Simulate 20 bernoulli trials with:
a success probability p = 0.75
pkqn - k
where p = success probability, q = 1 - p
Trial # | Success/Failure | Math Work 1 | Math Work 2 | Probability |
---|---|---|---|---|
1 | Success | 0.7510.25(1 - 1) | 0.75 x 1 | 0.75 |
2 | Success | 0.7510.25(1 - 1) | 0.75 x 1 | 0.75 |
3 | Success | 0.7510.25(1 - 1) | 0.75 x 1 | 0.75 |
4 | Failure | 0.7500.25(1 - 0) | 1 x 0.25 | 0.25 |
5 | Success | 0.7510.25(1 - 1) | 0.75 x 1 | 0.75 |
6 | Success | 0.7510.25(1 - 1) | 0.75 x 1 | 0.75 |
7 | Success | 0.7510.25(1 - 1) | 0.75 x 1 | 0.75 |
8 | Failure | 0.7500.25(1 - 0) | 1 x 0.25 | 0.25 |
9 | Success | 0.7510.25(1 - 1) | 0.75 x 1 | 0.75 |
10 | Success | 0.7510.25(1 - 1) | 0.75 x 1 | 0.75 |
11 | Success | 0.7510.25(1 - 1) | 0.75 x 1 | 0.75 |
12 | Success | 0.7510.25(1 - 1) | 0.75 x 1 | 0.75 |
13 | Success | 0.7510.25(1 - 1) | 0.75 x 1 | 0.75 |
14 | Success | 0.7510.25(1 - 1) | 0.75 x 1 | 0.75 |
15 | Success | 0.7510.25(1 - 1) | 0.75 x 1 | 0.75 |
16 | Failure | 0.7500.25(1 - 0) | 1 x 0.25 | 0.25 |
17 | Success | 0.7510.25(1 - 1) | 0.75 x 1 | 0.75 |
18 | Success | 0.7510.25(1 - 1) | 0.75 x 1 | 0.75 |
19 | Success | 0.7510.25(1 - 1) | 0.75 x 1 | 0.75 |
20 | Failure | 0.7500.25(1 - 0) | 1 x 0.25 | 0.25 |
Given your success probability of 0.75:
we expect 0.75 x 20 = 15 successes
Our actual results were 16 successes and 4 failures
Variance σ2 = pq or p(1 - p)
Variance σ2 = (0.75)(0.25)
Variance σ2 = 0.1875
Skewness = | q - p |
√pq |
Skewness = | 0.25 - 0.75 |
√(0.75)(0.25) |
Skewness = | -0.5 |
√0.1875 |
Skewness = | -0.5 |
0.43301270189222 |
Skewness = -1.1547005383793
Kurtosis = | 1 - 6pq |
√pq |
Kurtosis = | 1 - 6(0.75)(0.25) |
(0.75)(0.25) |
Kurtosis = | 1 - 6(0.1875) |
0.1875 |
Kurtosis = | 1 - 1.125 |
0.1875 |
Kurtosis = | -0.125 |
0.1875 |
Kurtosis = -0.66666666666667
Entropy = -qLn(q) - pLn(p)
Entropy = -(0.25)Ln(0.25) - 0.75Ln(0.75)
Entropy = -(0.25)(-1.3862943611199) - 0.75(-0.28768207245178)
Entropy = -(-0.34657359027997) - -0.21576155433884
Entropy = -0.034238445661164