability Decimal Cumulative Probability
1 50 70 50/70 0.7142857143 0.7142857143
2 49 69 49/69 0.7101449275 0.5072463768
3 48 68 48/68 0.7058823529 0.358056266
4 47 67 47/67 0.7014925373 0.2511737985
5 46 66 46/66 0.696969697 0.1750605262
6 45 65 45/65 0.6923076923 0.1211957489
7 44 64 44/64 0.6875 0.0833220774
8 43 63 43/63 0.6825396825 0.05687062425
9 42 62 42/62 0.6774193548 0.03852526159
10 41 61 41/61 0.6721311475 0.02589402828
11 40 60 40/60 0.6666666667 0.01726268552
12 39 59 39/59 0.6610169492 0.01141092772
13 38 58 38/58 0.6551724138 0.007476125057
14 37 57 37/57 0.649122807 0.004852923282
15 36 56 36/56 0.6428571429 0.003119736396
16 35 55 35/55 0.6363636364 0.001985286797
17 34 54 34/54 0.6296296296 0.001249995391
18 33 53 33/53 0.6226415094 0.000778299017
19 32 52 32/52 0.6153846154 0.0004789532412
20 31 51 31/51 0.6078431373 [B]0.0002911284407 [/B]
The points -5, -24 and 5,r lie on a line with slope 4. Find the missing coordinate r. Slope = (y2 -The points -5, -24 and 5,r lie on a line with slope 4. Find the missing coordinate r.
Slope = (y2 - y1)/(x2 - x1)
Plugging in our numbers, we get:
4 = (r - -24)/(5 - -5)
4 = (r +24)/10
Cross multiply:
r + 24 = 40
Subtract 24 from each side:
[B]r = 16[/B]
The points 6,4 and 9,r lie on a line with slope 3. Find the missing coordinate r.The points 6,4 and 9,r lie on a line with slope 3. Find the missing coordinate r.
Slope = (y2 - y1)/(x2 - x1)
Plugging in our numbers, we get:
3 = (r - 4)/(9 - 6)
3 = (r - 4)/3
Cross multiply:
r - 4 = 9
Add 4 to each side:
[B]r = 13[/B]
The polynomial function P(x) = 75x - 87,000 models the relationship between the number of computerThe polynomial function P(x) = 75x - 87,000 models the relationship between the number of computer briefcases x that a company sells and the profit the company makes, P(x). Find P (4000), the profit from selling 4000 computer briefcases.
Plug in 4,000 for x:
P(4000) = 75(4000) - 87,000
P(4000) = 300,000- 87,000
P(4000) = [B]213,000[/B]
The population of a town is currently 22,000. This represents an increase of 40% from the populationThe population of a town is currently 22,000. This represents an increase of 40% from the population 5 years ago. Find the population of the town 5 years ago. Round to the nearest whole number if necessary.
To get the population 5 years ago, we'd discount the current population of 22,000 by 40%. We can write a 40% discount as 1.4.
Population 5 years ago = 22,000/1.4
Population 5 years ago = 15,714.29
Rounding to the nearest whole number, we get [B]15,714[/B]
The principal randomly selected six students to take an aptitude test. Their scores were: 87.4 86.9First, determine the [URL='http://www.mathcelebrity.com/statbasic.php?num1=87.4%2C86.9%2C89.9%2C78.3%2C75.1%2C70.6&num2=+0.2%2C0.4%2C0.6%2C0.8%2C0.9&pl=Number+Set+Basics']mean and standard deviation[/URL] for the [I]sample[/I]
Mean = 81.3667
SD = 7.803
Next, use our [URL='http://www.mathcelebrity.com/normconf.php?n=6&xbar=81.3667&stdev=7.803&conf=90&rdig=4&pl=Small+Sample']confidence interval for the mean calculator[/URL] with these values and n = 6
[B]74.9478 < u < 87.7856[/B]
the product of 2 less than a number and 7 is 13the product of 2 less than a number and 7 is 13
Take this algebraic expression in [U]4 parts[/U]:
Part 1 - The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
Part 2 - 2 less than a number means we subtract 2 from x
x - 2
Part 3 - The phrase [I]product[/I] means we multiply x - 2 by 7
7(x - 2)
Part 4 - The phrase [I]is[/I] means an equation, so we set 7(x - 2) equal to 13
[B]7(x - 2) = 13[/B]
the product of 8 and 15 more than a numberthe product of 8 and 15 more than a number.
Take this algebraic expression in pieces.
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
15 more than x means we add 15 to x:
x + 15
The product of 8 and 15 more than a number means we multiply 8 by x + 15
[B]8(x + 15)[/B]
The product of 8 and a number k is greater than 4 and no more than 16Let's take this by pieces.
The product of 8 and a number k is written as: 8k.
Since it's greater than 4, but not more than 16, we include this in the middle of an inequality statement.
4 < 8k <= 16
Notice no more than has an equal sign, it means less than or equal to.
Greater does not include an equal sign.
the product of a number and 15 is not less than 15the product of a number and 15 is not less than 15
The phrase [I]a number[/I] means an arbitrary variable. Let's call it x.
x
the product of a number and 15 means we multiply x by 15
15x
The phrase [I]not less than[/I] means greater than or equal to. We set 15x greater than prequel to 15
[B]15x >= 15 <-- This is our algebraic expression
[/B]
[U]If the problem asks you to solve for x:[/U]
Divide each side by 15:
15x/15 >= 15/15
[B]x >= 1[/B]
The product of a number and its square is less than 8Let the number be x.
Let the square be x^2.
So we have (x)(x^2) = x^3 < 8
Take the cube root of this, we get x = 2
The product of a number b and 3 is no less than 12.The product of a number b and 3 is no less than 12.
A number b is just written as b. So we have:
The product of b and 3 is no less than 12.
take this in parts:
[LIST]
[*]The product of b and 3: 3b
[*]The phrase [I]is no less than[/I] means an inequality, so we have greater than or equal to. We set 3b greater than or equal to 12
[/LIST]
[B]3b >= 12[/B]
The product of the 2 numbers x and yThe product of the 2 numbers x and y
The phrase [I]product [/I]means we multiply the two variables, x and y.
[B]xy[/B]
The product of two numbers less than 20 ( let a and b are the numbers)The product means we multiply the two numbers:
[B]ab < 20[/B]
The product of two positive numbers is 96. Determine the two numbers if one is 4 more than the otherThe product of two positive numbers is 96. Determine the two numbers if one is 4 more than the other.
Let the 2 numbers be x and y.
We have:
[LIST=1]
[*]xy = 96
[*]x = y - 4
[/LIST]
[U]Substitute (2) into (1)[/U]
(y - 4)y = 96
y^2 - 4y = 96
[U]Subtract 96 from both sides:[/U]
y^2 - 4y - 96 = 0
[U]Factoring using our quadratic calculator, we get:[/U]
(y - 12)(y + 8)
So y = 12 and y = -8. Since the problem states positive numbers, we use [B]y = 12[/B].
Substituting y = 12 into (2), we get:
x = 12 - 4
[B]x = 8[/B]
[B]We have (x, y) = (8, 12)[/B]
The quotient of 2 and the sum of a number and 1The quotient of 2 and the sum of a number and 1.
The phrase [I]a number[/I] represents an arbitrary variable, let's call it x.
The sum of a number and 1 is written as:
x + 1
The word [I]quotient[/I] means a fraction. So we divide 2 by x + 1
2
--------
( x + 1)
[MEDIA=youtube]uPQHCKr-9vA[/MEDIA]
the quotient of 4 more than a number and 7 is 10the quotient of 4 more than a number and 7 is 10
Take this algebraic expression in pieces:
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
4 more than a number means we add 4 to x:
x + 4
The quotient of 4 more than a number and 7 means we divide x + 4 by 7
(x + 4)/7
The word [I]is[/I] means an equation, so we set (x + 4)/7 equal to 10 to get our algebraic expression of:
[B](x + 4)/7 = 10
[/B]
If the problem asks you to solve for x, then we cross multiply:
x + 4 = 10 * 7
x + 4 = 70
Subtract 4 from each side:
x + 4 - 4 = 70 - 4
x = [B]66
[MEDIA=youtube]j-GZLPVKbTM[/MEDIA][/B]
the quotient of a number and twice another numberthe quotient of a number and twice another number
The phrase[I] a number [/I]means an arbitrary variable, let's call it x.
The phrase[I] another number [/I]means another arbitrary variable, let's call it y.
Twice means we multiply y by 2:2y
The quotient means we divide x by 2y:
[B]x/2y[/B]
the quotient of a variable and 7the quotient of a variable and 7.
A variable means an arbitrary number, let's call it x.
A quotient means a fraction, where x is the numerator and 7 is the denominator:
[B] x
---
7[/B]
the quotient of the cube of a number x and 5the quotient of the cube of a number x and 5
[LIST]
[*]A number means an arbitrary variable, let's call it x
[*]The cube of a number means raise it to the 3rd power, so we have x^3
[*]Quotient means we have a fraction, so our numerator is x^3, and our denominator is 5
[/LIST]
[B]x^3
----
5[/B]
the ratio of 50 and a number added to the quotient of a number and 10the ratio of 50 and a number added to the quotient of a number and 10
Take this algebraic expression in parts.
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
The ratio of 50 and x means we divide by 50 by x
50/x
The quotient of a number and 10 means we have a fraction:
x/10
The phrase [I]added to[/I] means we add 50/x to x/10
[B]50/x + x/10[/B]
the ratio of a number x and 4 added to 2the ratio of a number x and 4 added to 2
Take this algebraic expression in parts.
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
The ratio of this number and 4 means we have a fraction:
x/4
The phrase [I]added to[/I] means we add 2 to x/4
[B]x/4 + 2[/B]
The ratio of men to women working for a company is 5 to 3 . If there are 75 men working for theThe ratio of men to women working for a company is 5 to 3 . If there are 75 men working for the company, what is the total number of employees?
We read this as a proportion, of men to women.
5/3 = 75/w where w is the number of women for 75 men.
Entering this expression into our [URL='http://www.mathcelebrity.com/prop.php?num1=5&num2=75&propsign=%3D&den1=3&den2=w&pl=Calculate+missing+proportion+value']proportion calculator[/URL], we get [B]w = 45[/B].
The ratio of men to women working for a company is 3 to 4. If there are 81 men working for the compaThe ratio of men to women working for a company is 3 to 4. If there are 81 men working for the company, what is the total number of employees?
Men to women is 3:4. Set up a proportion where w is the number of women:
3/4 = 81/w
Using our [URL='http://www.mathcelebrity.com/prop.php?num1=3&num2=81&den1=4&den2=w&propsign=%3D&pl=Calculate+missing+proportion+value']proportion calculator[/URL], we get w = 108.
The problem asks for total employees, so we add men and women:
Total Employees = Men + Women
Total Employees = 81 + 108
Total Employees = [B]189[/B]
the ratio of ten to a numberthe ratio of ten to a number
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
The ratio of 10 and this number x is written as:
[B]10/x[/B]
The ratio of the number of carabaos, goats, and cows in a farm is 5:1:2. If there are 48 animals ofThe ratio of the number of carabaos, goats, and cows in a farm is 5:1:2. If there are 48 animals of these kinds in his backyard how many of them are goats
Calculate total ratio:
5 + 1 + 2 = 8
Multiply fractional portion of goats by total animals in the backyard.
1/8 * 48 = [B]6 goats[/B]
the ratio of yellow to red balloons is 2:1 respectively. if there are 7 red balloons, how many yellothe ratio of yellow to red balloons is 2:1 respectively. if there are 7 red balloons, how many yellow balloons are there?
7 red balloons means we have twice as many yellow balloons. So 7 * 2 = [B]14[/B].
Written as a proportion, of yellow to red, we have:
2/1 = y/7 where y is the number of yellow balloons.
[URL='https://www.mathcelebrity.com/prop.php?num1=2&num2=y&den1=1&den2=7&propsign=%3D&pl=Calculate+missing+proportion+value']Run this proportion through our search engine[/URL] to get [B]y = 14[/B].
The recommended daily calcium intake for a 20-year-old is 1,000 milligrams (mg). One cup of milk conThe recommended daily calcium intake for a 20-year-old is 1,000 milligrams (mg). One cup of milk contains 299 mg of calcium and one cup of juice contains 261 mg of calcium. Which of the following inequalities represents the possible number of cups of milk [I]m[/I] and cups of juice [I]j[/I] a 20-year-old could drink in a day to meet or exceed the recommended daily calcium intake from these drinks alone?
Total calcium = Milk calcium + Juice Calcium
Calculate Milk Calcium:
Milk Calcium = 299m where m is the number of cups of milk
Calculate Juice Calcium:
Juice Calcium = 261j where j is the number of cups of juice
The phrase [I]meet or exceed[/I] means greater than or equal to, so we have an inequality, where Total Calcium is greater than or equal to 1000. So we write our inequality as:
Milk calcium + Juice Calcium >= Total Calcium
[B]299m + 261j >= 1000[/B]
The rent for an apartment is $6600 per year and increases at a rate of 4% each year. Find the rent oThe rent for an apartment is $6600 per year and increases at a rate of 4% each year. Find the rent of the apartment after 5 years. Round your answer to the nearest penny.
Our Rent R(y) where y is the number of years since now is:
R(y) = 6600 * (1.04)^y <-- Since 4% is 0.04
The problem asks for R(5):
R(5) = 6600 * (1.04)^5
R(5) = 6600 * 1.2166529024
R(5) = [B]8,029.91[/B]
The residents of a city voted on whether to raise property taxes. The ratio of yes votes to no votesThe residents of a city voted on whether to raise property taxes. The ratio of yes votes to no votes was 6 to 5. If there were 4570 no votes, what was the total number of votes?
Set up a proportion where y is the number of yes votes to 4570 no votes
6/5 = y/4570
Using our [URL='http://www.mathcelebrity.com/prop.php?num1=6&num2=y&den1=5&den2=4570&propsign=%3D&pl=Calculate+missing+proportion+value']proportion calculator,[/URL] we get:
[B]y = 5484[/B]
The residents of a city voted on whether to raise property taxes. The ratio of yes votes to no votesThe residents of a city voted on whether to raise property taxes. The ratio of yes votes to no votes was 4 to 3 . If there were 2958 no votes, what was the total number of votes?
Set up a ratio of yes to no votes
4/3 = x/2958
Using our [URL='http://www.mathcelebrity.com/prop.php?num1=4&num2=x&den1=3&den2=2958&propsign=%3D&pl=Calculate+missing+proportion+value']proportion calculator[/URL], we get x = 3,944 for yes votes.
Adding yes votes and no votes together to get total votes, we get:
Total Votes = Yes Votes + No Votes
Total Votes = 3,944 + 2,958
Total Votes = [B]6,902[/B]
the result of quadrupling a number is 80the result of quadrupling a number is 80
Let our number be x. Quadrupling any number means multiplying it by 4. We have:
4x = 80
[URL='https://www.mathcelebrity.com/1unk.php?num=4x%3D80&pl=Solve']Typing this problem into our search engine[/URL], we get:
[B]x = 20[/B]
The sales tax rate in a city is 7.27%. How much sales tax is charged on a purchase of 5 headphonesThe sales tax rate in a city is 7.27%. How much sales tax is charged on a purchase of 5 headphones at $47.44 each? What is the total price?
[U]First, calculate the pre-tax price:[/U]
Pre-tax price = Price per headphone * Number of Headphones
Pre-tax price = $47.44 * 5
Pre-tax price = $237.20
Now calculate the tax amount:
Tax Amount = Pre-Tax Price * (Tax Rate / 100)
Tax Amount = $237.20 * 7.27/100
Tax Amount = $237.20 * 0.0727
Tax Amount = [B]$17.24
[/B]
Calculate the total price:
Total Price = Pre-Tax price + Tax Amount
Total Price = $237.20 + $17.24
Total Price = [B]$254.44[/B]
The scale on a map is 1 inch = 60 miles. If two cities are 75 miles apart, how far apart are they onThe scale on a map is 1 inch = 60 miles. If two cities are 75 miles apart, how far apart are they on the map?
Set up a proportion of inches to miles where n is the number of inches for 75 miles
1 inch/60 miles = n/75
Using our [URL='https://www.mathcelebrity.com/proportion-calculator.php?num1=1&num2=n&den1=60&den2=75&propsign=%3D&pl=Calculate+missing+proportion+value']proportion calculator[/URL], we get:
n = [B]1.25 inches[/B]
The school yearbook costs $15 per book to produce with an overhead of $5500. The yearbook sells forThe school yearbook costs $15 per book to produce with an overhead of $5500. The yearbook sells for $40. Write a cost and revenue function and determine the break-even point.
[U]Calculate cost function C(b) with b as the number of books:[/U]
C(b) = Cost per book * b + Overhead
[B]C(b) = 15b + 5500[/B]
[U]Calculate Revenue Function R(b) with b as the number of books:[/U]
R(b) = Sales Price per book * b
[B]R(b) = 40b[/B]
[U]Calculate break even function E(b):[/U]
Break-even Point = Revenue - Cost
Break-even Point = R(b) - C(b)
Break-even Point = 40b - 15b - 5500
Break-even Point = 25b - 5500
[U]Calculate break even point:[/U]
Break-even point is where E(b) = 0. So we set 25b - 5500 equal to 0
25b - 5500 = 0
To solve for b, we [URL='https://www.mathcelebrity.com/1unk.php?num=25b-5500%3D0&pl=Solve']type this equation into our search engine[/URL] and we get:
[B]b = 220[/B]
The science club charges 4.50 per car at their car wash. Write and solve and inequality to find howThe science club charges 4.50 per car at their car wash. Write and solve and inequality to find how many cars they have to wash to earn at least 300
Let x be the number of cars they wash. Set up our inequality. Note, at least 300 means 300 or greater, so we use greater than or equal to.
[U]Inequality:[/U]
[B]4.50x >= 300
[/B]
[U]So solve for x, divide each side by 4[/U]
[B]x >= 66.67[/B]
The senior class at high school A and high school B planned separate trips to the state fair. ThereThe senior class at high school A and high school B planned separate trips to the state fair. There senior class and high school A rented and filled 10 vans and 6 buses with 276 students. High school B rented and filled 5 vans and 2 buses with 117 students. Every van had the same number of students in them as did the buses. How many students can a van carry?? How many students can a bus carry??
Let b be the number of students a bus can carry. Let v be the number of students a van can carry. We're given:
[LIST=1]
[*]High School A: 10v + 6b = 276
[*]High School B: 5v + 2b = 117
[/LIST]
We have a system of equations. We can solve this 3 ways:
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=10v+%2B+6b+%3D+276&term2=5v+%2B+2b+%3D+117&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=10v+%2B+6b+%3D+276&term2=5v+%2B+2b+%3D+117&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=10v+%2B+6b+%3D+276&term2=5v+%2B+2b+%3D+117&pl=Cramers+Method']Cramer's Rule[/URL]
[/LIST]
No matter which method we choose, we get:
[LIST]
[*][B]b = 21[/B]
[*][B]v = 15[/B]
[/LIST]
The set of all odd numbers between 10 and 30The set of all odd numbers between 10 and 30
[B]{11, 13, 15, 17, 19, 21, 23, 25, 27, 29}[/B]
The set of months of a year ending with the letters “ber”.The set of months of a year ending with the letters “ber”.
We build set S below:
[B]S = {September, October, November, December}[/B]
The cardinality of S, denoted |S|, is the number of items in S:
[B]|S| = 4[/B]
the set of natural numbers less than 7 that are divisible by 3the set of natural numbers less than 7 that are divisible by 3
Natural Numbers less than 7
{1, 2, 3, 4, 5, 6}
Only 2 of them are divisible by 3. Divisible means the number is divided evenly, with no remainder:
[B]{3, 6}[/B]
The sides of a triangle are consecutive numbers. If the perimeter of the triangle is 240 m, find theThe sides of a triangle are consecutive numbers. If the perimeter of the triangle is 240 m, find the length of each side
Let the first side be n.
