Multiply the 2 binomials using FOIL and the box method:

(2x + 6)(3x - 9)

Define FOIL Formula:

First-Outside-Inside-Last:
(a + b)(c + d) = (a * c) + (b * c) + (a * d) + (b * d)

Set our FOIL values:

a = 2x, b = 6, c = 3x, and d = -9

Evaluate:

(2x + 6)(3x - 9) = (2x * 3x) + (6 * 3x) + (2x * -9) + (6 * -9)

(2x + 6)(3x - 9) = 6x2 + 18 - 18x - 54

FOIL Box Method

Write the first 2 terms across the top and the next 2 terms horizontally

  2x6
3x    
-9    

Multiply each top row term by the respective left column term

  2x6
3x2x * 3x6 * 3x
-92x * -96 * -9

(2x + 6)(3x - 9) = (2x * 3x) + (6 * 3x) + (2x * -9) + (6 * -9)

(2x + 6)(3x - 9) = 6x2 + 18 - 18x - 54

Final Answer


6x2 - 54