Simulate 10 bernoulli trials with:
a success probability p = 0.45
pkqn - k
where p = success probability, q = 1 - p
Trial # | Success/Failure | Math Work 1 | Math Work 2 | Probability |
---|---|---|---|---|
1 | Success | 0.4510.55(1 - 1) | 0.45 x 1 | 0.45 |
2 | Failure | 0.4500.55(1 - 0) | 1 x 0.55 | 0.55 |
3 | Failure | 0.4500.55(1 - 0) | 1 x 0.55 | 0.55 |
4 | Failure | 0.4500.55(1 - 0) | 1 x 0.55 | 0.55 |
5 | Success | 0.4510.55(1 - 1) | 0.45 x 1 | 0.45 |
6 | Success | 0.4510.55(1 - 1) | 0.45 x 1 | 0.45 |
7 | Success | 0.4510.55(1 - 1) | 0.45 x 1 | 0.45 |
8 | Success | 0.4510.55(1 - 1) | 0.45 x 1 | 0.45 |
9 | Failure | 0.4500.55(1 - 0) | 1 x 0.55 | 0.55 |
10 | Success | 0.4510.55(1 - 1) | 0.45 x 1 | 0.45 |
Given your success probability of 0.45:
we expect 0.45 x 10 = 4.5 successes
Our actual results were 6 successes and 4 failures
Variance σ2 = pq or p(1 - p)
Variance σ2 = (0.45)(0.55)
Variance σ2 = 0.2475
Skewness = | q - p |
√pq |
Skewness = | 0.55 - 0.45 |
√(0.45)(0.55) |
Skewness = | 0.1 |
√0.2475 |
Skewness = | 0.1 |
0.49749371855331 |
Skewness = 0.20100756305184
Kurtosis = | 1 - 6pq |
√pq |
Kurtosis = | 1 - 6(0.45)(0.55) |
(0.45)(0.55) |
Kurtosis = | 1 - 6(0.2475) |
0.2475 |
Kurtosis = | 1 - 1.485 |
0.2475 |
Kurtosis = | -0.485 |
0.2475 |
Kurtosis = -1.959595959596
Entropy = -qLn(q) - pLn(p)
Entropy = -(0.55)Ln(0.55) - 0.45Ln(0.45)
Entropy = -(0.55)(-0.59783700075562) - 0.45(-0.79850769621777)
Entropy = -(-0.32881035041559) - -0.359328463298
Entropy = -0.190671536702