Next side which is consecutive is n + 1
Next side which is consecutive is n + 1 + 1 = n + 2
So we have the sum of 3 consecutive numbers is 240.
We type in [I][URL='https://www.mathcelebrity.com/sum-of-consecutive-numbers.php?num=sumof3consecutivenumbersis240&pl=Calculate']sum of 3 consecutive numbers is 240[/URL][/I] into our search engine and we get:
[B]79, 80, 81[/B]
The square of a number added to its reciprocalThe square of a number added to its reciprocal
The phrase [I]a number [/I]means an arbitrary variable, let's call it x.
the square of x mean we raise x to the power of 2. It's written as:
x^2
The reciprocal of x is 1/x
We add these together to get our final algebraic expression:
[B]x^2 + 1/x
[MEDIA=youtube]ZHut58-AoDU[/MEDIA][/B]
The square of a number increased by 7 is 23The square of a number increased by 7 is 23
The phrase [I]a number [/I]means an arbitrary variable, let's call it x.
x
The square of a number means we raise x to the power of 2:
x^2
[I]Increased by[/I] means we add 7 to x^2
x^2 + 7
The word [I]is[/I] means an equation. So we set x^2 + 7 equal to 23:
[B]x^2 + 7 = 23[/B]
The square of a number is always nonnegative.The square of a number is always nonnegative.
This is true, and here is why:
Suppose you have a positive number n.
n^2 = n * n
A positive times a positive is a positive
Suppose you have a negative number -n
(-n)^2 = -n * -n = n^2
A negative times a negative is a positive.
The square of a number is positiveThe square of a number is positive
N ca be positive or negative, so test both scenarios:
Take a positive number n.
n^2 = n^2 * n^2 or Positive * Positive which is positive
Take a negative number n
(-n)^2 = -n * -n or Negative * Negative which is positive
(-n)^2 = n^2
The square of the difference of a number and 4The square of the difference of a number and 4
A number means an arbitrary variable, let's call it x
The difference of a number and 4:
x - 4
The square of this difference:
[B](x - 4)^2[/B]
The square of the sum of twice a number x and yThe square of the sum of twice a number x and y
Take this in algebraic expression in 3 parts:
[LIST=1]
[*]Twice a number x means we multiply x by 2: 2x
[*]The sum of twice a number x and y means we add y to 2x above: 2x + y
[*]The square of the sum means we raise the sum (2x + y) to the second power below:
[/LIST]
[B](2x + y)^2[/B]
the square of the sum of two numbersthe square of the sum of two numbers
Let the first number be x. Let the second number be y.
The sum is:
x + y
Now we square that sum by raising the sum to a power of 2:
[B](x + y)^2[/B]
the square root of twice a number is 4 less than the numberWrite this out, let the number be x.
sqrt(2x) = x - 4 since 4 less means subtract
Square each side:
sqrt(2x)^2 = (x - 4)^2
2x = x^2 - 8x + 16
Subtract 2x from both sides
x^2 - 10x + 16 = 0
Using the [URL='http://www.mathcelebrity.com/quadratic.php?num=x%5E2+-+10x+%2B+16+%3D+0&pl=Solve+Quadratic+Equation&hintnum=0']quadratic calculator[/URL], we get two potential solutions
x = (2, 8)
Well, 2 does not work, since sqrt(2*2) = 2 which is not 4 less than 2
However, 8 does work:
sqrt(2*8) = sqrt(16) = 4, which is 4 less than the number 8.
the sum of 16 squared and a number xthe sum of 16 squared and a number x
16 squared:
16^2
The sum of this and a number x
[B]x + 16^2[/B]
The sum of 2 consecutive numbers is 3 less than 3 times the first number. What are the numbers?The sum of 2 consecutive numbers is 3 less than 3 times the first number. What are the numbers?
Let the first number be x. And the second number be y. We're given:
[LIST=1]
[*]y = x + 1
[*]x + y = 3x - 3 (less 3 means subtract 3)
[/LIST]
Substitute (1) into (2):
x + x + 1 = 3x - 3
Combine like terms:
2x + 1 = 3x - 3
[URL='https://www.mathcelebrity.com/1unk.php?num=2x%2B1%3D3x-3&pl=Solve']Type this equation into the search engine[/URL], we get:
x = 4
Substituting x = 4 into equation 1:
y = 4 + 1
y = 5
So (x, y) = [B](4, 5)[/B]
The sum of 2 numbers is 18. 3 times the greater number exceeds 4 times the smaller number by 5. FindThe sum of 2 numbers is 18. 3 times the greater number exceeds 4 times the smaller number by 5. Find the numbers.
Let the first number be x. The second number is y. We have:
[LIST=1]
[*]x + y = 18
[*]3x = 4y + 5
[/LIST]
Rearrange (2), by subtracting 4y from each side:
3x - 4y = 5
So we have a system of equations:
[LIST=1]
[*]x + y = 18
[*]3x - 4y = 5
[/LIST]
Using our [URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=x+%2B+y+%3D+18&term2=3x+-+4y+%3D+5&pl=Cramers+Method']simultaneous equations calculator[/URL], we get:
[B]x = 11
y = 7[/B]
the sum of 2 numbers is 5. 5 times the larger number plus 4 times the smaller number is 37. Find thethe sum of 2 numbers is 5. 5 times the larger number plus 4 times the smaller number is 37. Find the numbers
Let the first small number be x. Let the second larger number be y. We're given:
[LIST=1]
[*]x + y = 5
[*]5y + 4x = 37
[/LIST]
We can solve this 3 ways, using the following methods:
[LIST=1]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=x+%2B+y%3D5&term2=5y+%2B+4x+%3D+37&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=x+%2B+y%3D5&term2=5y+%2B+4x+%3D+37&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=x+%2B+y%3D5&term2=5y+%2B+4x+%3D+37&pl=Cramers+Method']Cramer's Rule[/URL]
[/LIST]
No matter what method we choose, we get:
[B]x = -12
y = 17
[/B]
Let's check our work using equation 1:
-12 + 17 ? 5
5 = 5 <-- Check
Let's check our work using equation 2:
5(17) + 4(-12) ? 37
85 - 48 ? 37
37 = 37 <-- Check
The sum of 2 numbers is 60. The larger number is thrice the smallerThe sum of 2 numbers is 60. The larger number is thrice the smaller.
Let the 2 numbers be x and y, where x is the smaller number and y is the larger number. We are given:
[LIST=1]
[*]x + y = 60
[*]y = 3x
[/LIST]
Substitute (2) into (1):
x + (3x) = 60
Combine like terms:
4x = 60
[URL='https://www.mathcelebrity.com/1unk.php?num=4x%3D60&pl=Solve']Type 4x = 60 into our search engine[/URL], and you get [B]x = 15[/B].
Substituting x = 15 into Equation (2) above, we get:
y = 3(15)
[B]y = 45
[/B]
Check our work in Equation (1):
15 + 45 ? 60
60 = 60
Check our work in Equation (2):
45 ? 15(3)
45 = 45
The numbers check out, so our answer is [B](x, y) = (15, 45)[/B]
The sum of 2 numbers is 70. The difference of these numbers is 24. Write and solve a system of equatThe sum of 2 numbers is 70. The difference of these numbers is 24. Write and solve a system of equations to determine the numbers.
Let the two numbers be x and y. We have the following equations:
[LIST=1]
[*]x + y = 70
[*]x - y = 24
[/LIST]
Add (1) to (2):
2x = 94
Divide each side by 2
[B]x = 47[/B]
Plug this into (1)
47 + y = 70
Subtract 47 from each side, we have:
[B]y = 23[/B]
the sum of 2 times a number and -2, added to 4 times a numberthe sum of 2 times a number and -2, added to 4 times a number.
The phrase, [I]a number[/I], means an arbitrary variable, let's call it x.
2 times a number
2x
The sum of means add, so we add -2, which is the same as subtracting 2
2x - 2
Now, we add 4 times x
2x - 2 + 4x
Combining like terms, we have:
(2 + 4)x - 2
[B]6x - 2[/B]
the sum of 3 consecutive natural numbers, the first of which is nthe sum of 3 consecutive natural numbers, the first of which is n
Natural numbers are counting numbers, so we the following expression:
n + (n + 1) + (n + 2)
Combine n terms and constants:
(n + n + n) + (1 + 2)
[B]3n + 3
Also expressed as 3(n + 1)[/B]
the sum of 3 consecutive natural numbers, the first of which is nthe sum of 3 consecutive natural numbers, the first of which is n
We have:
n + (n + 1) + (n + 2)
Grouping like terms, we have:
[B]3n + 3[/B]
The sum of 3 consecutive natural numbers, the first of which is nThe sum of 3 consecutive natural numbers, the first of which is n.
We have 3 numbers:
n, n + 1, and n + 2
Add them up:
n + (n + 1) + (n + 2)
Group like terms:
[B]3n + 3[/B]
the sum of 3 numbersSince no variable name is defined, we pick 3 arbitrary variables. Let's pick x, y, and z.
The sum of 3 numbers means we add them together:
x + y + z
the sum of 3 numbers a, b, and cthe sum of 3 numbers a, b, and c
[B]a + b + c[/B]
the sum of 3 numbers divided by its productthe sum of 3 numbers divided by its product
The phrase [I]3 numbers[/I] means we choose [I]3[/I] arbitrary variables. Let's call them x, y, z.
The sum of of these 3 numbers is:
x + y + z
The phrase [I]its product[/I] means we multiply all 3 arbitrary variables together:
xyz
Now, the phrase [I]divided by[/I] means we divide x + y + z by xyz:
[B](x + y + z)/xyz[/B]
The sum of 3 times the square of a number and negative 7The sum of 3 times the square of a number and negative 7
[U]The phrase [I]a number[/I] means an arbitrary variable, let's call it x:[/U]
x
[U]The square of a number means we raise x to the power of 2:[/U]
x^2
[U]3 times the square of a number:[/U]
3x^2
[U]The sum of 3 times the square of a number and negative 7[/U]
[B]3x^2 - 7[/B]
The sum of 3, 7, and a number amounts to 16The sum of 3, 7, and a number amounts to 16
Let the number be n. A sum means we add. We're given:
3 + 7 + n = 16
Grouping like terms, we get:
n + 10 = 16
[URL='https://www.mathcelebrity.com/1unk.php?num=n%2B10%3D16&pl=Solve']Typing this equation into our search engine[/URL], we get:
n = [B]6 [/B]
The sum of 5 odd consecutive numbers is 145The sum of 5 odd consecutive numbers is 145.
Let the first odd number be n. We have the other 4 odd numbers denoted as:
[LIST]
[*]n + 2
[*]n + 4
[*]n + 6
[*]n + 8
[/LIST]
Add them all together
n + (n + 2) + (n + 4) + (n + 6) + (n + 8)
The sum of the 5 odd consecutive numbers equals 145
n + (n + 2) + (n + 4) + (n + 6) + (n + 8) = 145
Combine like terms:
5n + 20 = 145
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=5n%2B20%3D145&pl=Solve']equation solver[/URL], we get [B]n = 25[/B]. Using our other 4 consecutive odd numbers above, we get:
[LIST]
[*]27
[*]29
[*]31
[*]33
[/LIST]
Adding the sum up, we get: 25 + 27 + 29 + 31 + 33 = 145.
So our 5 odd consecutive number added to get 145 are [B]{25, 27, 29, 31, 33}[/B].
[MEDIA=youtube]0T2PDuQIIwI[/MEDIA]
The sum of 5, 8, and a number amounts to 19. Find the number.The sum of 5, 8, and a number amounts to 19. Find the number.
We represent [I]a number[/I] with the variable "x". We write our problem as:
5 + 8 + x = 19
13 + x = 19
[URL='https://www.mathcelebrity.com/1unk.php?num=13%2Bx%3D19&pl=Solve']Type this problem into our calculator[/URL], and we get [B]x = 6[/B].
the sum of 6 and 7, plus 5 times a number, is -12the sum of 6 and 7, plus 5 times a number, is -12
The sum of 6 and 7 means we add the two numbers:
6 + 7
This evaluates to 13
Next, we take 5 times a number. The phrase [I]a number[/I] means an arbitrary variable, let's call it x. So we multiply x by 5:
5x
The first two words say [I]the sum[/I], so we add 13 and 5x
13 + 5x
The word [I]is[/I] means an equation, so we set 13 + 5x equal to -12
[B]13 + 5x = -12[/B] <-- This is our algebraic expression
If the problem asks you to take it a step further and solve for x, then you [URL='https://www.mathcelebrity.com/1unk.php?num=13%2B5x%3D-12&pl=Solve']type this algebraic expression into our search engine[/URL] and you get:
[B]x = -5[/B]
The sum of 6 times a number and -8, added to 3 times a numberThe sum of 6 times a number and -8, added to 3 times a number
The phrase "a number", means an arbitrary variable, let's call it x.
6 times a number:
6x
And means we add, so we have
6x - 8
Added to 3 times a number
6x - 8 + 3x
Combine like terms:
[B]9x - 8[/B]
the sum of a number and 16 is eA number means an arbitrary variable, let's call it x.
The sum of x and 16 means we add:
x + 16
Is, means equal to, so we set x + 16 = e
x + 16 = e
The sum of a number and 34 times the numberThe sum of a number and 34 times the number
The phrase [I]a number[/I] means an arbitrary variable. Let's call it x.
x
34 times the number:
34x
The sum of a number and 34 times the number means we add both terms together:
x + 34x
The sum of a number and 5 all divided by 2 is 17The sum of a number and 5 all divided by 2 is 17
The phrase [I]a number[/I] means an arbitrary variable, let's call it x
x
The sum of a number and 5:
x + 5
All divided by 2:
(x + 5)/2
The word [I]is[/I] means equal to, so we set (x + 5)/2 equal to 17:
[B](x + 5)/2 = 17[/B]
The sum of a number and 5 divided by 8The sum of a number and 5 divided by 8.
Let's take this algebraic expression in parts.
Part 1: The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
Part 2: The sum of a number and 5 means we add 5 to the number x
x + 5
Part 3: Next, we divide this expression by 8
[B](x + 5)/8[/B]
the sum of a number and its reciprocal is 5/2the sum of a number and its reciprocal is 5/2
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
The reciprocal of the number means 1/x.
The sum means we add them:
x + 1/x
The word [I]is[/I] means an equation, so we set x + 1/x equal to 52
[B]x + 1/x = 52[/B]
The sum of a number and its reciprocal is 72The sum of a number and its reciprocal is 72
The phrase [I]a number[/I] means an arbitrary variable, let's call it x
x
The reciprocal of the number is written as:
1/x
The sum of a number and its reciprocal means we add:
x + 1/x
The word [I]is[/I] means an equation, so we set x + 1/x equal to 72
[B]x + 1/x = 72[/B]
The sum of a number and its reciprocal is five.The sum of a number and its reciprocal is five.
The phrase [I]a number[/I] means an arbitrary variable. Let's call it x.
The reciprocal of the number is 1/x.
The sum means we add them together:
x + 1/x
The word [I]is[/I] means an equation, so we set x + 1/x equal to 5
[B]x + 1/x = 5[/B]
The sum of a number and its square is 72. find the numbers?The sum of a number and its square is 72. find the numbers?
Let the number be n. We have:
n^2 + n = 72
Subtract 72 from each side:
n^2 + n - 72 = 0
Using our [URL='http://www.mathcelebrity.com/quadratic.php?num=n%5E2%2Bn-72%3D0&pl=Solve+Quadratic+Equation&hintnum=+0']quadratic calculator[/URL], we have:
[B]n = 8 or n = -9
[/B]
Since the numbers do not state positive or negative, these are the two solutions.
the sum of a number and itself is 8A number means an arbitrary variable, let's call it x.
The sum of a number and itself means adding the number to itself
x + x
Simplified, we have 2x
The word is means equal to, so we have an algebraic expression of:
[B]2x= 8
[/B]
IF you need to solve this equation, divide each side by 2
[B]x = 4[/B]
The sum of a number and twice its reciprocal is 3The sum of a number and twice its reciprocal is 3
the phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
The reciprocal of a number means we take 1 over that number:
1/x
Twice the reciprocal means we multiply 1/x by 2:
2/x
The sum of a number and twice its reciprocal
x + 2/x
The word [I]is[/I] means equal to, so we set x + 2/x equal to 3
[B]x + 2/x = 3[/B]
The sum of a number b and 3 is greater than 4 and no more than 16The sum of a number b and 3 is greater than 4 and no more than 16
The sum of a number b and 3:
b + 3
Greater than 4 and no more than 16 means we have a combo inequality:
[LIST]
[*]Greater than 4 means we use a > sign
[*]No more than 16 means less than or equal to, so <=
[/LIST]
[B]4 < b + 3 <= 16[/B]
the sum of a number divided by 8 and 3 equals 6"A Number" means an arbitrary variable, let's call it x.
x divide d by 8 is written as a quotient
x/8
The sum of x/8 and 3 means we add:
x/8 + 3
Finally, equals means we have an equation, so we set our expression above equal to 6
x/8 + 3 = 6
The sum Of a number squared and 14The sum Of a number squared and 14.
A number means an arbitrary variable, let's call it x.
Squared means we raise x to the 2nd power: x^2
The sum means we add x^2 to 14 to get our algebraic expression below:
[B]x^2 + 14[/B]
the sum of a number times 3 and 30 is less than 17the sum of a number times 3 and 30 is less than 17
A number is denoted as an arbitrary variable, let's call it x.
x
Times 3 means we multiply x by 3:
3x
The sum of a number times 3 and 30 means we add 30 to 3x above
3x + 30
Is less than 17 means we have an inequality, so we set 3x + 30 less than 17
3x + 30 < 17
To solve for x and see the interval notation, use [URL='http://www.mathcelebrity.com/1unk.php?num=3x%2B30%3C17&pl=Solve']our calculator[/URL]:
the sum of doubling a number and 100 which totals to 160the sum of doubling a number and 100 which totals to 160
Take this algebraic expression in pieces:
[LIST=1]
[*]Let the number be n.
[*]Double it, means we multiply n by 2: 2n
[*]The sum of this and 100 means we add 100 to 2n: 2n + 100
[*]The phrase [I]which totals[/I] means we set 2n + 100 equal to 160
[/LIST]
[B]2n + 100 = 160[/B] <-- This is our algebraic expression
If the question asks you to solve for n, then we [URL='https://www.mathcelebrity.com/1unk.php?num=2n%2B100%3D160&pl=Solve']type this equation into our search engine[/URL] and we get:
[B]n = 30[/B]
The sum of five and twice a number is 17The sum of five and twice a number is 17
[U]The phrase a number means an arbitrary variable, let's call it x[/U]
x
[U]Twice a number means we multiply x by 2:[/U]
2x
[U]The sum of five and twice a number means we add 5 to 2x:[/U]
2x + 5
[U]The phrase [I]is[/I] means an equation, so we set 2x + 5 equal to 17 to get our algebraic expression[/U]
[B]2x + 5 = 17[/B]
[B][/B]
As a bonus, if the problem asks you to solve for x, we [URL='https://www.mathcelebrity.com/1unk.php?num=2x%2B5%3D17&pl=Solve']type in this algebraic expression into our math engine[/URL] and we get:
x = 6
The sum of six times a number and 1 is equal to five times the number. Find the number.The sum of six times a number and 1 is equal to five times the number. Find the number.
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
6 times a number is written as:
6x
the sum of six times a number and 1 is written as:
6x + 1
Five times the number is written as:
5x
The phrase [I]is equal to[/I] means an equation, so we set 6x + 1 equal to 5x:
6x + 1 = 5x
[URL='https://www.mathcelebrity.com/1unk.php?num=6x%2B1%3D5x&pl=Solve']Plugging this into our search engine[/URL], we get:
x = [B]-1[/B]
the sum of the cube of a number and 12the sum of the cube of a number and 12
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
The cube of a number means we raise x to the power of 3:
x^3
Finally, we take the sum of x^3 and 12. Meaning, we add 12 to x^3. This is our final algebraic expression.
