l logof200

Evaluate the following logarithmic expression

logof200

Evaluate logof200

You didn't enter a base

We'll do bases e and 2-10

Evaluate loge(200) using the Change of Base Formula

The formula for the change of base rule in logb(x) is as follows:

logb(x)  =  Ln(x)
  Ln(b)

Given b = e and x = 200, we have:

loge(200)  =  Ln(200)
  Ln(e)

Ln(e) = 1

loge(200) = 5.298317366548

Evaluate log2(200) using the Change of Base Formula

The formula for the change of base rule in logb(x) is as follows:

logb(x)  =  Ln(x)
  Ln(b)

Given b = 2 and x = 200, we have:

log2(200)  =  Ln(200)
  Ln(2)

log2(200) = 7.6438561897747

Evaluate log3(200) using the Change of Base Formula

The formula for the change of base rule in logb(x) is as follows:

logb(x)  =  Ln(x)
  Ln(b)

Given b = 3 and x = 200, we have:

log3(200)  =  Ln(200)
  Ln(3)

log3(200) = 4.8227363021502

Evaluate log4(200) using the Change of Base Formula

The formula for the change of base rule in logb(x) is as follows:

logb(x)  =  Ln(x)
  Ln(b)

Given b = 4 and x = 200, we have:

log4(200)  =  Ln(200)
  Ln(4)

log4(200) = 3.8219280948874

Evaluate log5(200) using the Change of Base Formula

The formula for the change of base rule in logb(x) is as follows:

logb(x)  =  Ln(x)
  Ln(b)

Given b = 5 and x = 200, we have:

log5(200)  =  Ln(200)
  Ln(5)

log5(200) = 3.2920296742202

Evaluate log6(200) using the Change of Base Formula

The formula for the change of base rule in logb(x) is as follows:

logb(x)  =  Ln(x)
  Ln(b)

Given b = 6 and x = 200, we have:

log6(200)  =  Ln(200)
  Ln(6)

log6(200) = 2.9570472251115

Evaluate log7(200) using the Change of Base Formula

The formula for the change of base rule in logb(x) is as follows:

logb(x)  =  Ln(x)
  Ln(b)

Given b = 7 and x = 200, we have:

log7(200)  =  Ln(200)
  Ln(7)

log7(200) = 2.7227965120179

Evaluate log8(200) using the Change of Base Formula

The formula for the change of base rule in logb(x) is as follows:

logb(x)  =  Ln(x)
  Ln(b)

Given b = 8 and x = 200, we have:

log8(200)  =  Ln(200)
  Ln(8)

log8(200) = 2.5479520632582

Evaluate log9(200) using the Change of Base Formula

The formula for the change of base rule in logb(x) is as follows:

logb(x)  =  Ln(x)
  Ln(b)

Given b = 9 and x = 200, we have:

log9(200)  =  Ln(200)
  Ln(9)

log9(200) = 2.4113681510751

Evaluate log10(200) using the Change of Base Formula

The formula for the change of base rule in logb(x) is as follows:

logb(x)  =  Ln(x)
  Ln(b)

Given b = 10 and x = 200, we have:

log10(200)  =  Ln(200)
  Ln(10)

log10(200) = 2.301029995664

Final Answer


loge(200) = 5.298317366548
log2(200) = 7.6438561897747
log3(200) = 4.8227363021502
log4(200) = 3.8219280948874
log5(200) = 3.2920296742202
log6(200) = 2.9570472251115
log7(200) = 2.7227965120179
log8(200) = 2.5479520632582
log9(200) = 2.4113681510751
log10(200) = 2.301029995664