Simulate 10 bernoulli trials with:

a success probability p = 0.45

Bernoulli Trial Formula

pkqn - k
where p = success probability, q = 1 - p

Bernoulli Trial Table

Trial #Success/FailureMath Work 1Math Work 2Probability
1Success0.4510.55(1 - 1)0.45 x 10.45
2Failure0.4500.55(1 - 0)1 x 0.550.55
3Failure0.4500.55(1 - 0)1 x 0.550.55
4Failure0.4500.55(1 - 0)1 x 0.550.55
5Success0.4510.55(1 - 1)0.45 x 10.45
6Success0.4510.55(1 - 1)0.45 x 10.45
7Success0.4510.55(1 - 1)0.45 x 10.45
8Success0.4510.55(1 - 1)0.45 x 10.45
9Failure0.4500.55(1 - 0)1 x 0.550.55
10Success0.4510.55(1 - 1)0.45 x 10.45

Compare Expected to Actual Results:

Given your success probability of 0.45:
we expect 0.45 x 10 = 4.5 successes

Our actual results were 6 successes and 4 failures

Calculate the median:


Since q > p, 0.55 > 0.45, then our median is 0

Calculate Variance:

Variance σ2 = pq or p(1 - p)

Variance σ2 = (0.45)(0.55)

Variance σ2 = 0.2475

Calculate Skewness:

Skewness  =  q - p
  pq

Skewness  =  0.55 - 0.45
  (0.45)(0.55)

Skewness  =  0.1
  0.2475

Skewness  =  0.1
  0.49749371855331

Skewness = 0.20100756305184

Calculate Kurtosis:

Kurtosis  =  1 - 6pq
  pq

Kurtosis  =  1 - 6(0.45)(0.55)
  (0.45)(0.55)

Kurtosis  =  1 - 6(0.2475)
  0.2475

Kurtosis  =  1 - 1.485
  0.2475

Kurtosis  =  -0.485
  0.2475

Kurtosis = -1.959595959596

Calculate Entropy:

Entropy = -qLn(q) - pLn(p)

Entropy = -(0.55)Ln(0.55) - 0.45Ln(0.45)

Entropy = -(0.55)(-0.59783700075562) - 0.45(-0.79850769621777)

Entropy = -(-0.32881035041559) - -0.359328463298

Entropy = -0.190671536702

Final Answer


Probability = 0.45
Median = 0
Variance = 0.2475
Skewness = 0.20100756305184
Kurtosis = -1.959595959596
Entropy = -0.190671536702