[B]x^3 + 12[/B]
The sum of the digits of a 2 digit number is 10. The value of the number is four more than 15 timesThe sum of the digits of a 2 digit number is 10. The value of the number is four more than 15 times the unit digit. Find the number.
Let the digits be (x)(y) where t is the tens digit, and o is the ones digit. We're given:
[LIST=1]
[*]x + y = 10
[*]10x+ y = 15y + 4
[/LIST]
Simplifying Equation (2) by subtracting y from each side, we get:
10x = 14y + 4
Rearranging equation (1), we get:
x = 10 - y
Substitute this into simplified equation (2):
10(10 - y) = 14y + 4
100 - 10y = 14y + 4
[URL='https://www.mathcelebrity.com/1unk.php?num=100-10y%3D14y%2B4&pl=Solve']Typing this equation into our search engine[/URL], we get:
y = 4
Plug this into rearranged equation (1), we get:
x = 10 - 4
x = 6
So our number xy is [B]64[/B].
Let's check our work against equation (1):
6 + 4 ? 10
10 = 10
Let's check our work against equation (2):
10(6)+ 4 ? 15(4) + 4
60 + 4 ? 60 + 4
64 = 64
The sum of the digits of a certain two-digit number is 16. Reversing its digits increases the numberThe sum of the digits of a certain two-digit number is 16. Reversing its digits increases the number by 18. What is the number?
Let x and (16-x) represent the original ten and units digits respectively
Reversing its digits increases the number by 18
Set up the relational equation
[10x + (16-x)] + 18 = 10(16 - x) + x
Solving for x
9x + 34 = 160 - 9x
Combine like terms
18x = 126
Divide each side of the equation by 18
18x/18 = 126/18
x = 7
So 16 - x = 16 - 7 = 9
The first number is 79, the other number is 97. and 97 - 79 = 18 so we match up.
The number in our answer is [B]79[/B]
The sum of the product and quotient of the numbers x and yThe sum of the product and quotient of the numbers x and y
the product of the numbers x and y
xy
The quotient of the numbers x and y
x/y
The sum of the product and quotient of the numbers x and y
[B]xy + x/y
[MEDIA=youtube]0bzv8aEIF0I[/MEDIA][/B]
The sum of the square of a number and 7 times a numberThe sum of the square of a number and 7 times a number
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
Square the number:
x^2
7 times the number means we multiply x by 7:
7x
The sum means we add x^2 and 7x
[B]x^2 + 7x[/B]
The sum of the squares of two consecutive positive integers is 61. Find these two numbers.The sum of the squares of two consecutive positive integers is 61. Find these two numbers.
Let the 2 consecutive integers be x and x + 1. We have:
x^2 + (x + 1)^2 = 61
Simplify:
x^2 + x^2 + 2x + 1 = 61
2x^2 + 2x + 1 = 61
Subtract 61 from each side:
2x^2 + 2x - 60 = 0
Divide each side by 2
x^2 + x - 30
Using our [URL='http://www.mathcelebrity.com/quadratic.php?num=x%5E2%2Bx-30&pl=Solve+Quadratic+Equation&hintnum=+0']quadratic equation calculator[/URL], we get:
x = 5 and x = -6
The question asks for [I]positive integers[/I], so we use [B]x = 5. [/B]This means the other number is [B]6[/B].
The sum of three numbers is 171. The second number is 1/2 of the first and the third is 3/4 of the fThe sum of three numbers is 171. The second number is 1/2 of the first and the third is 3/4 of the first. Find the numbers.
We have three numbers, x, y, and z.
[LIST=1]
[*]x + y + z = 171
[*]y = 1/2x
[*]z = 3/4x
[/LIST]
Substitute (2) and (3) into (1)
x + 1/2x + 3/4x = 171
Use a common denominator of 4 for each x term
4x/4 + 2x/4 + 3x/4 = 171
(4 + 2 + 3)x/4 = 171
9x/4 = 171
[URL='https://www.mathcelebrity.com/prop.php?num1=9x&num2=171&den1=4&den2=1&propsign=%3D&pl=Calculate+missing+proportion+value']Plug this equation into our search engine[/URL], and we get [B]x = 76[/B]
So y = 1/2(76) --> [B]y = 38[/B]
Then z = 3/4(76) --> [B]z = 57[/B]
The Sum of three times a number and 18 is -39. Find the numberThe Sum of three times a number and 18 is -39. Find the number.
A number means an arbitrary variable, let us call it x.
Three times x:
3x
The sum of this and 18:
3x + 18
Is means equal to, so we set 3x + 18 = -39
3x + 18 = -39
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=3x%2B18%3D-39&pl=Solve']equation solver[/URL], we get [B]x = -19[/B]
The sum of three times a number and twelveThe phrase [I]a number[/I] means an arbitrary variable. We can pick any letter a-z except for i and e.
Let's choose x.
3 times a number:
3x
The sum of three times a number and twelve means we add 12 to 3x:
[B]3x + 12[/B]
The sum of two numbers is 231. The larger is twice the smaller. What are the numbers?Let x be the larger number.
Let y be the smaller number.
We're given two equations:
[LIST=1]
[*]x + y = 231
[*]x = 2y
[/LIST]
Substitute (2) into (1) for x:
2y + y = 231
3y = 231
[URL='https://www.mathcelebrity.com/1unk.php?num=3y%3D231&pl=Solve']Type this into our math solver[/URL] and get
y = 77
This means x is:
x = 2(77)
x = [B]154[/B]
The sum of two numbers multiplied by 9Choose two variables as arbitrary numbers, let's say x and y
[U]The sum of x and y is:[/U]
x + y
[U]Multiply that by 9[/U]
[B]9(x + y)[/B]
The teacher is handing out note cards to her students. She gave 20 note cards to the first student,The teacher is handing out note cards to her students. She gave 20 note cards to the first student, 30 note cards to the second student, 40 note cards to the third student, and 50 note cards to the fourth student. If this pattern continues, how many note cards will the teacher give to the fifth student?
[LIST]
[*]Student 1 has 20
[*]Student 2 has 30
[*]Student 3 has 40
[*]Student 4 has 50
[/LIST]
The teacher adds 10 note cards to each student. Or, if we want to put in a sequence formula, we have:
S(n) = 10 + 10n where n is the student number
Simplified, we write this as:
S(n) = 10(1 + n)
The question asks for S(5)
S(5) = 10(1 + 5)
S(5) = 10(6)
[B]S(5) = 60
[/B]
If we wanted to simply add 10 and not use a sequence formula, we see that S(4) = 50.
So S(5) = S(4) + 10
S(5) = 50 + 10
[B]S(5) = 60[/B]
The temperature dropped 2 every hours for 6 hours. What was the total number of degrees the temperatThe temperature dropped 2 every hours for 6 hours. What was the total number of degrees the temperature changed in the 6 hours
2 degrees drop per hour * 6 hours = [B]12 degree drop[/B]
The total cost of 100 dresses is $1,500.00. The mark-up is estimated at 20% of the unit cost, the prThe total cost of 100 dresses is $1,500.00. The mark-up is estimated at 20% of the unit cost, the price of a single dress using the cost-plus method will be
The phrase [I]unit cost[/I] means price per one unit.
[U]Unit cost for one dress is:[/U]
Price of dresses / Number of dresses
1500/100
15
Each dress cost $15 which is the unit cost
[U]Cost plus method:[/U]
Cost plus price = Unit price + Unit price * markup
Cost plus price = 15 + 15 * 20%
Cost plus price = 15 + 3
Cost plus price = [B]$18
[MEDIA=youtube]H9rOp592y5s[/MEDIA][/B]
The total cost of producing x units for which the fixed costs are $2900 and the cost per unit is $25The total cost of producing x units for which the fixed costs are $2900 and the cost per unit is $25
[U]Set up the cost function:[/U]
Cost function = Fixed Cost + Variable Cost per Unit * Number of Units
[U]Plug in Fixed Cost = 2900 and Cost per Unit = $25[/U]
[B]C(x) = 2900 + 25x
[MEDIA=youtube]77PiD-VADjM[/MEDIA][/B]
The total cost to fix your bike is $45 the parts cost $10 and the labor cost seven dollars per hourThe total cost to fix your bike is $45 the parts cost $10 and the labor cost seven dollars per hour how many hours were there:
Set up a cost function where h is the number of hours:
7h + 10 = 45
To solve for h, we t[URL='https://www.mathcelebrity.com/1unk.php?num=7h%2B10%3D45&pl=Solve']ype this equation into our search engine[/URL] and we get:
h = [B]5[/B]
the total number of fish if you had 8 and bought 4 morethe total number of fish if you had 8 and bought 4 more
If you have 8, and buy 4 more, this means you add. So we have:
8 fish + 4 fish = [B]12 fish[/B].
the university of california tuition in 1990 was $951 and tuition has been increasing by a rate of 2the university of california tuition in 1990 was $951 and tuition has been increasing by a rate of 26% each year, what is the exponential formula
Let y be the number of years since 1990. We have the formula T(y):
[B]T(y) = 951 * 1.26^y[/B]
The value of all the quarters and dimes in a parking meter is $18. There are twice as many quartersThe value of all the quarters and dimes in a parking meter is $18. There are twice as many quarters as dimes. What is the total number of dimes in the parking meter?
Let q be the number of quarters. Let d be the number of dimes. We're given:
[LIST=1]
[*]q = 2d
[*]0.10d + 0.25q = 18
[/LIST]
Substitute (1) into (2):
0.10d + 0.25(2d) = 18
0.10d + 0.5d = 18
[URL='https://www.mathcelebrity.com/1unk.php?num=0.10d%2B0.5d%3D18&pl=Solve']Type this equation into our search engine[/URL], and we get [B]d = 30[/B].
The volleyball team and the wrestling team at Clarksville High School are having a joint car wash tThe volleyball team and the wrestling team at Clarksville High School are having a joint car wash today, and they are splitting the revenues. The volleyball team gets $4 per car. In addition, they have already brought in $81 from past fundraisers. The wrestling team has raised $85 in the past, and they are making $2 per car today. After washing a certain number of cars together, each team will have raised the same amount in total. What will that total be? How many cars will that take?
Set up the earnings equation for the volleyball team where w is the number of cars washed:
E = Price per cars washed * w + past fundraisers
E = 4w + 81
Set up the earnings equation for the wrestling team where w is the number of cars washed:
E = Price per cars washed * w + past fundraisers
E = 2w + 85
If the raised the same amount in total, set both earnings equations equal to each other:
4w + 81 = 2w + 85
Solve for [I]w[/I] in the equation 4w + 81 = 2w + 85
[SIZE=5][B]Step 1: Group variables:[/B][/SIZE]
We need to group our variables 4w and 2w. To do that, we subtract 2w from both sides
4w + 81 - 2w = 2w + 85 - 2w
[SIZE=5][B]Step 2: Cancel 2w on the right side:[/B][/SIZE]
2w + 81 = 85
[SIZE=5][B]Step 3: Group constants:[/B][/SIZE]
We need to group our constants 81 and 85. To do that, we subtract 81 from both sides
2w + 81 - 81 = 85 - 81
[SIZE=5][B]Step 4: Cancel 81 on the left side:[/B][/SIZE]
2w = 4
[SIZE=5][B]Step 5: Divide each side of the equation by 2[/B][/SIZE]
2w/2 = 4/2
w = [B]2 <-- How many cars it will take
[/B]
To get the total earnings, we take either the volleyball or wrestling team's Earnings equation and plug in w = 2:
E = 4(2) + 81
E = 8 + 81
E = [B]89 <-- Total Earnings[/B]
There are 100 people in a sport centre. 67 people use the gym. 62 people use the swimming pool. 5There are 100 people in a sport centre. 67 people use the gym. 62 people use the swimming pool. 56 people use the track. 38 people use the gym and the pool. 31 people use the pool and the track. 33 people use the gym and the track. 16 people use all three facilities. A person is selected at random. What is the probability that this person doesn't use any facility?
WE use the compound probability formula for 3 events:
[LIST=1]
[*]Gym use (G)
[*]Swimming pool use (S)
[*]Track (T)
[/LIST]
P(G U S U T) = P(G) + P(S) + P(T) - P(G Intersection S) - P(G Intersection T) - P(S Intersection T) + P(G Intersection S Intersection T)
[LIST]
[*]Note: U means Union (Or) and Intersection means (And)
[/LIST]
Plugging our numbers in:
P(G U S U T) = 67/100 + 62/100 + 56/100 - 38/100 - 31/100 - 33/100 + 16/100
P(G U S U T) = (67 + 62 + 56 - 38 - 31 - 33 + 16)/100
P(G U S U T) = 99/100 or 0.99
What this says is, the probability that somebody uses at any of the 3 facilities is 99/100.
The problem asks for none of the 3 facilities, or P(G U S U T)'
P(G U S U T)' = 1 - P(G U S U T)
P(G U S U T)' = 1 - 99/100
P(G U S U T)' = 100/100 - 99/100
P(G U S U T)' = [B]1/100 or 0.1[/B]
There are 100 teachers in a school of 3300 students find the ratio of number of teachers to the numbThere are 100 teachers in a school of 3300 students find the ratio of number of teachers to the number of students.
The Ratio is 100/3300.
Divide top and bottom by 100:
1/330 or [B]1:33
[/B]
You can also this into the search engine: [URL='https://www.mathcelebrity.com/ratio.php?simpratio=100%3A3300&rs=+7%3A5&rtot=+36&ab=+7%3A3&bc=+2%3A5&pl=Simplify+Ratio']Ratio of 100 to 3300[/URL].
There are 113 identical plastic chips numbered 1 through 113 in a box. What is the probability of reThere are 113 identical plastic chips numbered 1 through 113 in a box. What is the probability of reaching into the box and randomly drawing a chip number that is greater than 44?
We want 45, 46, … 113
The formula to get inclusive number count between and including 2 numbers is:
Total numbers = L - S + 1
Total numbers = 113 - 45 + 1
Total numbers = 69
That is 69 possible numbers. We draw this out of a total of 113
[B]P(Number > 44) = 69/113
[B]P(Number > 44) [/B]= 0.610619
[MEDIA=youtube]BLBVcpdHqXU[/MEDIA][/B]
There are 12 eggs in a dozen. Write an algebraic expression for the number of eggs in d dozen.There are 12 eggs in a dozen. Write an algebraic expression for the number of eggs in d dozen.
[B]12d[/B]
There are 13 animals in the barn. some are chickens and some are pigs. there are 40 legs in all. HowThere are 13 animals in the barn. some are chickens and some are pigs. there are 40 legs in all. How many of each animal are there?
Chickens have 2 legs, pigs have 4 legs. Let c be the number of chickens and p be the number of pigs. Set up our givens:
(1) c + p = 13
(2) 2c + 4p = 40
[U]Rearrange (1) to solve for c by subtracting p from both sides:[/U]
(3) c = 13 - p
[U]Substitute (3) into (2)[/U]
2(13 - p) + 4p = 40
26 - 2p + 4p = 40
[U]Combine p terms[/U]
2p + 26 = 40
[U]Subtract 26 from each side:[/U]
2p = 14
[U]Divide each side by 2[/U]
[B]p = 7[/B]
[U]Substitute p = 7 into (3)[/U]
c = 13 - 7
[B]c = 6[/B]
For a shortcut, you could use our [URL='http://www.mathcelebrity.com/simultaneous-equations.php?term1=c+%2B+p+%3D+13&term2=2c+%2B+4p+%3D+40&pl=Cramers+Method']simultaneous equations calculator[/URL]
There are 144 people in the audience. The ratio of adults to children is 5 to 3. How many adults are[SIZE=6]There are 144 people in the audience. The ratio of adults to children is 5 to 3. How many adults are there?
Let x be the number of people, we have:
5x + 3x = 144
[/SIZE]
[URL='https://www.mathcelebrity.com/1unk.php?num=5x%2B3x%3D144&pl=Solve'][SIZE=6]Typing this problem in our search[/SIZE][/URL][SIZE=6][URL='https://www.mathcelebrity.com/1unk.php?num=5x%2B3x%3D144&pl=Solve'] engine[/URL], we get x = 18.
Which means we have 5(18) = [B]90 adults[/B][/SIZE]
There are 15 cards, numbered 1 through 15. If you pick a card, what is the probability that you chooThere are 15 cards, numbered 1 through 15. If you pick a card, what is the probability that you choose an odd number or a two?
We want the P(odd) or P(2).
P(odd) = 1, 3, 5, 7, 9, 11, 13, 15 = 8/15
P(2) = 1/15
Add them both:
8/15 + 1/15 = 9/15
Simplified, we get [B]3/5[/B].
There are 2 chalkboards in your classroom. If each chalkboard needs 2 pieces of chalk, how many piecThere are 2 chalkboards in your classroom. If each chalkboard needs 2 pieces of chalk, how many pieces do you need in total?
Total chalk pieces = Number of Chalkboards * Chalk pieces per chalkboard
Total chalk pieces = 2 * 2
Total chalk pieces = [B]4[/B]
There are 2 consecutive integers. Twice the first increased by the second yields 16. What are the nuThere are 2 consecutive integers. Twice the first increased by the second yields 16. What are the numbers?
Let x be the first integer. y = x + 1 is the next integer. We have the following givens:
[LIST=1]
[*]2x + y = 16
[*]y = x + 1
[/LIST]
Substitute (2) into (1)
2x + (x + 1) = 16
Combine x terms
3x + 1 = 16
Subtract 1 from each side
3x = 15
Divide each side by 3
[B]x = 5[/B]
So the other integer is 5 + 1 = [B]6[/B]
There are 2 piles of papers on a desk. Each pile has the same number of papers. There are 12 papersThere are 2 piles of papers on a desk. Each pile has the same number of papers. There are 12 papers in all on the desk. How many papers are in each pile?
12 papers on the desk / 2 piles of papers
Divide top and bottom by 2
[B]6 papers per pile.[/B]
There are 2.5 servings in a can of tuna fish. how many servings are there in 7 cans?There are 2.5 servings in a can of tuna fish. how many servings are there in 7 cans?
Total Servings = Servings per can * number of cans
Total Servings = 2.5 * 7
Total Servings = [B]17.5 servings[/B]
There are 24 students in a class. Three new students joined the class. Work out the percentage changThere are 24 students in a class. Three new students joined the class. Work out the percentage change in the number of students in the class.
We want to know how much an increase of 3 people is in a class of 24:
3/24
Using [URL='https://www.mathcelebrity.com/perc.php?num=3&den=24&pcheck=1&num1=16&pct1=80&pct2=70&den1=80&idpct1=10&hltype=1&idpct2=90&pct=82&decimal=+65.236&astart=12&aend=20&wp1=20&wp2=30&pl=Calculate']our percentage/decimal calculator[/URL], we get:
[B]12.5% increase[/B]
There are 32 ears of corn for 16 people how many ears of corn can each person eat?There are 32 ears of corn for 16 people how many ears of corn can each person eat?
Ears of corn per person = Ears of Corn / Number of people
Ears of corn per person = 32/16
Ears of corn per person = [B]2[/B]
There are 32 students in a class. Nine of those students are women. What percent are menThere are 32 students in a class. Nine of those students are women. What percent are men
[U]Find the number of male students:[/U]
Males = Total Students - Females
Males = 32 - 9
Males = 23
[U]Calculate percentage of males:[/U]
Percentage of males = 100% * Males / Total Students
Percentage of males = 100% * 23 / 32
Percentage of males = 100% * 0.71875
Percentage of males = 71.88%
[URL='https://www.mathcelebrity.com/perc.php?num=23&den=32&pcheck=1&num1=16&pct1=80&pct2=70&den1=80&idpct1=10&hltype=1&idpct2=90&pct=82&decimal=+65.236&astart=12&aend=20&wp1=20&wp2=30&pl=Calculate']See this link as well[/URL]
There are 33 students in an Algebra I class. There are 7 fewer girls than boys. How many girls are iThere are 33 students in an Algebra I class. There are 7 fewer girls than boys. How many girls are in the class?
