Determine the vector operation A + B:
Rewrite our vectors in terms of coordinates:
(
a1,
a2,
a3) = (
1,
2,
3)
(
b1,
b2,
b3) = (
4,
5,
6)
Add the respective vector components:
A + B = (
a1 +
b1 ,
a2 +
b2 ,
a3 +
b3 )
A + B = (
1 +
4,
2 +
5,
3 +
6)
A + B = (5, 7, 9)Expresed in vector format, we have:
Calculate the length (magnitude) of A + B
Rewrite the vector in terms of coordinates:
(a + b
1, a + b
2, a + b
3) = (5, 7, 9)
The formula for this is below:
||A + B|| = Square Root(a + b
12 + a + b
22 + a + b
32)
||A + B|| = Square Root(5
2 + 7
2 + 9
2)
||A + B|| = √
25 + 49 + 81||A + B|| = √
155||A + B|| = 12.449899597989