Calculate the hyperbolic inverse:
arcsinh(1)
arcsinh(x) formula
arcsinh(x) = Ln(x + √x2 + 1)
Plugging in x = 1, we get:
arcsinh(1) = Ln(1 + √12 + 1)
arcsinh(1) = Ln(1 + √1 + 1)
arcsinh(1) = Ln(1 + √2)
arcsinh(1) = Ln(1 + 1.4142135623731)
arcsinh(1) = Ln(2.4142135623731)
Final Answer
arcsinh(1) = 0.88137358701954
How does the Hyperbolic Inverse Calculator work?
Free Hyperbolic Inverse Calculator - Calculates hyperbolic function values:
arcsinh, arccosh, arctanh, arccsch, arcsech, arccoth
This calculator has 1 input.
What 6 formulas are used for the Hyperbolic Inverse Calculator?
arcsinh(x) = Ln(x + √x2 + 1)
arccosh(x) = Ln(x + √x2 - 1) where x ≥ 1
arctanh(x) = 0.5 Ln[(1 + x)/(1 - x)] where -1 < x < 1
arccsch(x) = Ln(1/x + √1/x2 + 1)
arcsech(x) = Ln(1/x + √1/x2 - 1) where 0 < x ≤ 1
arctanh(x) = 0.5 Ln[(x + 1)/(x - 1)] where x < -1 or x > 1
What 3 concepts are covered in the Hyperbolic Inverse Calculator?
- euler
- Famous mathematician who developed Euler's constant
- function
- relation between a set of inputs and permissible outputs
ƒ(x) - hyperbolic inverse
- multivalued function that are the inverse functions of the hyperbolic functions