Let b be the number of boys and g be the number of girls. We are given 2 equations:
[LIST=1]
[*]g = b - 7
[*]b + g = 33
[/LIST]
Substitute (1) into (2):
b + (b - 7) = 33
Combine like terms:
2b - 7 = 33
[URL='https://www.mathcelebrity.com/1unk.php?num=2b-7%3D33&pl=Solve']Typing this equation into our search engine[/URL], we get b = 20.
Since the problem asks for how many girls (g) we have, we substitute b = 20 into Equation (1):
g = 20 - 7
[B]g = 13[/B]
There are 377 baseball teams at the tournament and each team has 228 players. How many players are aThere are 377 baseball teams at the tournament and each team has 228 players. How many players are at the tournament?
Key words are "There are", "each team", and "how many".
We multiply teams by players per team to get number of players.
377 * 228 = [B]85,956[/B]
There are 4 people at a party. Each person brings one gift for each other person. What is the totalThere are 4 people at a party. Each person brings one gift for each other person. What is the total number of gifts at the party?
Each person brings 3 gifts, 1 for each person other than themselves.
4 people x 3 gifts each = [B]12 total gifts[/B]
There are 40 grams in 5 prunes. How much gram of weight is in 34 prunesThere are 40 grams in 5 prunes. How much gram of weight is in 34 prunes?
Set up a proportion of grams to prunes where g is the number of grams in 34 prunes:
40/5 = g/34
[URL='https://www.mathcelebrity.com/prop.php?num1=40&num2=g&den1=5&den2=34&propsign=%3D&pl=Calculate+missing+proportion+value']Typing this proportion of 40/5 = g/34 into our search engine[/URL], we get:
[B]g = 272[/B]
There are 4064 calories in 8 pints of strawberry icecream. How many calories are ther in each pint oThere are 4064 calories in 8 pints of strawberry ice cream. How many calories are there in each pint of strawberry ice cream?
Set up a proportion using x as the number of calories in 1 pint of ice cream.
4064/8 = x/1
Using our [URL='http://www.mathcelebrity.com/prop.php?num1=4064&num2=x&den1=8&den2=1&propsign=%3D&pl=Calculate+missing+proportion+value']proportion calculator[/URL], we get:
x = [B]508[/B]
There are 5 pencil-cases on the desk. Each pencil-case contains at least 10 pencils, but not more th[SIZE=4]There are 5 pencil-cases on the desk. Each pencil-case contains at least 10 pencils, but not more than 14 pencils. Which of the following could be the total number of pencils in all 5 cases?
A) 35
B) 45
C) 65
D) 75
[U]Determine the minimum amount of pencils (At least means greater than or equal to):[/U]
Minimum Amount of pencils = Cases * Min Quantity
Minimum Amount of pencils = 5 * 10
Minimum Amount of pencils = 50
[SIZE=4][U]Determine the maximum amount of pencils (Not more than means less than or equal to):[/U]
Maximum Amount of pencils = Cases * Min Quantity
Maximum Amount of pencils = 5 * 14
Maximum Amount of pencils = 70[/SIZE]
So our range of pencils (p) is:
50 <= p <= 70
Now take a look at our answer choices. The only answer which fits in this inequality range is [B]C, 65[/B].
[B][/B][/SIZE]
There are 64 members in the history club. 11 less than half of the members are girls. How many membeThere are 64 members in the history club. 11 less than half of the members are girls. How many members are boys?
Set up two equations where b = the number of boys and g = the number of girls
[LIST=1]
[*]b + g = 64
[*]1/2(b + g) - 11 = g
[/LIST]
Substitute (1) for b + g into (2)
1/2(64) - 11 = g
32 - 11 = g
[B]g = 21[/B]
Substitute g = 21 into (1)
b + 21 = 64
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=b%2B21%3D64&pl=Solve']equation calculator[/URL], we get:
[B]b = 43[/B]
There are 7 more jeeps than vans.There are 7 more jeeps than vans.
[U]Define variables[/U]
[LIST]
[*]Let j be the number of jeeps
[*]Let v be the number of vans
[/LIST]
7 more jeeps than vans means we add 7 to the number of vans:
[B]j = v + 7[/B]
There are 72 boys and 90 girls on the Math team For the next math competition Mr Johnson would likeThere are 72 boys and 90 girls on the Math team For the next math competition Mr Johnson would like to arrange all of the students in equal rows with only girls or boys in each row with only girls or boys in each row. What is the greatest number of students that can be put in each row?
To find the maximum number (n) of boys or girls in each row, we want the GCF (Greatest Common Factor) of 72 and 90.
[URL='https://www.mathcelebrity.com/gcflcm.php?num1=72&num2=90&num3=&pl=GCF+and+LCM']Using our GCF calculator for GCF(72,90)[/URL], we get 18.
[LIST]
[*]72 boys divided by 18 = [B]4 rows of boys[/B]
[*]90 girls divided by 18 = [B]5 rows of girls[/B]
[/LIST]
There are 8 lions, 4 tigers, 5 cheetahs, 6 giraffes, 7 hippos, and 78 monkeys at the City Zoo. If eaThere are 8 lions, 4 tigers, 5 cheetahs, 6 giraffes, 7 hippos, and 78 monkeys at the City Zoo. If each of the 4 zookeepers feeds the same number of animals, how many animals does each zookeeper feed?
Calculate Total Animals:
8 + 4 + 5 + 6 + 7 + 78 = 108
Now divide 108 animals equally into 4 zookeepers
108/4 = [B]27 animals each zookeeper will feed[/B]
there are 9 apples in each box. how many apples are in 6 boxesthere are 9 apples in each box. how many apples are in 6 boxes
Total apples = Number of boxes * apples per box
Total apples = 6 * 9
Total apples = [B]54[/B]
There are cows and chickens in a barn along with a three-legged dog named Tripod. If there are twiceThere are cows and chickens in a barn along with a three-legged dog named Tripod. If there are twice as many chickens as cows, how many legs are there in the barn. (Call the number of cows n.)
Number of cows = n
Number of cows legs = 4n
Number of chickens = 2n
Number of chicken legs = 2*2n = 4n
Tripod legs = 3
Total legs = 4n + 4n + 3
[B]8n + 3[/B]
There are five consecutive numbers and the smallest is called n. What is the largest number called?There are five consecutive numbers and the smallest is called n. What is the largest number called?
List out consecutive numbers. Each consecutive number is found by adding 1 to the prior number
[LIST=1]
[*]n
[*]n + 1
[*]n + 2
[*]n + 3
[*][B]n + 4[/B]
[/LIST]
There are only horses and ducks on a farm. There are 80 animals in all and the number of ducks is caThere are only horses and ducks on a farm. There are 80 animals in all and the number of ducks is called n. How many horse legs are there on the farm?
Number of duck legs = 2 legs * n ducks = 2n legs
Number of horses = 80 - n
Legs per horse = 4
Total horse legs = 4(80 - n) = [B]320 - 4n[/B]
There are two numbers. The sum of 4 times the first number and 3 times the second number is 24. TheThere are two numbers. The sum of 4 times the first number and 3 times the second number is 24. The difference between 2 times the first number and 3 times the second number is 24. Find the two numbers.
Let the first number be x and the second number be y. We have 2 equations:
[LIST=1]
[*]4x + 3y = 24
[*]2x - 3y = 24
[/LIST]
Without doing anything else, we can add the 2 equations together to eliminate the y term:
(4x + 2x) + (3y - 3y) = (24 + 24)
6x = 48
Divide each side by 6:
[B]x = 8
[/B]
Substitute this into equation (1)
4(8) + 3y = 24
32 + 3y = 24
[URL='https://www.mathcelebrity.com/1unk.php?num=32%2B3y%3D24&pl=Solve']Type 32 + 3y = 24 into our search engine[/URL] and we get [B]y = 2.6667[/B].
There are y horses and z chickens in a barn. How many legs are there in the barn?There are y horses and z chickens in a barn. How many legs are there in the barn?
[U]For total legs, we have:[/U]
Total Legs = Horse Legs + Chicken Legs
Total Legs = Legs per horse * number of horses + Legs per chicken * number of chickens
[U]Horses have 4 legs and chickens have 2 legs. We have y horses and z chickens. Plugging this in, we have:[/U]
Total Legs = [B]4y + 2z[/B]
There is a bag filled with 5 blue, 6 red and 2 green marbles. A marble is taken at random from the bThere is a bag filled with 5 blue, 6 red and 2 green marbles. A marble is taken at random from the bag, the colour is noted and then it is replaced. Another marble is taken at random. What is the probability of getting exactly 1 blue?
Find the total number of marbles in the bag:
Total marbles = 5 blue + 6 red + 2 green
Total marbles = 13
The problem asks for exactly one blue in 2 draws [I]with replacement[/I]. Which means you could draw as follows:
Blue, Not Blue
Not Blue, Blue
The probability of drawing a blue is 5/13, since we replace the marbles in the bag each time.
The probability of not drawing a blue is (6 + 2)/13 = 8/13
And since each of the 2 draws are independent of each other, we multiply the probability of each draw:
Blue, Not Blue = 5/13 * 8/13 =40/169
Not Blue, Blue = 8/13 * 5/13 = 40/169
We add both probabilities since they both count under our scenario:
40/169 + 40/169 = 80/169
Checking our [URL='https://www.mathcelebrity.com/fraction.php?frac1=80%2F169&frac2=3%2F8&pl=Simplify']fraction simplification calculator[/URL], we see you cannot simplify this fraction anymore.
So our probability stated in terms of a fraction is 80/169
[URL='https://www.mathcelebrity.com/perc.php?num=80&den=169&pcheck=1&num1=16&pct1=80&pct2=70&den1=80&idpct1=10&hltype=1&idpct2=90&pct=82&decimal=+65.236&astart=12&aend=20&wp1=20&wp2=30&pl=Calculate']Stated in terms of a decimal[/URL], it's 0.4734
There is a ratio of 5 girls to 3 boys in the chorus. There are 24 boys in the chorus.How many girlsThere is a ratio of 5 girls to 3 boys in the chorus. There are 24 boys in the chorus.How many girls are in the chorus?
Set up a proportion of girls to boys:
5/3 = g/24 where g is the number of girls for 24 boys.
Typing 5/3 = g/24 into the [URL='http://www.mathcelebrity.com/prop.php?num1=5&num2=g&den1=3&den2=24&propsign=%3D&pl=Calculate+missing+proportion+value']math tutoring calculator[/URL] gives us [B]g = 40[/B].
[MEDIA=youtube]c-xshqvfvig[/MEDIA]
There is a stack of 10 cards, each given a different number from 1 to 10. suppose we select a card rThere is a stack of 10 cards, each given a different number from 1 to 10. Suppose we select a card randomly from the stack, replace it, and then randomly select another card. What is the probability that the first card is an odd number and the second card is greater than 7.
First Event: P(1, 3, 5, 7, 9) = 5/10 = 1/2 or 0.5
Second Event: P(8, 9, 10) = 3/10 or 0.3
Probability of both events since each is independent is 1/2 * 3/10 = 3/20 = [B]0.15 or 15%[/B]
There was 35 balloons at the beginning of a party. By the end of the party, n of them had popped. UsThere was 35 balloons at the beginning of a party. By the end of the party, n of them had popped. Using n, write an expression for the number of balloons that were left.
We start with 35, we take away or subtract n that popped. We're left with:
[B]35 - n[/B]
There were 175 tickets sold for the upcoming event in the gym. If students tickets cost $5 and adultThere were 175 tickets sold for the upcoming event in the gym. If students tickets cost $5 and adult tickets are $8, tell me how many tickets were sold if gate receipts totaled $1028?
Let s be the number of student tickets and a be the number of adult tickets. We are given:
a + s = 175
8a + 5s = 1028
There are 3 ways to solve this, all of which give us:
[B]a = 51
s = 124
[/B]
[URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=a+%2B+s+%3D+175&term2=8a+%2B+5s+%3D+1028&pl=Substitution']Substitution Method[/URL]
[URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=a+%2B+s+%3D+175&term2=8a+%2B+5s+%3D+1028&pl=Elimination']Elimination Method[/URL]
[URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=a+%2B+s+%3D+175&term2=8a+%2B+5s+%3D+1028&pl=Cramers+Method']Cramers Method[/URL]
There were 286,200 graphic designer jobs in a country in 2010. It has been projected that there willThere were 286,200 graphic designer jobs in a country in 2010. It has been projected that there will be 312,500 graphic designer jobs in 2020. (a) Using the data, find the number of graphic designer jobs as a linear function of the year.
[B][U]Figure out the linear change from 2010 to 2020[/U][/B]
Number of years = 2020 - 2010
Number of years = 10
[B][U]Figure out the number of graphic designer job increases:[/U][/B]
Number of graphic designer job increases = 312,500 - 286,200
Number of graphic designer job increases = 26,300
[B][U]Figure out the number of graphic designer jobs added per year[/U][/B]
Graphic designer jobs added per year = Total Number of Graphic Designer jobs added / Number of Years
Graphic designer jobs added per year = 26,300 / 10
Graphic designer jobs added per year = 2,630
[U][B]Build the linear function for graphic designer jobs G(y) where y is the year:[/B][/U]
G(y) = 286,200 + 2,630(y - 2010)
[B][U]Multiply through and simplify:[/U][/B]
G(y) = 286,200 + 2,630(y - 2010)
G(y) = 286,200 + 2,630y - 5,286,300
[B]G(y) = 2,630y - 5,000,100[/B]
thesumof9andanumberWe denoted a number using the arbitrary variable "x".
The sum of 9 and x is written:
x + 9 or 9 + x
Think of a number. Double the number. Subtract 6 from the result and divide the answer by 2. The quoThink of a number. Double the number. Subtract 6 from the result and divide the answer by 2. The quotient will be 20. What is the number
Let's call our number n.
Double the number means we multiply n by 2:
2n
Subtract 6 from the result means we subtract 6 from 2n:
2n - 6
Divide the answer by 2:
(2n - 6)/2
We can simplify this as n - 3
The quotient will be 20. This means the simplified term above is set equal to 20:
[B]n - 3 = 20 [/B] <-- This is our algebraic expression
If you want to take it a step further, and solve for n in the algebraic expression above, we [URL='https://www.mathcelebrity.com/1unk.php?num=n-3%3D20&pl=Solve']type this expression into our calculator[/URL], and get:
n = 23
Thirty is half of the sum of 4 and a numberThirty is half of the sum of 4 and a number.
The phrase [I]a number[/I] represents an arbitrary variable, let's call it x.
The sum of 4 and a number:
4 + x
Half of this sum means we divide by 2:
(4 + x)/2
Set this equal to 30:
[B](4 + x)/2 = 30[/B] <-- This is our algebraic expression
Three good friends are in the same algebra class, their scores on a recent test are three consecutivThree good friends are in the same algebra class, their scores on a recent test are three consecutive odd integers whose sum is 273. Find the score
In our search engine, we type in [URL='https://www.mathcelebrity.com/sum-of-consecutive-numbers.php?num=3consecutiveintegerswhosesumis273&pl=Calculate']3 consecutive integers whose sum is 273[/URL] and we get:
[B]90, 91, 92[/B]
Three subtracted from triple a numberThree subtracted from triple a number
A number means an arbitrary variable, let's call it x
x
Triple it
3x
Three subtracted from this
[B]3x - 3[/B]
Tickets for a concert were priced at $8 for students and $10 for nonstudents. There were 1340 ticketTickets for a concert were priced at $8 for students and $10 for nonstudents. There were 1340 tickets sold for a total of $12,200. How many student tickets were sold?
Let s be the number of student tickets and n be the number of nonstudent tickets:
[LIST=1]
[*]n + s = 1340
[*]10n + 8s = 12200
[/LIST]
Use our [URL='http://www.mathcelebrity.com/simultaneous-equations.php?term1=n+%2B+s+%3D+1340&term2=10n+%2B+8s+%3D+12200&pl=Cramers+Method']simultaneous equation calculator[/URL]:
n = 740
[B]s = 600[/B]
Time and DistanceLet h be the number of hours that pass when Charlie starts. We have the following equations:
[LIST]
[*]Charlie: D = 40h + 9
[*]Danny: D = 55h
[/LIST]
Set them equal to each other:
40h + 9 = 55h
Subtract 40h from both sides:
15h = 9
h = 3/5
[B]3/5 of an hour = 3(60)/5 = 36 minutes[/B]
Time and DistanceThank you so much
[QUOTE="math_celebrity, post: 1003, member: 1"]Let h be the number of hours that pass when Charlie starts. We have the following equations:
[LIST]
[*]Charlie: D = 40h + 9
[*]Danny: D = 55h
[/LIST]
Set them equal to each other:
40h + 9 = 55h
Subtract 40h from both sides:
15h = 9
h = 3/5
[B]3/5 of an hour = 3(60)/5 = 36 minutes[/B][/QUOTE]
Tina's mom made brownies. When tinas friend came over they ate 1/3 of the brownies. Her sister ate 2Tina's mom made brownies. When tinas friend came over they ate 1/3 of the brownies. Her sister ate 2 and her dad ate 4. If there are 26 brownies left. How many did her mom make
Let b denote the number of brownies Tina's mom made. We're given:
b - 1/3b - 2 - 4 = 26
Combining like terms, we have:
2b/3 - 6 = 26
Add 6 to each side, we get:
2b/3 = 32
To solve this equation for b, we [URL='https://www.mathcelebrity.com/prop.php?num1=2b&num2=32&den1=3&den2=1&propsign=%3D&pl=Calculate+missing+proportion+value']type it in our math engine[/URL] and we get:
b = [B]48[/B]
To be a member of world fitness gym, it costs $60 flat fee and $30 per month. Maria has paid a totalTo be a member of world fitness gym, it costs $60 flat fee and $30 per month. Maria has paid a total of $210 for her gym membership so far. How long has Maria been a member to the gym?
The cost function C(m) where m is the number of months for the gym membership is:
C(m) = 30m + 60
We're given that C(m) = 210 for Maria. We want to know the number of months (m) that Maria has been a member.
With C(m) = 210, we have:
30m + 60 =210
To solve this equation, [URL='https://www.mathcelebrity.com/1unk.php?num=30m%2B60%3D210&pl=Solve']we type it in our search engine[/URL] and we get:
m = [B]5[/B]
To create an entry code, you must first choose 2 letters and then, 4 single-digit numbers. How maTo create an entry code, you must first choose 2 letters and then, 4 single-digit numbers. How many different entry codes can you create?
List total combinations using the product of all possibilities:
26 letters (A - Z) * 26 letters (A - Z) * 10 digits (0-9) * 10 digits (0-9) * 10 digits (0-9) * 10 digits (0-9)
[B]6,760,000 entry codes
[MEDIA=youtube]Y23EGnVuU7I[/MEDIA][/B]
To rent a building for a school dance, Ava paid 120 plus 2.50 for each student. To attend the schoolTo rent a building for a school dance, Ava paid 120 plus 2.50 for each student. To attend the school all together Ava paid 325. How many students attended the dance?
Let the number of students be s. We're given
2.50s + 120 = 325
[URL='https://www.mathcelebrity.com/1unk.php?num=2.50s%2B120%3D325&pl=Solve']Type this equation into our search engine[/URL], and we get:
s = [B]82[/B]
To ship a package with UPS, the cost will be $7 for the first pound and $0.20 for each additional poTo ship a package with UPS, the cost will be $7 for the first pound and $0.20 for each additional pound. To ship a package with FedEx, the cost will be $5 for the first pound and $0.30 for each additional pound. How many pounds will it take for UPS and FedEx to cost the same? If you needed to ship a package that weighs 8 lbs, which shipping company would you choose and how much would you pay?
