A = π(R2 - r2)
where R = outer radius and r = inner radius and π = 3.1415926535898
A = 6πa
where a = radius
AL = 16a
where a = radius
D = 2r
where r = radius
C = 2πr
where r = radius and π = 3.1415926535898
A = πr2
where r = radius and π = 3.1415926535898
V = πr2h/3
where r = radius of the base and h is the height of the cone and π = 3.1415926535898
SA = πr2h + pi;rl
where r = radius of the base and l = length of the cone and h is the height of the cone and π = 3.1415926535898
LA = πrl
where r = radius of the base and l = length of the cone and π = 3.1415926535898
V = 8
LA = 4s2
where s = side length
V = s3
where s = side length
SA = 6s2
where s = side length
SA = 2πr2h + 2πrh
where r = radius and h = height and π = 3.1415926535898
V = πr2h
where r = radius and h = height and π = 3.1415926535898
LA = 2πrh
where r = radius and h = height and π = 3.1415926535898
V = 4
P = 4s
where s = side length
A = s2
where s = side length
A = lw
where l = length and w = width
P = 2l + 2w
where l = length and w = width
V = 4
P = 10s
where s = side length
IAS = 1440°