[U]UPS: Set up the cost function C(p) where p is the number of pounds:[/U]
C(p) = Number of pounds over 1 * cost per pounds + first pound
C(p) = 0.2(p - 1) + 7
[U]FedEx: Set up the cost function C(p) where p is the number of pounds:[/U]
C(p) = Number of pounds over 1 * cost per pounds + first pound
C(p) = 0.3(p - 1) + 5
[U]When will the costs equal each other? Set the cost functions equal to each other:[/U]
0.2(p - 1) + 7 = 0.3(p - 1) + 5
0.2p - 0.2 + 7 = 0.3p - 0.3 + 5
0.2p + 6.8 = 0.3p + 4.7
To solve this equation for p, we [URL='https://www.mathcelebrity.com/1unk.php?num=0.2p%2B6.8%3D0.3p%2B4.7&pl=Solve']type it in our search engine[/URL] and we get:
p = [B]21
So at 21 pounds, both UPS and FedEx costs are equal
[/B]
Now, find out which shipping company has a better rate at 8 pounds:
[U]UPS:[/U]
C(8) = 0.2(8 - 1) + 7
C(8) = 0.2(7) + 7
C(8) = 1.4 + 7
C(8) = 8.4
[U]FedEx:[/U]
C(8) = 0.3(8 - 1) + 5
C(8) = 0.3(7) + 5
C(8) = 2.1 + 5
C(8) = [B]7.1[/B]
[B]Therefore, FedEx is the better cost at 8 pounds since the cost is lower[/B]
[B][/B]
Today a car is valued at $42000. the value is expected to decrease at a rate of 8% each year. what iToday a car is valued at $42000. the value is expected to decrease at a rate of 8% each year. what is the value of the car expected to be 6 years from now.
Depreciation at 8% per year means it retains (100% - 8%) = 92% of it's value. We set up our depreciation function D(t), where t is the number of years from right now.
D(t) = $42,000(0.92)^t
The problem asks for D(6):
D(6) = $42,000(0.92)^6
D(6) = $42,000(0.606355)
D(6) = [B]$25,466.91[/B]
Today is my birthday! Four-fifths of my current age is greater than three-quarters of my age one yeaToday is my birthday! Four-fifths of my current age is greater than three-quarters of my age one year from now. Given that my age is an integer number of years, what is the smallest my age could be?
Let my current age be a. We're given:
4/5a > 3/4(a + 1)
Multiply through on the right side:
4a/5 > 3a/4 + 3/4
Let's remove fractions by multiply through by 5:
5(4a/5) > 5(3a/4) + 5(3/4)
4a > 15a/4 + 15/4
Now let's remove the other fractions by multiply through by 4:
4(4a) > 4(15a/4) + 4(15/4)
16a > 15a + 15
[URL='https://www.mathcelebrity.com/1unk.php?num=16a%3E15a%2B15&pl=Solve']Typing this inequality into our search engine[/URL], we get:
a > 15
This means the smallest [I]integer age[/I] which the problem asks for is:
15 + 1 = [B]16[/B]
Tom has a collection 21 CDs and Nita has a collection of 14 CDs. Tom is adding 3 cds a month to hisTom has a collection 21 CDs and Nita has a collection of 14 CDs. Tom is adding 3 cds a month to his collection while Nita is adding 4 CDs a month to her collection. Find the number of months after which they will have the same number of CDs?
Set up growth equations for the CDs where c = number of cds after m months
Tom: c = 21 + 3m
Nita: c = 14 + 4m
Set the c equations equal to each other
21 + 3m = 14 + 4m
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=21%2B3m%3D14%2B4m&pl=Solve']equation calculator[/URL], we get [B]m = 7[/B]
Tom is the deli manager at a grocery store. He needs to schedule employees to staff the deli departmTom is the deli manager at a grocery store. He needs to schedule employees to staff the deli department at least 260 person-hours per week. Tom has one part-time employeewho works 20 hours per week. Each full-time employee works 40 hours per week. Write an inequality to determine n, the number of full-time employees Tom must schedule, so that his employees will work at least 260 person-hours per week.
Set up the inequality:
[LIST]
[*]Add the part-timer's hours of 20
[*]Full time hours is 40 times n employees
[*]At least means greater than or equal to, so we use the >= sign
[/LIST]
[B]40n + 20 >= 260[/B]
total of a number and the square of a numbertotal of a number and the square of a number
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
The square of a number means we raise x to the power of 2. x^2
The total means we add x squared to x:
[B]x + x^2[/B]
Transitive Property of EqualityFree Transitive Property of Equality Calculator - Demonstrates the Transitive property of equality using a number.
Numerical Properties
translate the product of -1 and a number in mathematics expressiontranslate the product of -1 and a number in mathematics expression
The phrase [I]a number[/I] means an arbitrary variable. Let's call it x.
The product of -1 and the number;
[B]-x[/B]
Triangular NumberFree Triangular Number Calculator - This calculator determines the nth triangular number. Generates composite numbers.
Trichotomy PropertyFree Trichotomy Property Calculator - Demonstrates the Trichotomy Property with 2 numbers.
Numerical Properties
Trimmed Mean and Winsorized MeanFree Trimmed Mean and Winsorized Mean Calculator - Given a number set and a trimmed mean percentage, this will calculate the trimmed mean (truncated mean) or winsorized mean.
triple a number and another numbertriple a number and another number
The phrase [I]a number[/I] means an arbitrary variable, let's call it x:
x
Triple a number means we multiply x by 3:
3x
The phrase [I]another number[/I] means another arbitrary variable, let's call it y:
y
The word [I]and[/I] means we add y to 3x:
[B]3x + y[/B]
Tristan is making smoothies. Each smoothie uses 54 cup of yogurt. How many cups of yogurt does he neTristan is making smoothies. Each smoothie uses 54 cup of yogurt. How many cups of yogurt does he need to make 13 smoothies? Express your answer in simplest form.
Total Cups = Number of smoothies * cups of yogurt per smoothie
Total Cups =13 * 54
Total Cups = [B]702 cups[/B]
True False EquationsFree True False Equations Calculator - Determines if a set of addition and subtraction of numbers on each side of an equation are equivalent.
Also known as true or false equations
True or False (a) The normal distribution curve is always symmetric to its mean. (b) If the varianceTrue or False
(a) The normal distribution curve is always symmetric to its mean.
(b) If the variance from a data set is zero, then all the observations in this data set are identical.
(c) P(A AND Ac)=1, where Ac is the complement of A.
(d) In a hypothesis testing, if the p-value is less than the significance level α, we do not have sufficient evidence to reject the null hypothesis.
(e) The volume of milk in a jug of milk is 128 oz. The value 128 is from a discrete data set.
[B](a) True, it's a bell curve symmetric about the mean
(b) True, variance measures how far a set of numbers is spread out. A variance of zero indicates that all the values are identical
(c) True. P(A) is the probability of an event and P(Ac) is the complement of the event, or any event that is not A. So either A happens or it does not. It covers all possible events in a sample space.
(d) False, we have sufficient evidence to reject H0.
(e) False. Volume can be a decimal or fractional. There are multiple values between 127 and 128. So it's continuous.[/B]
Trump stamps sold at $1.25 and Obama stamps sold at $2 . How many of each stamp was sold if 700 stamTrump stamps sold at $1.25 and Obama stamps sold at $2 . How many of each stamp was sold if 700 stamps were sold making $1250
Let o be the number of Obama stamps. Let t be the number of Trump stamps. We have two equations:
[LIST=1]
[*]o + t = 700
[*]2o + 1.25t = 1250
[/LIST]
Using our [URL='http://www.mathcelebrity.com/simultaneous-equations.php?term1=o%2Bt%3D700&term2=2o%2B1.25t%3D1250&pl=Cramers+Method']simultaneous equations calculator[/URL], we get:
[B]o = 500
t = 200[/B]
TruncateFree Truncate Calculator - Truncates a number to a specified number of decimal places. Truncates decimals.
Twenty-five is nine more than four times a numberThe phrase [I]a number[/I] means an arbitrary variable. We can pick any letter a-z except for i and e.
Let's choose x.
Four times a number:
4x
nine more than four times a numbrer
4x + 9
The phrase [I]is[/I] means equal to. We set 4x + 9 equal to 25 as our algebraic expression:
[B]4x + 9 = 25
[/B]
If the problem asks you to solve for x, we [URL='https://www.mathcelebrity.com/1unk.php?num=4x%2B9%3D25&pl=Solve']type it in our math solver[/URL] and get:
x = [B]4[/B]
Twenty-five is the same as ten added to twice a numberThe phrase [I]a number[/I] means an arbitrary variable. We can pick any letter a-z except for i and e.
Let's choose x.
Twice a number means we multiply x by 2:
2x
ten added to twice a number
2x + 10
The phrase [I]is the same as [/I]means equal to. Set 25 equal to 2x + 10 to get our algebraic expression
[B]25 = 2x + 10
[/B]
If the problem asks you to solve for x, [URL='https://www.mathcelebrity.com/1unk.php?num=25%3D2x%2B10&pl=Solve']type it in our math solver [/URL]and get
x = [B]7.5[/B]
Twice a first number decreased by a second number is 16. The first number increased by 3 times the sTwice a first number decreased by a second number is 16. The first number increased by 3 times the second number is 1. Find the numbers.
Let the first number be x and the second number be y. We're given:
[LIST=1]
[*]2x - y = 16
[*]x + 3y = 1
[/LIST]
Using our simultaneous equations calculator, you can solve this 3 ways:
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=2x+-+y+%3D+16&term2=x+%2B+3y+%3D+1&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=2x+-+y+%3D+16&term2=x+%2B+3y+%3D+1&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=2x+-+y+%3D+16&term2=x+%2B+3y+%3D+1&pl=Cramers+Method']Cramers Rule[/URL]
[/LIST]
No matter what method we use, we get the same answers:
[B]x = 7
y = -2
(x, y) = (7, -2)
[/B]
Let's check our work in equation 1:
2(7) - -2 ? 16
14 + 2 ? 16
16 = 16 <-- Check
Let's check our work in equation 2:
7 + 3(-2) ? 1
7 - 6 ? 1
1 = 1 <-- Check
Twice a number decreased by eight is zeroThe phrase [I]a number[/I] means an arbitrary variable. We can pick any letter a-z except for i and e.
Let's choose x.
Twice a number:
2x
decreased by eight
2x - 8
[I]is [/I]means equal to. Set 2x - 8 equal to zero for our algebraic expression:
[B]2x - 8 = 0
[/B]
If the problem asks you to solve for x, add 8 to each side:
2x = 8
Divide each side by 2:
x= [B]4[/B]
Twice a number decreased by sixThe phrase [I]a number[/I] means an arbitrary variable. We can pick any letter a-z except for i and e.
Let's choose x.
Twice a number means we multiply x by 2:
2x
Decreased by six means we subtract 6 from 2x:
[B]2x - 6[/B]
twice a number subtracted from the square root of the same numbertwice a number subtracted from the square root of the same number
The phrase [I]a number[/I] means an arbitrary variable, let's call it x:
x
Twice a number means we multiply x by 2:
2x
Square root of the same number:
sqrt(x)
twice a number subtracted from the square root of the same number
[B]sqrt(x) - 2x[/B]
twice the difference between x and 28 is 3 times a numbertwice the difference between x and 28 is 3 times a number
The difference between x and 28:
x - 28
Twice the difference means we multiply x - 28 by 2:
2(x - 28)
The phrase [I]a number[/I] means an arbitrary variable, let's call it x
x
3 times a number:
3x
The word [I]is[/I] means equal to, so we set 2(x - 28) equal to 3x:
[B]2(x - 28) = 3x[/B]
twice the difference of a number and 3 is equal to 3 times the sum of a number and 2twice the difference of a number and 3 is equal to 3 times the sum of a number and 2.
We've got 2 algebraic expressions here. Let's take them in parts.
Left side algebraic expression: twice the difference of a number and 3
[LIST]
[*]The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
[*]The word [I]difference[/I] means we subtract 3 from the variable x
[*]x - 3
[*]Twice this difference means we multiply (x - 3) by 2
[*]2(x - 3)
[/LIST]
Right side algebraic expression: 3 times the sum of a number and 2
[LIST]
[*]The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
[*]The word [I]sum[/I] means we add 2 to the variable x
[*]x + 2
[*]3 times the sum means we multiply (x + 2) by 3
[*]3(x + 2)
[/LIST]
Now, we have both algebraic expressions, the problem says [I]is equal to[/I]
This means we have an equation, where we set the left side algebraic expression equal to the right side algebraic expression using the equal sign (=) to get our answer
[B]2(x - 3) = 3(x + 2)[/B]
twice the difference of a number and 55 is equal to 3 times the sum of a number and 8twice the difference of a number and 55 is equal to 3 times the sum of a number and 8
Take this algebraic expression in pieces.
Left side: The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
The difference of this number and 55 means we subtract 55 from x
x - 55
Twice the difference means we multiply x - 55 by 2
2(x - 55)
Right side: The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
The sum of a number and 8 means we add 8 to x
x + 8
3 times the sum means we multiply x + 8 by 3
3(x + 8)
Now that we have the left and right side of the expressions, we see the phrase [I]is equal to[/I]. This means an equation, so we set the left side equal to the right side:
[B]2(x - 55) = 3(x + 8)[/B]
twice the square root of a number increased by 5 is 23twice the square root of a number increased by 5 is 23
The phrase [I]a number[/I] means an arbitrary variable, let's call it x:
x
The square root of a number means we raise x to the 1/2 power:
sqrt(x)
the square root of a number increased by 5 means we add 5 to sqrt(x):
sqrt(x) + 5
twice the square root of a number increased by 5 means we multiply sqrt(x) + 5 by 2:
2(sqrt(x) + 5)
The phrase [I]is 23[/I] means we set 2(sqrt(x) + 5) equal to 23:
[B]2(sqrt(x) + 5) = 23[/B]
Twice the sum of a number and 6 is equal to three times the difference of the number and 3. Find the[SIZE=6]Twice the sum of a number and 6 is equal to three times the difference of the number and 3. Find the number.
The phrase [/SIZE][I][SIZE=7]a number[/SIZE][/I][SIZE=6] means an arbitrary variable, let's call it x.
The sum of a number and 6 means we add 6 to x:
x + 6
Twice the sum of a number and 6 means we multiply x + 6 by 2:
2(x + 6)
the difference of the number and 3 means we subtract 3 from x
x - 3
three times the difference of the number and 3 means we multiply x - 3 by 3:
3(x- 3)
The word [I]is[/I] means we set 2(x + 6) equal to 3(x - 3)
2(x + 6) = 3(x - 3)
Use the distributive property to multiply through:
2x + 12 = 3x - 9
Subtract 2x from each side:
2x - 2x + 12 = 3x - 2x - 9
x - 9 = 12
Add 9 to each side:
x - 9 + 9 = 12 + 9
x = [B]21[/B]
[B][/B]
[B][MEDIA=youtube]CeZl_oZnSiw[/MEDIA][/B][/SIZE]
Two dice are rolled. Determine the probability of the following. Rolling an even number or a numberTwo dice are rolled. Determine the probability of the following. Rolling an even number or a number greater than 6
We want P(X = Even) or P(X>6)
With 2 dice, our die totals are:
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
Evens are: 2, 4, 6, 8, 10, 12
> 6 = 7, 8, 9, 10, 11, 12
When the problem states [I]or[/I] it means either of the sets. When we take the union of both sets, we get:
2,4,6,7,8,9,10,11,12
This is 9 possible entries out of 12:
9/12
We can simplify this by dividing top and bottom by 3:
P(X = Even) or P(X>6) = [B]3/4 or 0.75[/B]
Two numbers have a sum of 20. Determine the lowest possible sum of their squares.Two numbers have a sum of 20. Determine the lowest possible sum of their squares.
If sum of two numbers is 20, let one number be x. Then the other number would be 20 - x.
The sum of their squares is:
x^2+(20 - x)^2
Expand this and we get:
x^2 + 400 - 40x + x^2
Combine like terms:
2x^2 - 40x + 400
Rewrite this:
2(x^2 - 20x + 100 - 100) + 400
2(x - 10)^2 - 200 + 400
2(x−10)^2 + 200
The sum of squares of two numbers is sum of two positive numbers, one of which is a constant of 200.
The other number, 2(x - 10)^2, can change according to the value of x. The least value could be 0, when x=10
Therefore, the minimum value of sum of squares of two numbers is 0 + 200 = 200 when x = 10.
If x = 10, then the other number is 20 - 10 = 10.
Two numbers have a sum of 20. If one number is p, express the other in terms of p.Two numbers have a sum of 20. If one number is p, express the other in terms of p.
If the sum is 20 and one number is p, then let the other number be q.
We have: p + q = 20
We want q, so we subtract p from each side:
[B]q = 20 - p[/B]
Two numbers have a sum of 59. If one number is q, express the other number on terms of qTwo numbers have a sum of 59. If one number is q, express the other number on terms of q
The other number is [B]59 - q[/B].
Add them together, you get q + (59 - q) = 59.
two numbers have an average of 2100 and one number is $425 more than the other number. What are thetwo numbers have an average of 2100 and one number is $425 more than the other number. What are the numbers
Let the first number be x and the second number be y. We're given two equations:
[LIST=1]
[*](x + y)/2 = 2100 (Average)
[*]y = x + 425
[/LIST]
Rearrange equation (1) by cross multiplying
x + y = 2 * 2100
x + y = 4200
So we have our revised set of equations:
[LIST=1]
[*]x + y = 4200
[*]y = x + 425
[/LIST]
Substituting equation (2) into equation (1) for y, we get:
x + (x + 425) = 4200
Combining like terms, we get:
2x + 425 = 4200
Using our [URL='https://www.mathcelebrity.com/1unk.php?num=2x%2B425%3D4200&pl=Solve']equation solver[/URL], we get:
x = [B]1887.5[/B]
Which means using equation (2), we get
y = 1887.5 + 425
y = [B]2312.5[/B]
Two numbers have the sum of 40 if one number is P express the other in terms of PTwo numbers have the sum of 40 if one number is P express the other in terms of P
We write this as P + (40 - P) = 40
So the other number is [B]40 - P[/B]
Two numbers that total 44 and have a difference of 6Two numbers that total 44 and have a difference of 6.
Let the two numbers be x and y. We're given the following equations:
[LIST=1]
[*]x + y = 44 <-- Total means a sum
[*]x - y = 6
[/LIST]
Add the two equations together:
(x + x) + (y - y) = 44 + 6
Cancelling the y terms, we have:
2x = 50
[URL='https://www.mathcelebrity.com/1unk.php?num=2x%3D50&pl=Solve']Typing this equation into the search engine[/URL], we get:
[B]x = 25
[/B]
Rearranging equation (2) above, we get:
y = x - 6
Substituting x = 25 into this, we get:
y = 25 - 6
[B]y = 19[/B]
Two numbers total 12, and their differences is 20. Find the two numbers.Two numbers total 12, and their differences is 20. Find the two numbers.
Let the first number be x. Let the second number be y. We're given two equations:
[LIST=1]
[*]x + y = 12
[*]x - y = 20
[/LIST]
Since we have y coefficients of (-1 and 1) that cancel, we add the two equations together:
(x + x) + (y - y) = 12 + 20
The y terms cancel, so we have:
2x = 32
[URL='https://www.mathcelebrity.com/1unk.php?num=2x%3D32&pl=Solve']Type this equation into our search engine[/URL] and we get:
x = [B]16[/B]
Substitute this value of x = 16 back into equation 1:
16 + y = 12
[URL='https://www.mathcelebrity.com/1unk.php?num=16%2By%3D12&pl=Solve']Typing this equation into our search engine[/URL], we get:
y = [B]-4
[/B]
Now, let's check our work for both equations:
[LIST=1]
[*]16 - 4 = 12
[*]16 - -4 --> 16 + 4 = 20
[/LIST]
So these both check out.
(x, y) = ([B]16, -4)[/B]
Two numbers total 50 and have a difference of 28. Find the two numbers.Two numbers total 50 and have a difference of 28. Find the two numbers.
Using x and y as our two numbers, we write the following 2 equations:
[LIST=1]
[*]x + y = 50
[*]x - y = 28
[/LIST]
Add the 2 rows:
2x = 78
Divide each side by 2:
[B]x = 39[/B]
If x = 39, then from (1), we have
y = 50 - 39
[B]y = 11[/B]
Two numbers total 83 and have a difference of 17 find the two numbersLet the numbers be x and y. Set up our givens:
[LIST=1]
[*]x + y = 83
[*]x - y = 17
[/LIST]
[U]Add equation (1) to equation (2)[/U]
x + x + y - y = 83 + 17
[U]The y-terms cancel out:[/U]
2x = 100
[U]Divide each side by 2:[/U]
2x/2= 100/2
x = [B]50[/B]
[U]
Plug x = 50 into equation (1)[/U]
50 + y = 83
[U]Subtract 50 from each side:[/U]
50 - 50 + y = 83 - 50
[U]Cancel the 50 on the left side:[/U]
y = [B]33
[/B]
So our two numbers (x, y) = (33, 50)
[MEDIA=youtube]jajO043ChUM[/MEDIA]
two thirds of a number is no more than -10two thirds of a number is no more than -10
The phrase [I]a number[/I] means an arbitrary variable, let's call it x:
x
Two thirds of a number mean we multiply x by 2/3:
2x/3
The phrase [I]no more than[/I] -10 means less than or equal to -10, so we have an inequality:
[B]2x/3 <= -10[/B]
two unbiased dice are thrown. find the probability that the total number on the dice is greater thantwo unbiased dice are thrown. find the probability that the total number on the dice is greater than 10
[URL='http://www.mathcelebrity.com/2dice.php?gl=2&pl=10&opdice=1&rolist=+2%2C3%2C9%2C10&dby=2%2C3%2C5&ndby=4%2C5&montect=+100']From our 2 dice calculator[/URL]:
We have (5,6),(6,5),(6,6)
P(Sum) > 10 is [B]1/12[/B]
Ty uses his blocks to build towers of 10 blocks each. There are 14 towers and five blocks left overTy uses his blocks to build towers of 10 blocks each. There are 14 towers and five blocks left over.
Total Blocks = Tower Blocks + Left Over Blocks
[U]First, calculate the number of tower blocks:[/U]
Tower Blocks = Towers * Blocks per Tower
Tower Blocks = 14 * 10
Tower Blocks = 140
[U]We have 5 left over blocks, so we calculate our total blocks:[/U]
Total Blocks = 140 + 5
Total Blocks = [B]145[/B]
Tyler has a meal account with $1200 in it to start the school year. Each week he spends $21 on foodTyler has a meal account with $1200 in it to start the school year. Each week he spends $21 on food
a.) write an equation that relates the amount in the account (a) with the number of (w) weeks
b.) How many weeks will it take until Tyler runs out of money?
[U]Part a) where w is the number of weeks[/U]
a = Initial account value - weekly spend * w ([I]we subtract because Tyler spends)[/I]
a = [B]1200 - 21w
[/B]
[U]Part b)[/U]
We want to know the number of weeks it takes where a = 0. So we have:
1200 - 21w = 0
To solve for w, we [URL='https://www.mathcelebrity.com/1unk.php?num=1200-21w%3D0&pl=Solve']type this equation into our search engine[/URL] and we get:
w = 57.14 weeks
The problem asks for when he runs out of money, so we round up to [B]58 whole weeks[/B]
Typing SpeedFree Typing Speed Calculator - Solves for words per minute, number of words typed, errors, or number of minutes typing based on user entry.
Uniform DistributionFree Uniform Distribution Calculator - This calculates the following items for a uniform distribution
* Probability Density Function (PDF) ƒ(x)
* Cumulative Distribution Function (CDF) F(x)
* Mean, Variance, and Standard Deviation
Calculates moment number t using the moment generating function
Unknown NumberFree Unknown Number Calculator - Determines the unknown number needed to make an equation true.
Use number 7,6,5 and 3 only one time to get 75Use number 7,6,5 and 3 only one time to get 75
We do it using this order of operations:
[B](7 + 5) * 6 + 3[/B]
Simplifying, we get:
12*6 + 3
72 + 3
75
Using a number line how far is - 2 from 6Using a number line how far is - 2 from 6
We use [URL='https://www.mathcelebrity.com/mptnline.php?ept1=-2&empt=+&ept2=6&pl=Calculate+missing+Number+Line+item']our number line calculator[/URL] and we get:
Distance is [B]8[/B]
Vice Versa Percentage Methodx% of y is the same as y% of x
Example 1:
18% of 10 is the same as 10% of 18
10% is easy because we move the decimal one place left to get [B]1.8[/B]
Example 2:
40% of 50 is the same as 50% of 40
50% is easy because we cut a number in half
40/2 = [B]20
[MEDIA=youtube]aiKsvYWEo0c[/MEDIA][/B]
Video store movie rental plans. Plan A 25 membership fee plus 1.25 for movie. Plan B 40 for unlimiteVideo store movie rental plans. Plan A 25 membership fee plus 1.25 for movie. Plan B 40 for unlimited rentals. What number of movies rentals is plan B less than plan A?
Let x equal the number of movies rented and C the cost for rentals
Plan A: C = 1.25x + 25
Plan B: C = 40
Set up the inequality:
1.25x + 25 > 40
Subtract 25 from each side:
1.25x > 15
Divide each side of the inequality by 1.25
x > 12
So [B]13[/B] rentals or more make Plan B less than Plan A.
Walking Distance (Pedometer)Free Walking Distance (Pedometer) Calculator - Given a number of steps and a distance per stride in feet, this calculator will determine how far you walk in other linear measurements.
Water flows from tank A to tank B at the rate of 2 litres per minute.[QUOTE="Jahn, post: 78, member: 5"]Water flows from tank A to tank B at the rate of 2 litres per minute. Initially tank A has 200 litres in it and tank B has 100 Litres in it. Water drains from tank B at 0.5 litres per minute.
After how many minutes are there equal volumes of water in the 2 tanks?
Write an equation and solve it.[/QUOTE]
Tank A: V = 200 - 2x
Tank B: V = 100 - 0.5x
Where x is the number of minutes passed.
Set them equal to each other
200 - 2x = 100 - 0.5x
Subtract 100 from each side:
100 - 2x = -0.5x
Add 2x to each side:
1.5x = 100
Divide each side of the equation by x:
x = 66.66666667
what is a well defined setwhat is a well defined set?
A well defined set is with no ambiguity or confusion about what belongs to the set. Think of it as a collection of distinct objects:
Examples:
[LIST]
[*]Set of the first 5 even numbers: {2, 4, 6, 8, 10}
[*]Set of weekend days: {Saturday, Sunday}
[/LIST]
What is the 1000th term in the series 0, 7, 14, 21, … ?Map this out as a function with term number n and value
1, 0
2, 7
3, 14
4, 21
The values jump by 7, but they do so as the n - 1 term.
We have the series formula S(n) = 7(n - 1)
The problem asks for S(1000)
S(1000) = 7(1000 - 1)
S(1000) = 7(999)
S(1000) = [B]6,993[/B]
[MEDIA=youtube]ZF10Ec29XKo[/MEDIA]
What is the 7th number in the following pattern: 3.2, 4.4, 5.6, 6.8, ...What is the 7th number in the following pattern: 3.2, 4.4, 5.6, 6.8, ...
This is an arithmetic sequence with an increase amount of 1.2. Each term S(n) is found by adding 1.2 to the prior term.
S(1) = 3.2
S(2) = 3.2 + 1.2 = 4.4
S(3) = 4.4 + 1.2 = 5.6
S(4) = 5.6 + 1.2 = 6.8
S(5) = 6.8 + 1.2 = 8.0
S(6) = 8.0 + 1.2 = 9.2
S(7) = 9.2 + 1.2 = [B]10.4[/B]
What is the area of a triangular parking lot with a width of 200m and a length of 100m?What is the aWhat is the area of a triangular parking lot with a width of 200m and a length of 100m?
Area of a Triangle = bh/2
Plugging in our numbers, we get:
Area of Parking Lot = 200(100)/2
Area of Parking Lot = 100 * 100
Area of Parking Lot = [B]10,000 sq meters[/B]
What is the average of 7 consecutive numbers if the smallest number is called n?What is the average of 7 consecutive numbers if the smallest number is called n?
[LIST]
[*]First number = n
[*]Second number = n + 1
[*]Third number = n + 2
[*]Fourth number = n + 3
[*]Fifth number = n + 4
[*]Sixth number = n + 5
[*]Seventh number = n + 6
[/LIST]
Average = Sum of all numbers / Total numbers
Average = (n + n + 1 + n + 2 + n + 3 + n + 4 + n + 5 + n + 6)/7
Average = 7n + 21/7
Factor out a 7 from the top:
7(n + 3)/7
Cancel the 7's:
[B]n + 3[/B]
What is the base 10 number 100 in base 7?What is the base 10 number 100 in base 7?
Using our [URL='https://www.mathcelebrity.com/binary.php?num=100&check1=7&bchoice=7&pl=Convert']base change calculator[/URL], we see that:
100 in base 10 = [B]202[/B] in base 7
What is the correct translation of; 8 increased by a number is 10?What is the correct translation of; 8 increased by a number is 10?
We [URL='https://www.mathcelebrity.com/community/forums/calculator-requests.7/create-thread']type in [I]8 increased by a number is 10[/I] into our search engine[/URL] and we get:
[B]8 + a = 10[/B]
What is the missing number? 0, 1, 1, 2, 3, 5, 8, __, 21, 34We can't add a common number of multiply a common number to solve this.
But what happens if we start at the 3rd term and add the 2 prior terms?
[LIST]
[*]0 + 1= 1
[*]1 + 1 = 2
[*]1 + 2 = 3
[*]3 + 5 = 8
[*]5 + 8 = [B]13[/B]
[/LIST]
[B]This is known as the Fibonacci Sequence.
[MEDIA=youtube]9SZ1TJGwyLw[/MEDIA][/B]
What is the number of days in w weeks and d days?What is the number of days in w weeks and d days?
Since a week is 7 days, we have a number of days of:
[B]7w + d[/B]
what is the smallest number greater than 400 that is divisible by 9what is the smallest number greater than 400 that is divisible by 9?
400/9 = 44.4444
Round down to 45.
45 * 9 = [B]405[/B]
What is the sum of a number x and y raised to the power of two in algebraic expressionWhat is the sum of a number x and y raised to the power of two in an algebraic expression?
The sum of a number x and y:
x + y
Raise this to the power of 2
(x + y)^2
What is the sum of four consecutive multiples of 5?What is the sum of four consecutive multiples of 5?
First number = n
Second number = n + 5
Third number = n + 10
Fourth number = n + 15
Add them together:
(n + n + n + n) + (5 + 10 + 15)
[B]4n + 30[/B]
What is the value of 998^2 – 2^2?A) 988,036
B) 990,000
C) 995,988
D) 996,000
E) 1,000,000
This is a difference of squares.
The formula for 2 numbers a and b is:
a^2 - b^2 = (a + b)(a - b)
In our problem, we have a = 998 and b = 2:
998^2 – 2^2 = (998 + 2)(998 - 2)
998^2 – 2^2 = 1000(996)
Multiplying by 1000 means we move the decimal place of the other number 3 places to the right:
998^2 – 2^2 = [B]996,000 or Answer D
[MEDIA=youtube]IeKLs8Ds-No[/MEDIA][/B]
What is the value of an unknown number of nickels expressed in cents?What is the value of an unknown number of nickels expressed in cents?
1 nickel = 5 cents
n nickels = [B]5n[/B] cents
What number is half between 1.24 and 1.8?What number is half between 1.24 and 1.8?
Halfway between two points is called the midpoint.
Using out [URL='http://www.mathcelebrity.com/mptnline.php?ept1=1.24&empt=&ept2=1.8&pl=Calculate+missing+Number+Line+item']midpoint calculator[/URL], we get 1.52:
What number when multiplied by four exceeds itself by 42?What number when multiplied by four exceeds itself by 42?
Let the number be n. We have:
4n = n + 42
Subtract n from each side:
3n = 42
Divide each side by 3
[B]n = 14[/B]
What numbers have an absolute value of 9What numbers have an absolute value of 9
[LIST]
[*]9 since |9| = 9
[*]-9 since |-9| = 9
[/LIST]
WHAT SHOULD BE SUBTRACTED FROM -9876 TO OBTAIN -9512WHAT SHOULD BE SUBTRACTED FROM -9876 TO OBTAIN -9512
We set up an arbitrary number x.
Subtracted from is written as
-9876 - x
The phrase [I]to obtain[/I] means an equation, so we set -9876 - x equal to -9512
-9876 - x = -9512
To solve for x, we [URL='https://www.mathcelebrity.com/1unk.php?num=-9876-x%3D-9512&pl=Solve']type this equation into our search engine[/URL] and we get:
x = [B]364[/B]
what’s the probability of rolling a 5 and then rolling a number less then 2what’s the probability of rolling a 5 and then rolling a number less then 2
[U]Roll a 5:[/U]
There's only one 5 on a six sided die
P(X = 5) = 1/6
A number less than 2 is only 1:
P(X < 2) = P(X = 1)
P(X = 1) = 1/6
Since each event is independent, we multiply:
P(X = 5) * P(X = 1) = 1/6 * 1/6
P(X = 5) * P(X = 1) = [B]1/36[/B]
When 20 is subtracted from 3 times a certain number, the result is 43A certain number means an arbitrary variable, let's call it x
x
3 times x
3x
20 is subtracted from 3 time x
3x - 20
The result is means equal to, so we set 3x - 20 equal to 43 for our algebraic expression
[B]3x - 20 = 43
[/B]
If you need to solve this, use our [URL='http://www.mathcelebrity.com/1unk.php?num=3x-20%3D43&pl=Solve']equation calculator[/URL]:
[B]x = 21[/B]
When 28 is subtracted from the square of a number, the result is 3 times the number. Find the negatiWhen 28 is subtracted from the square of a number, the result is 3 times the number. Find the negative solution.
Let the number be n.
Square of a number:
n^2
28 is subtracted from the square of a number:
n^2 - 28
3 times the number:
3n
[I]The result is[/I] mean an equation, so we set n^2 - 28 = 3n
n^2 - 28 = 3n
Subtract 3n from each side:
n^2 - 3n - 28 = 3n - 3n
The right side cancels to 0, so we have:
n^2 - 3n - 28 = 0
This is a quadratic equation in standard form, so we [URL='https://www.mathcelebrity.com/quadratic.php?num=n%5E2-3n-28%3D0&pl=Solve+Quadratic+Equation&hintnum=+0']use our quadratic calculator[/URL] to solve:
We get two solutions for n:
n = (-4, 7)
The question asks for the negative solution, so our answer is:
[B]n = -4[/B]
When 39 is added to a number, the result is 40 times the number. Find the number. Let n be the unknWhen 39 is added to a number, the result is 40 times the number. Find the number. Let n be the unknown number. Write the translated equation below.
[LIST=1]
[*]39 added to a number is written as n + 39
[*]40 times the number is written as 40n
[*]The result is means we have an equation, so set (1) equal to (2)
[/LIST]
n+ 39 = 40n
Running [URL='http://www.mathcelebrity.com/1unk.php?num=n%2B39%3D40n&pl=Solve']n + 39 = 40n through the search engine[/URL], we get[B] n = 1[/B].
When 4 is subtracted from the square of a number, the result is 3 times the number. Find the positivWhen 4 is subtracted from the square of a number, the result is 3 times the number. Find the positive solution.
Let the number be n. We have:
n^2 - 4 = 3n
Subtract 3n from each side:
n^2 - 3n - 4 = 0
[URL='https://www.mathcelebrity.com/quadratic.php?num=n%5E2-3n-4%3D0&pl=Solve+Quadratic+Equation&hintnum=+0']Typing this quadratic equation into the search engine[/URL], we get:
n = (-1, 4)
The problem asks for the positive solution, so we get [B]n = 4[/B].
When 4 times a number is increased by 40, the answer is the same as when 100 is decreased by the numWhen 4 times a number is increased by 40, the answer is the same as when 100 is decreased by the number. Find the number
The phrase [I]a number, [/I]means an arbitrary variable, let's call it "x".
4 times a number, increased by 40, means we multiply 4 times x, and then add 40
4x + 40
100 decreased by the number means we subtract x from 100
100 - x
The problem tells us both of these expressions are the same, so we set them equal to each other:
4x + 40 = 100 - x
Add x to each side:
4x + x + 40 = 100 - x + x
The x's cancel on the right side, so we have:
5x + 40 = 100
[URL='https://www.mathcelebrity.com/1unk.php?num=5x%2B40%3D100&pl=Solve']Typing this equation into the search engine[/URL], we get [B]x = 12[/B].
When 4 times a number is increased by 40, the answer is the same as when 100 is decreased by the numWhen 4 times a number is increased by 40, the answer is the same as when 100 is decreased by the number
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
4 times a number means we multiply x by 4:
4x
Increased by 40 means we add 40 to 4x:
4x + 40
100 decreased by the number means we subtract x from 100:
100 - x
The phrase [I]is the same as[/I] means equal to, so we set 4x + 40 equal to 100 - x
4x + 40 = 100 - x
Solve for [I]x[/I] in the equation 4x + 40 = 100 - x
[SIZE=5][B]Step 1: Group variables:[/B][/SIZE]
We need to group our variables 4x and -x. To do that, we add x to both sides
4x + 40 + x = -x + 100 + x
[SIZE=5][B]Step 2: Cancel -x on the right side:[/B][/SIZE]
5x + 40 = 100
[SIZE=5][B]Step 3: Group constants:[/B][/SIZE]
We need to group our constants 40 and 100. To do that, we subtract 40 from both sides
5x + 40 - 40 = 100 - 40
[SIZE=5][B]Step 4: Cancel 40 on the left side:[/B][/SIZE]
5x = 60
[SIZE=5][B]Step 5: Divide each side of the equation by 5[/B][/SIZE]
5x/5 = 60/5
x = [B]12[/B]
Check our work for x = 12:
4(12) + 40 ? 100 - 12
48 + 40 ? 100 - 12
88 = 88
When 54 is subtracted from the square of a number, the result is 3 times the number.When 54 is subtracted from the square of a number, the result is 3 times the number.
This is an algebraic expression. Let's take it in parts.
The phrase [I]a number[/I] means an arbitrary variable, let's call it "x".
x
Square the number, means raise it to the 2nd power:
x^2
Subtract 54:
x^2 - 54
The phrase [I]the result[/I] means an equation, so we set x^2 - 54 equal to 3
[B]x^2 - 54 = 3[/B]
When 9 is subtracted from 5 times a number ,the result is 31When 9 is subtracted from 5 times a number ,the result is 31
A number means an arbitrary variable, let's call it x.
5 times this number is written as 5x.
9 subtracted from this is written as 5x - 9
[I]The result[/I] means we have an equation, so we set [B]5x - 9 = 31[/B]. This is our algebraic expression.
Now if we want to solve for x, we [URL='http://www.mathcelebrity.com/1unk.php?num=5x-9%3D31&pl=Solve']plug this equation into the search engine [/URL]and get [B]x = 8[/B].
When a number is doubled, the result is 36When a number is doubled, the result is 36
Let the number be n. We have:
2n = 36
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=2n%3D36&pl=Solve']equation solver[/URL], we see that [B]n = 18[/B]
When a number is doubled, the result is 36Excited to announce these types of algebraic expressions can be [URL='http://www.mathcelebrity.com/algexpress.php?num=whenanumberisdoubled,theresultis36&pl=Write+Expression']typed directly in our search engine[/URL].
When ringing up a customer, a cashier needs 3 seconds to scan each item and 9 seconds to process theWhen ringing up a customer, a cashier needs 3 seconds to scan each item and 9 seconds to process the payment. Let m represent the number of items and s represent the number of seconds to ring up a customer.
Build our equation R(m):
[B]R(m) = ms + 9[/B]
When twice a number is reduced by 15 you get 95 what is the numberWhen twice a number is reduced by 15 you get 95 what is the number?
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
[I]Twice[/I] x means we multiply x by 2
2x
[I]Reduced by[/I] 15 means we subtract 15
2x - 15
[I]You get[/I] means equal to, as in an equation. Set 2x - 15 = 95
2x - 15 = 95 <-- This is our algebraic expression.
[URL='https://www.mathcelebrity.com/1unk.php?num=2x-15%3D95&pl=Solve']Type 2x - 15 = 95 into the search engine[/URL] and we get [B]x = 55[/B].
Which number is larger? 1.00987 or 1.01Which number is larger? 1.00987 or 1.01
1.01 can be written as:
1 & 1,000/100,000
1.00987 can be written as:
1 & 987/100,000
Since 1,000 > 987, then [B]1.01 is larger
[URL='https://www.mathcelebrity.com/compare.php?num1=1.00987&num2=1.01&pl=Compare']Source[/URL][/B]
which number is the same distance from 0 on the number line as 4which number is the same distance from 0 on the number line as 4
We use absolute value for distance.
Since 4 is 4 units right of 0 on the number line, we can also move 4 units left of 0 on the number line and we land on [B]-4[/B]
Which of the following involves making pairwise comparisons? a. Comparing the standard deviation ofWhich of the following involves making pairwise comparisons?
a. Comparing the standard deviation of GRE grades between two states
b. Comparing the variance of the amount of soda consumed by boys and girls in a high school
c. Comparing the mean weight between children in grades 2, 3, 4 and 5
d. Comparing the number of restaurants in New York and Boston
[B]c. Comparing the mean weight between children in grades 2, 3, 4 and 5[/B]
Pairwise comparison generally refers to any process of comparing entities in pairs to judge which of each entity is preferred, or has a greater amount of some quantitative property
Which of the following shows the numbers in ascending order? 2/3,0.68,67%,4/5Which of the following shows the numbers in ascending order? 2/3,0.68,67%,4/5
A. 67%, 0.68, 2/3, 4/5
B. 67%, 0.68, 4/5, 2/3
C. 0.68, 67%, 2/3, 4/5
D. 2/3, 67%, 0.68, 4/5
Convert all of these to decimals:
[LIST]
[*]2/3 = 0.666666
[*]0.68 = 0.68
[*]67% = 0.67
[*]4/5= 0.8
[/LIST]
Order these ascending, and you get answer D
[B]D. 2/3, 67%, 0.68, 4/5[/B]
[MEDIA=youtube]ABnPvvZhv6k[/MEDIA]
Whitney has already baked 2 cakes, and she can bake 1 cake with each additional stick of butter sheWhitney has already baked 2 cakes, and she can bake 1 cake with each additional stick of butter she buys. Write an equation that shows the relationship between the number of additional sticks of butter s and the number of cakes c.
[LIST]
[*]Let c, the number of cakes, be represented by f(s) where s are the number of sticks of butter.
[*]We already have 2 cakes to start, and each additional stick of butter gets us one more cake.
[/LIST]
f(s) = 1s + 2
Simplify, since 1s is just s
[B]f(s) = s + 2[/B]
Whole NumbersFree Whole Numbers Calculator - Shows a set amount of whole numbers and cumulative sum
Word NotationFree Word Notation Calculator - Calculates the following:
* The word notation of a number of numeric expression
Word ProblemSuppose the consumption of electricity grows at 5.3% per year, compounded continuously. Find the number of years before the use of electricity has tripled. Round to the nearest hundredth.
write 8 as a whole fractionwrite 8 as a whole fraction
Whole numbers can be written as whole number / 1
[B]8/1[/B]
Write a system of equations to describe the situation below, solve using any method, and fill in theWrite a system of equations to describe the situation below, solve using any method, and fill in the blanks. Hugo is going to send some flowers to his wife. Somerville Florist charges $2 per rose, plus $39 for the vase. Dwaynes Flowers, in contrast, charges $3 per rose and $10 for the vase. If Hugo orders the bouquet with a certain number of roses, the cost will be the same with either flower shop. What would the total cost be? How many roses would there be?
Let r be the number of roses and C(r) be the cost function. The vase is a one-time cost.
Somerville Florist:
C(r) = 2r + 39
Dwaynes Flowers
C(r) = 3r + 10
Set them equal to each other:
2r + 39 = 3r + 10
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=2r%2B39%3D3r%2B10&pl=Solve']equation calculator[/URL], we get:
[B]r = 29[/B]
Write in set builder form {all possible numbers formed by any two of the digits 1 2 5}Write in set builder form {all possible numbers formed by any two of the digits 1 2 5}
With 3 numbers, we got [URL='https://www.mathcelebrity.com/factorial.php?num=3!&pl=Calculate+factorial']3! = 6[/URL] possible numbers formed by the two digits
[LIST=1]
[*]12
[*]15
[*]21
[*]25
[*]51
[*]52
[/LIST]
In set builder notation, we write this as:
{x : x ∈ {12, 15, 21, 25, 51, 52})
x such that x is a element of the set {12, 15, 21, 25, 51, 52}
x is a multiple of 6 and 1 ≤ x ≤ 16x is a multiple of 6 and 1 ≤ x ≤ 16.
We want multiples of 6 between 1 and 16.
We start with 6.
Another multiple of 6 is 12
The next multiple of 6 is 18, which is out side the range of 1 ≤ x ≤ 16.
So our number set is [B]x = {6, 12}[/B]
X is a natural number greater than 6I saw this ticket come through today.
The answer is x > 6.
Natural numbers are positive numbers not 0. So 1, 2, 3, ...
Let me build this shortcut into the calculator.
Also, here is the[URL='http://www.mathcelebrity.com/interval-notation-calculator.php?num=x%3E6&pl=Show+Interval+Notation'] interval notation[/URL] for that expression.
X is such that X belongs to rational numbers and X is less than or equal to 1 and greater than 0X is such that X belongs to rational numbers and X is less than or equal to 1 and greater than 0
Greater than 0 means we don't include 0
0 <
less than or equal to 1 means we include 1:
[B]0 < x <= 1[/B]
x textbooks if one textbook costs $140x textbooks if one textbook costs $140
Since cost = price * quantity, we have:
Total cost = Cost per textbook * number of text books
Total cost = [B]140x[/B]
Xavier has $132 to buy a video game. Each game costs $12. Write an equation to find the number of gaXavier has $132 to buy a video game. Each game costs $12. Write an equation to find the number of games Xavier can purchase.
Let g be the number of games, we have a cost function C(g)
C(g) = 12g
We want to find g such that C(g) = 132
12g = 132
Divide each side by 12
[B]g = 11[/B]
Xaviers birthday party costs $3 for every guest he invites. If there are 8 guests, how much money wiXaviers birthday party costs $3 for every guest he invites. If there are 8 guests, how much money will Xaviers birthday party cost
Cost = Amount per guest * number of guest
Cost = 3 * 8
Cost = [B]24[/B]
y is the sum of twice a number and 3y is the sum of twice a number and 3
The phrase [I]a number[/I] means an arbitrary variable, let's call it x.
x
twice a number means we multiply x by 2:
2x
the sum of twice a number and 3:
2x + 3
The word [I]is[/I] means equal to, so we set 2x + 3 equal to y
[B]y = 2x + 3[/B]
Yesterday, Boris had 144 baseball cards. Today, he got m more. Using m, write an expression for theYesterday, Boris had 144 baseball cards. Today, he got m more. Using m, write an expression for the total number of baseball cards he has now.
144 and m more means we add
[B]144 + m[/B]
Yesterday, Kareem had n baseball cards. Today, he got 9 more. Using n, write an expression for the tYesterday, Kareem had n baseball cards. Today, he got 9 more. Using n, write an expression for the total number of baseball cards he has now.
9 more means we add 9 to n
[B]n + 9[/B]
Yolanda runs each lap in 7 minutes. She will run less than 35 minutes today. What are the possible nYolanda runs each lap in 7 minutes. She will run less than 35 minutes today. What are the possible numbers of laps she will run today?
7 minutes per lap must be less than 35 minutes. Let l be the number of laps
7l < 35
Divide each side by 7
[B]l < 5[/B]
Yolanda wants to rent a boat and spend less than $41. The boat costs $8 per hour, and Yolanda has aYolanda wants to rent a boat and spend less than $41. The boat costs $8 per hour, and Yolanda has a discount coupon for $7 off. What are the possible numbers of hours Yolanda could rent the boat?
A few things to build this problem:
[LIST=1]
[*]Discount subtracts from our total
[*]Cost = Hourly rate * hours
[*]Less than means an inequality using the < sign
[/LIST]
Our inequality is:
8h - 7 < 41
To solve this inequality for h, we [URL='https://www.mathcelebrity.com/1unk.php?num=8h-7%3C41&pl=Solve']type it in our math engine[/URL] and we get:
h < [B]6[/B]
you and 5 friends go to a concert. how many different ways can you sit in the assigned seatsYou and 5 friends go to a concert. how many different ways can you sit in the assigned seats?
With 6 possible seats, the [URL='https://www.mathcelebrity.com/factorial.php?num=6!&pl=Calculate+factorial']number of unique arrangements is[/URL]:
6! = 6 x 5 x 4 x 3 x 2 x 1 = [B]720[/B]
You and a friend want to start a business and design t-shirts. You decide to sell your shirts for $1You and a friend want to start a business and design t-shirts. You decide to sell your shirts for $15 each and you paid $6.50 a piece plus a $50 set-up fee and $25 for shipping. How many shirts do you have to sell to break even? Round to the nearest whole number.
[U]Step 1: Calculate Your Cost Function C(s) where s is the number of t-shirts[/U]
C(s) = Cost per Shirt * (s) Shirts + Set-up Fee + Shipping
C(s) = $6.50s + $50 + $25
C(s) = $6.50s + 75
[U]Step 2: Calculate Your Revenue Function R(s) where s is the number of t-shirts[/U]
R(s) = Price Per Shirt * (s) Shirts
R(s) = $15s
[U]Step 3: Calculate Break-Even Point[/U]
Break Even is where Cost = Revenue. Set C(s) = R(s)
$6.50s + 75 = $15s
[U]Step 4: Subtract 6.5s from each side[/U]
8.50s = 75
[U]Step 5: Solve for s[/U]
[URL='https://www.mathcelebrity.com/1unk.php?num=8.50s%3D75&pl=Solve']Run this through our equation calculator[/URL] to get s = 8.824. We round up to the next integer to get [B]s = 9[/B].
[B][URL='https://www.facebook.com/MathCelebrity/videos/10156751976078291/']FB Live Session[/URL][/B]
You and some friends are going to the fair. Each ticket for a ride costs $0.75. If n is the number oYou and some friends are going to the fair. Each ticket for a ride costs $0.75. If n is the number of tickets purchased, write an expression that gives the total cost of buying n tickets.
We know cost = Price * Quantity, so we have:
Cost of buying n tickets = [B]0.75n[/B]
You and your friend are playing a number-guessing game. You ask your friend to think of a positive nYou and your friend are playing a number-guessing game. You ask your friend to think of a positive number, square the number, multiply the result by 2, and then add three. If your friend's final answer is 53, what was the original number chosen?
Let n be our original number.
Square the number means we raise n to the power of 2:
n^2
Multiply the result by 2:
2n^2
And then add three:
2n^2 + 3
If the friend's final answer is 53, this means we set 2n^2 + 3 equal to 53:
2n^2 + 3 = 53
To solve for n, we subtract 3 from each side, to isolate the n term:
2n^2 + 3 - 3 = 53 - 3
Cancel the 3's on the left side, and we get:
2n^2 = 50
Divide each side of the equation by 2:
2n^2/2 = 50/2
Cancel the 2's, we get:
n^2 = 25
Take the square root of 25
n = +-sqrt(25)
n = +-5
We are told the number is positive, so we discard the negative square root and get:
n = [B]5[/B]
You and your friend are saving for a vacation. You start with the same amount and save for the sameYou and your friend are saving for a vacation. You start with the same amount and save for the same number of weeks. You save 75 per week, and your friend saves 50 per week. When vacation time comes, you have 950, and your friend has 800. How much did you start with, and for how many weeks did you save?
[U]Let w be the number of weeks. Set up two equations where s is the starting amount:[/U]
(1) s + 75w =950
(2) s + 50w = 800
[U]Rearrange (1) into (3) to solve for s by subtracting 75w[/U]
(3) s = 950 - 75w
[U]Rearrange (2) into (4) to solve for s by subtracting 50w[/U]
(4) s = 800 - 50w
[U]Set (3) and (4) equal to each other so solve for w[/U]
950 - 75w = 800 - 50w
[U]Add 75w to each side, and subtract 950 from each side:[/U]
25w = 150
[U]Divide each side by w[/U]
[B]w = 6[/B]
Now plug w = 6 into (3)
s = 950 - 75(6)
s = 950 - 450
[B]s = 500[/B]
You are baking muffins for your class. There are 17 total students in your class and you have bakedYou are baking muffins for your class. There are 17 total students in your class and you have baked 5 muffins. Write and solve an equation to find the additional number x of muffins you need to bake in order to have 2 muffins for each student. Write your equation so that the units on each side of the equation are muffins per student.
2 muffins per student = 17*2 = 34 muffins.
We have an equation with a given 5 muffins, how much do we need (x) to get to 34 muffins (2 per student):
x + 5 = 34
To solve for x, we type this equation into our search engine and we get:
x = [B]29[/B]
You are baking muffins for your class. There are 17 total students in your class and you have bakedYou are baking muffins for your class. There are 17 total students in your class and you have baked 5 muffins. Write and solve an equation to find the additional number x of muffins you need to bake in order to have 2 muffins for each student. Write your equation so that the units on each side of the equation are muffins per student.
[U]Calculate total muffins:[/U]
Total muffins = 2 muffins per student * 17 students
Total muffins = 34
[U]Set up the equation using x for muffins:[/U]
[B]x + 5 = 34
[/B]
[U]To Solve this equation for x, we [URL='https://www.mathcelebrity.com/1unk.php?num=x%2B5%3D34&pl=Solve']type it in our search engine[/URL] and we get:[/U]
x = [B]29
[/B]
You are buying boxes of cookies at a bakery. Each box of cookies costs $4. In the equation below, cYou are buying boxes of cookies at a bakery. Each box of cookies costs $4. In the equation below, c represents the number of boxes of cookies you buy, and d represents the amount the cookies will cost you (in dollars). The relationship between these two variables can be expressed by the following equation: d=4c. Identify the dependent and independent variables.
[B]The variable d is dependent, and c is independent since the value of d is determined by c.[/B]
You are comparing the costs of producing shoes at two different manufacturers. Company 1 charges $5You are comparing the costs of producing shoes at two different manufacturers. Company 1 charges $5 per pair of shoes plus a $650 flat fee. Company 2 charges $4 per pair of shoes plus a $700 flat fee. How many pairs of shoes are produced when the total costs for both companies are equal?
Let s be the number of shoes. We have two equations:
(1) C = 5s + 650
(2) C = 4s + 700
Set the costs equal to each other
5s + 650 = 4s + 700
Subtract 4s from each side
s + 650 = 700
Subtract 650 from each side
[B]s =50[/B]
You are heading to Cedar Point for the day. It costs $50 to get in to the park and each ride costs $You are heading to Cedar Point for the day. It costs $50 to get in to the park and each ride costs $2 for a ticket. Write an expression for the total cost of going to Cedar Point where r is the number of rides.
Set up the cost equation C(r):
C(r) = Cost per ride * r rides + Park Fee
[B]C(r) = 2r + 50[/B]
You are making identical gift bags using 24 candles and 36 bottles of lotion. What is the greatest nYou are making identical gift bags using 24 candles and 36 bottles of lotion. What is the greatest number of gift bags you can make with no items left over?
We take the greatest common factor [URL='https://www.mathcelebrity.com/gcflcm.php?num1=24&num2=36&num3=&pl=GCF+and+LCM']GCF (24, 36) = 12[/URL]
So we have a ratio of 24/12 = 2 candles and 36/12 = 3 bottles of lotion per bag giving us [B]12 bags[/B].
You are parking your car in a garage. The first hour is free but every additional hour is 2 dollars.You are parking your car in a garage. The first hour is free but every additional hour is 2 dollars. You parked for 3.25 hours. What is the cost?
[U]Calculate the number of paid hours:[/U]
Paid Hours = Total Hours - 1 (since first hour is free)
Paid Hours = 3.25 - 1
Paid Hours = 2.25
[U]Calculate the total cost:[/U]
Total Cost = Hourly Rate * Paid Hours
Total Cost = 2 * 2.25
Paid Hours = [B]$4.50[/B]
You are selling fertilizer to female farmers in Ghana. There are 22,600,000 people in Ghana, and 60%You are selling fertilizer to female farmers in Ghana. There are 22,600,000 people in Ghana, and 60% are of working age. Within that working-age group, women account for 53%. Of the working-age females, 42% of them are employed in farming. What is the total number of potential customers for your fertilizer?
[U]Our sample population is found by this product:[/U]
Female farmers of working age in Ghana = Total people in Ghana *[I] Working Age[/I] * Women of working Age * Farmers
Since 60% = 0.6, 53% = 0.53, and 42% = 0.42, we have
Female farmers of working age in Ghana = 22,600,000 * 0.6 * 0.53 * 0.42
Female farmers of working age in Ghana = [B]3,018,456[/B]
You are using a spinner with the numbers 1-10 on it. Find the probability that the pointer will stoYou are using a spinner with the numbers 1-10 on it. Find the probability that the pointer will stop on an odd number or a number less than 4.
We want P(odd number) or P(n<4).
[LIST]
[*]Odd numbers are {1, 3, 5, 7, 9}
[*]n < 4 is {1, 2, 3}
[/LIST]
We want the union of these 2 sets:
{1, 2, 3, 5, 7, 9}
We have 6 possible pointers in a set of 10.
[B]6/10 = 3/5 = 0.6 or 60%[/B]
You bought a box of pens for $5 and some notepads for $3 each. You spent a total of $26.You bought a box of pens for $5 and some notepads for $3 each. You spent a total of $26.
Let p be the number of pens and n be the number of notepads. Our equation is:
5[B]p + 3n = 26[/B]
You bought a magazine for $3 and some candy bars for $2 each. You spent a total of $19. How many canYou bought a magazine for $3 and some candy bars for $2 each. You spent a total of $19. How many candy bars did you buy?
Calculate the candy bar spend:
Candy bar spend = Total spend - magazine spend
Candy bar spend = 19 - 3
Candy bar spend = 16
Calculate number of candy bars:
Number of candy bars = Candy Bar Spend / Cost per candy bar
Number of candy bars = 16/2
Number of candy bars = [B]$8[/B]
You bought a magazine for $5 and four erasers. You spent a total of $25.how much did each eraser cosYou bought a magazine for $5 and four erasers. You spent a total of $25.how much did each eraser cost?
[U]Calculate the cost of the erasers:[/U]
Cost of erasers = Total Spend - Magazine
Cost of erasers = 25 - 5
Cost of erasers = 20
[U]Calculate the cost per eraser:[/U]
Cost per eraser = Cost of erasers / Number of erasers
Cost per eraser = 20/4
Cost per eraser = [B]$5[/B]
You can get 2 different moving companies to help you move. The first one charges $150 up front thenYou can get 2 different moving companies to help you move. The first one charges $150 up front then $38 an hour. The second one charges $230 then $30 an hour, at what exact time will Both companies cost the same
[U]Company 1: We set up the cost equation C(h) where h is the number of hours[/U]
C(h) = Hourly Rate * h + up front charge
C(h) = 38h + 150
[U]Company 2: We set up the cost equation C(h) where h is the number of hours[/U]
C(h) = Hourly Rate * h + up front charge
C(h) = 30h + 230
The question asks for h when both cost equations C(h) are equal. So we set both C(h) equations equal to other:
38h + 150 = 30h + 230
To solve for h, we [URL='https://www.mathcelebrity.com/1unk.php?num=38h%2B150%3D30h%2B230&pl=Solve']type this equation into our search engine [/URL]and we get:
h = [B]10[/B]
You can pay a daily entrance fee of $3 or purchase a membership for the 12 week summer season for $8You can pay a daily entrance fee of $3 or purchase a membership for the 12 week summer season for $82 and pay only $1 per day to swim. How many days would you have to swim to make the membership worthwhile?
Set up cost equations:
Daily entrance fee:
3d where d is the number of days of membership
Membership fee
82 + 1d
Set them equal to each other
82 + 1d = 3d
Subtract d from each side:
2d = 82
Divide each side by 2
[B]d = 41[/B]
You can spend at most $35. If you buy 5 tickets, how much can you spend on each ticketYou can spend at most $35. If you buy 5 tickets, how much can you spend on each ticket
We're given the number of tickets as 5.
We know cost = price * quantity
Let p = price
The phrase [B]at most[/B] means less than or equal to, so we have:
5p <= 35
[URL='https://www.mathcelebrity.com/interval-notation-calculator.php?num=5p%3C%3D35&pl=Show+Interval+Notation']Plugging this inequality into our search engine[/URL], we have:
[B]p <= 7[/B]
You conduct 50,000 tests, 1500 people test positive, what's the positivity rate?You conduct 50,000 tests, 1500 people test positive, what's the positivity rate?
[U]Our Positivity Rate formula is below:[/U]
Positivity Rate = 100% * positive tests / Total tests
[U]Plugging in our numbers from the problem, we get:[/U]
Positivity Rate = 100% * 1500/50000
Positivity Rate = 100% * 0.03
Positivity Rate = [B]3%[/B]
You have $10.00 to spend on tacos. Each taco costs $0.50. Write and solve an inequality that explainYou have $10.00 to spend on tacos. Each taco costs $0.50. Write and solve an inequality that explains how many tacos you can buy.
Let's start with t as the number of tacos.
We know that cost = price * quantity, so we have the following inequality for our taco spend:
[B]0.5t <= 10
[/B]
Divide each side of the inequality by 0.5 to isolate t:
0.5t/0.5 <= 10/0.5
Cancel the 0.5 on the left side and we get:
t <= [B]20
[MEDIA=youtube]yy51EsGi1nM[/MEDIA][/B]
You have $140 in a savings account and save $10 per week. Your friend has $95 in a savings account aYou have $140 in a savings account and save $10 per week. Your friend has $95 in a savings account and saves $19 per week. How many weeks will it take for you and your friend to have the same balance?
[U]Set up the savings account S(w) for you where w is the number of weeks[/U]
S(w) = 140 + 10w
[U]Set up the savings account S(w) for your friend where w is the number of weeks[/U]
S(w) = 95 + 19w
The problem asks for the number of weeks (w) when the balances are the same. So set both equations equal to each other:
140 + 10w = 95 + 19w
To solve this equation for w, [URL='https://www.mathcelebrity.com/1unk.php?num=140%2B10w%3D95%2B19w&pl=Solve']we type it in the search engine[/URL] and get:
w = [B]5[/B]
You have $20 to spend on a taxi fare. The ride costs $5 plus $2.50 per kilometer.You have $20 to spend on a taxi fare. The ride costs $5 plus $2.50 per kilometer.
Let k be the number of kilometers.
Total Cost = Cost per kilometer * number of kilometers + Fixed Cost
With k for kilometers, 2.5 as cost per kilometer, and 5 as fixed cost, and 20 on total cost, we have:
2.5k + 5 = 20
To solve this equation for k, we [URL='https://www.mathcelebrity.com/1unk.php?num=2.5k%2B5%3D20&pl=Solve']type it in our math engine [/URL]and we get
k = [B]6[/B]
You have $20 to spend on taxi fare. The ride costs $5 plus $2.50 per kilometer. Write the inequalityYou have $20 to spend on taxi fare. The ride costs $5 plus $2.50 per kilometer. Write the inequality.
Let k be the number of kilometers. We want our total to be $20 [I]or less. [/I]We have the following inequality:
[B]2.50k + 5 <= 20[/B]
You have $6.50 to make copies. It cost $0.45. Write and solve an equality that represents the numberYou have $6.50 to make copies. It cost $0.45. Write and solve an equality that represents the number of copies
Hoow many exact copies can you make? Let the number of copies be c. We have:
0.45c = 6.50
[URL='https://www.mathcelebrity.com/1unk.php?num=0.45c%3D6.50&pl=Solve']Type this equation into our search engine[/URL] and we get:
c = 14.444
We round down and say we can make 14 copies.
[B]c = 14[/B]
Now, if the problem asks you for an [I]inequality[/I], we want to see how many copies we can make without exceeding our $6.50 spend. So it's less than or equal to:
[B]c <= 14[/B]
You have $80. Jeans cost $29 and shirts cost $12. Mom told you to buy one pair of jeans and use theYou have $80. Jeans cost $29 and shirts cost $12. Mom told you to buy one pair of jeans and use the rest of the money to buy shirts. Find the inequality.
Let j be the number of jeans. Let s be the number of shirts. We are given:
[LIST]
[*]Mom told you to buy one pair of jeans. So we have $80 to start with - $29 for 1 pair of jeans = $51 left over
[/LIST]
Now, since shirts cost $12 each, and our total number of shirts we can buy is s, our inequality is [B]12s <= 51[/B].
We want to find the s that makes this inequality true.
[URL='https://www.mathcelebrity.com/interval-notation-calculator.php?num=12s%3C%3D51&pl=Show+Interval+Notation']Run this statement through our calculator[/URL], and we get s <= 4.25. But, we need s to be an integer, so we have s <= 4.
You have 36 marbles that are red, white and blue. If 12 of the marbles are red, and 13 of the marbleYou have 36 marbles that are red, white and blue. If 12 of the marbles are red, and 13 of the marbles are blue, what fraction of marbles are white?
[U]Calculate the number of white marbles:[/U]
Number of white marbles = Total marbles - Red marbles - Blue marbles
Number of white marbles = 36 - 12 - 13
Number of white marbles = 11
[U]Calculate the fraction of white marbles:[/U]
Fraction of white marbles =Number of white marbles / Total marbles
Fraction of white marbles = [B]11/36[/B]
You have to pay 29 a month until you reach 850 how many months will that takeYou have to pay 29 a month until you reach 850 how many months will that take.
Let m be the number of months. We set up the inequality:
29m > = 850 <-- We want to know when we meet or exceed 850, so we use greater than or equal to
[URL='https://www.mathcelebrity.com/interval-notation-calculator.php?num=29m%3E%3D850&pl=Show+Interval+Notation']Type this inequality into our search engine[/URL], and we get:
m >= 29.31
We round up to the next integer month, to get [B]m = 30[/B].
You need to hire a catering company to serve meals to guests at a wedding reception. Company A chargYou need to hire a catering company to serve meals to guests at a wedding reception. Company A charges $500 plus $20 per guest. Company B charges $800 plus $16 per guest. For how many guests are the total costs the same at both companies?
Set up the Cost equations for both companies where g is the number of guests:
[LIST]
[*]C(a) = 20g + 500
[*]C(b) = 16g + 800
[/LIST]
Set each equation equal to each other and use our [URL='http://www.mathcelebrity.com/1unk.php?num=20g%2B500%3D16g%2B800&pl=Solve']equation solver[/URL] to get:
[B]g = 75[/B]
You open a hat stand in the mall with an initial start-up cost of $1500 plus 50 cents for every hatYou open a hat stand in the mall with an initial start-up cost of $1500 plus 50 cents for every hat you stock your booth with. a) What is your cost function?
Set up the cost function C(h) where h is the number of hats you stock:
C(h) = Cost per hat * h hats + Start Up Cost
[B]C(h) = 0.5h + 1500[/B]
You open up a savings account. Your initial deposit is $300. You plan to add in $50 per month to savYou open up a savings account. Your initial deposit is $300. You plan to add in $50 per month to save up for college. Write an equation to represent the situation.
Let m be the number of months. We have a Savings account function S(m):
S(m) = Monthly deposit * number of months + Initial Deposit
[B]S(m) = 50m + 300[/B]
You pay 510.00 to rent a storage unit for 3 months the total cost includes an initial deposit plus aYou pay 510.00 to rent a storage unit for 3 months the total cost includes an initial deposit plus a monthly fee of 160.00. Write and equation that represents your total cost Y in dollars after X months.
Set up the cost function Y where x is the number of months you rent
[B]Y = 160x + 510[/B]
You prepare 18 scoops of dog food for 6 dogs, and prepare 24 scoops of dog food for 8 dogs. What isYou prepare 18 scoops of dog food for 6 dogs, and prepare 24 scoops of dog food for 8 dogs. What is the constant of proportionality for the amount of dog food to the number of dogs? How many scoops of dog food should you prepare for 9 dogs?
18/6 = 24/8 = 3 as the constant of proportionality for the amount of dog food to the number of dogs.
What this means is for every dog, we give them 3 scoops of food.
So for 9 dogs, we give 9 dogs * 3 scoops of food per dog = 27 scoops
You read 1 chapter every hour. You read for 3 hours after school. How many chapters did you read?You read 1 chapter every hour. You read for 3 hours after school. How many chapters did you read?
Chapters Read = Chapters per hour * number of hours
Chapters Read = 1 * 3
Chapters Read = [B]3[/B]
You receive 9 text messages in 12 minutes. What is the rate of text messages per hour?You receive 9 text messages in 12 minutes. What is the rate of text messages per hour?
Set up a proportion of text messages to minutes. Remember, there are 60 minutes in an hour, so we have:
9/12 = t/60 where t is the number of text messages in 60 minutes (1 hour)
[URL='https://www.mathcelebrity.com/prop.php?num1=9&num2=t&den1=12&den2=60&propsign=%3D&pl=Calculate+missing+proportion+value']Typing this into the search engine[/URL], we get [B]t = 45[/B].
You rent skates for $5 and pay $1 an hour for skating per person. Write an equation.You rent skates for $5 and pay $1 an hour for skating per person. Write an equation.
Let the number of hours be h. Our cost function C(h) is:
C(h) = Cost per hour * hourly rate + rental fee
Plugging in our numbers, we get:
[B]C(h) = h + 5[/B]
You roll a red die and a green die. What is the size of the sample space of all possible outcomes ofYou roll a red die and a green die. What is the size of the sample space of all possible outcomes of rolling these two dice, given that the red die shows an even number and the green die shows an odd number greater than 1?
[LIST]
[*]Red Die Sample Space {2, 4, 6}
[*]Green Die Sample Space {3, 5}
[*]Total Sample Space {(2, 3), (2, 5), (4, 3), (4, 5), (6, 3), (6, 5)}
[*]The sie of this is 6 elements.
[/LIST]
You roll a standard, fair, 5-sided die and see what number you get. Find the sample space of this exYou roll a standard, fair, 5-sided die and see what number you get. Find the sample space of this experiment. Write your answer using { } symbols, and write your values in order with a comma but no spaces between
Sample Space:
[B]{1,2,3,4,5}[/B]
You save $15 a week. How much will you have saved after w weeks?You save $15 a week. How much will you have saved after w weeks?
Total savings = Savings per week * number of weeks
Total savings = [B]15w[/B]
you start at a point on the number line and move 4 units left. If you are now at 10, then what was yyou start at a point on the number line and move 4 units left. If you are now at 10, then what was your original point?
Work backwards. If we're at 10, and we moved left, this means we add 4 to get back to our starting point:
10 + 4 = [B]14[/B]
you start with 150$ in year bank account if you save $28 a year with equation would model your savinyou start with 150$ in year bank account if you save $28 a year with equation would model your savings find equation.
We create a savings function S(y) where y is the number of years since the start.
S(y) = Savings per year * y + initial savings
[B]S(y) = 28y + 150[/B]
You throw two dice. The red dice is fair but on the blue dice the probability of a 1=15%, probabilitYou throw two dice. The red dice is fair but on the blue dice the probability of a 1=15%, probability of a 2 is 25%, and the probability of any other number is 15%. What is the probability of getting 4?
Possible Rolls with a sum of 4:
[LIST]
[*]R = 1, B = 3
[*]R = 2, B = 2
[*]R = 3, B = 1
[/LIST]
Probabilities:
[LIST]
[*]R = 1, B = 3 = 1/6 * 15/100 = 15/600 = 1/40 = 0.025
[*]R = 2, B = 2 = 1/6 * 25/100 = 25/600 = 1/24 = 0.041667
[*]R = 3, B = 1 = 1/6 * 15/100= 15/600 = 1/40 = 0.025
[/LIST]
We add all three probabilities up to get:
0.025 + 0.025 + 0.014667 = [B]0.09166667[/B]
You want to put 520 quarters in coin wrappers. You need one wrapper for every $10 in quarters. WriteYou want to put 520 quarters in coin wrappers. You need one wrapper for every $10 in quarters. Write an equation you can use to find how many wrappers w you need
First, calculate the number of quarters in $10:
Quarters in $10 = Value of Quarters / Cost per quarter
Quarters in $10 = 10/0.25
Quarters in $10 = 40
Now find out how many wrappers we need with each wrapper holding 40 quarters:
Number of wrappers = Total quarters / Quarters per wrapper
Number of wrappers =520/40
Number of wrappers = [B]13[/B]
You went to the State Fair and spent $20. If cotton candy costs $2 and a soda pop costs $1. Which eqYou went to the State Fair and spent $20. If cotton candy costs $2 and a soda pop costs $1. Which equation represents the relation between the number of cotton candy (c) and soda pops (s) you can buy?
Our total cost for 20 at the state fair is:
Cost of Cotton Candy + Cost of Soda = 20
We know that price = cost * quantity, so we have:
2c + 1s = 20
Since 1s is written as s, we have:
[B]2c + s = 20[/B]
You were able to send 30 snapchat stories in 9 minutes. At this rate, how many snapchat stories canYou were able to send 30 snapchat stories in 9 minutes. At this rate, how many snapchat stories can you send in 21 minutes?
Set up a proportion of stories to minutes where s is the number of Snapchat stories you can send in 21 minutes:
30/9 = s/21
To solve this proportion for s, we [URL='https://www.mathcelebrity.com/prop.php?num1=30&num2=s&den1=9&den2=21&propsign=%3D&pl=Calculate+missing+proportion+value']type it in our math engine[/URL] and we get:
s = [B]70[/B]
You work for a remote manufacturing plant and have been asked to provide some data about the cost ofYou work for a remote manufacturing plant and have been asked to provide some data about the cost of specific amounts of remote each remote, r, costs $3 to make, in addition to $2000 for labor. Write an expression to represent the total cost of manufacturing a remote. Then, use the expression to answer the following question. What is the cost of producing 2000 remote controls?
We've got 2 questions here.
Question 1: We want the cost function C(r) where r is the number of remotes:
C(r) = Variable Cost per unit * r units + Fixed Cost (labor)
[B]C(r) = 3r + 2000
[/B]
Question 2: What is the cost of producing 2000 remote controls.
In this case, r = 2000, so we want C(2000)
C(2000) = 3(2000) + 2000
C(2000) = 6000 + 2000
C(2000) = [B]$8000[/B]
Your friends in class want you to make a run to the vending machine for the whole group. Everyone piYour friends in class want you to make a run to the vending machine for the whole group. Everyone pitched in to make a total of $12.50 to buy snacks. The fruit drinks are $1.50 and the chips are $1.00. Your friends want you to buy a total of 10 items. How many drinks and how many chips were you able to purchase?
Let c be the number of chips. Let f be the number of fruit drinks. We're given two equations:
[LIST=1]
[*]c + f = 10
[*]c + 1.5f = 12.50
[/LIST]
Rearrange equation 1 by subtracting f from both sides:
[LIST=1]
[*]c = 10 - f
[*]c + 1.5f = 12.50
[/LIST]
Substitute equation (1) into equation (2):
10 - f + 1.5f = 12.50
To solve for f, we [URL='https://www.mathcelebrity.com/1unk.php?num=10-f%2B1.5f%3D12.50&pl=Solve']type this equation into our search engine[/URL] and we get:
[B]f = 5[/B]
Now, substitute this f = 5 value back into modified equation (1) above:
c = 10 - 5
[B]c = 5[/B]
your starting salary at a new company is 45000. Each year you receive a 2% raise. How long will it tyour starting salary at a new company is 45000. Each year you receive a 2% raise. How long will it take you to make $80000?
Let y be the number of years of compounding the 2% raise. Since 2% as a decimal is 0.02, we have the following equation for compounding the salary:
45000 * (1.02)^y = 80000
Divide each side by 45000:
(1.02)^y = 1.77777777778
To solve this equation for y, we [URL='https://www.mathcelebrity.com/natlog.php?num=1.02%5Ey%3D1.77777777778&pl=Calculate']type it in our search engine[/URL] and we get:
y = [B]29.05[/B]
[B]Or just over 29 years[/B]
Youre setting sales goals for next month. You base your goals on previous average sales. The actualYoure setting sales goals for next month. You base your goals on previous average sales. The actual sales for the same month for the last four years have been 24 units, 30 units, 23 units, and 27 units. What is the average number of units you can expect to sell next month?
Find the average sales for the last four years:
Average Sales = Total Sales / 4
Average Sales = (24 + 30 + 23 + 27) / 4
Average Sales = 104 / 4
Average Sales = [B]26 units[/B]
Zach can read 7 pages of a book in 5 minutes. At this rate, how long will it take him to read the enZach can read 7 pages of a book in 5 minutes. At this rate, how long will it take him to read the entire 175 page book?
Set up a proportion of pages to minutes where m is the number of minutes needed to read 175 pages:
7/5 = 175/m
To solve this proportion, we [URL='https://www.mathcelebrity.com/prop.php?num1=7&num2=175&den1=5&den2=m&propsign=%3D&pl=Calculate+missing+proportion+value']type it in our search engine [/URL]and we get:
m = [B]125 minutes or 2 hours and 5 minutes[/B]
Zachary has 25 country music CDs, which are one-fifth of his CD collection. How many CDs does ZacharZachary has 25 country music CDs, which are one-fifth of his CD collection. How many CDs does Zachary have?
Let the number of Zachary's CD's be:
25 * 1/5 = 5 country music CD's
Zalika thinks of a number. She subtracts 6 then multiplies the result by 5. The answer is the same aZalika thinks of a number. She subtracts 6 then multiplies the result by 5. The answer is the same as subtracting 5 from the number then multiplying by 4.
The phrase [I]a number[/I] means an arbitrary variable, let's call it x. We're given two expressions in relation to this number (x):
[U]She subtracts 6 then multiplies the result by 5[/U]
[LIST]
[*]Subtract 6: x - 6
[*]Multiply the result by 5: 5(x - 6)
[/LIST]
[U]She subtracts 5 from the number then multiplying by 4[/U]
[LIST]
[*]Subtract 6: x - 5
[*]Multiply the result by 5: 4(x - 5)
[/LIST]
Finally, the expression [I]is the same as[/I] means an equation, so we set the first expression equal to the second expression to make the following equation:
5(x - 6) = 4(x - 5)
Now, let's solve the equation for x. To do this, we [URL='https://www.mathcelebrity.com/1unk.php?num=5%28x-6%29%3D4%28x-5%29&pl=Solve']type this equation into our search engine [/URL]and we get:
x = [B]10[/B]
Zero Multiplication PropertyFree Zero Multiplication Property Calculator - Demonstrates the Zero Multiplication property using a number. Also called the Zero Product Property.
Numerical Properties