Show the Lagrange Four Square Theorem for

300

Lagrange Four Square Definition

For any natural number (p), we write as

p = a2 + b2 + c2 + d2

Determine max_a:

Floor(√300) = Floor(17.320508075689)

Floor(17.320508075689) = 17
This is called max_a

Determine min_a:

Find the first value of a such that
a2 ≥ n/4

Start with min_a = 0 and increase by 1

Continue until we reach or breach n/4 → 300/4 = 75

When min_a = 9, then it is a2 = 81 ≥ 75, so min_a = 9

Find a in the range of (min_a, max_a)

(0, 17)

a = 0

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 02)

max_b = Floor(√300 - 0)

max_b = Floor(√300)

max_b = Floor(17.320508075689)

max_b = 17

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (300 - 02)/3 = 100

When min_b = 10, then it is b2 = 100 ≥ 100, so min_b = 10

Test values for b in the range of (min_b, max_b)

(10, 17)

b = 10

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 02 - 102)

max_c = Floor(√300 - 0 - 100)

max_c = Floor(√200)

max_c = Floor(14.142135623731)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 02 - 102)/2 = 100

When min_c = 10, then it is c2 = 100 ≥ 100, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 02 - 102 - 102

max_d = √300 - 0 - 100 - 100

max_d = √100

max_d = 10

Since max_d = 10, then (a, b, c, d) = (0, 10, 10, 10) is an integer solution proven below

02 + 102 + 102 + 102 → 0 + 100 + 100 + 100 = 300

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 02 - 102 - 112

max_d = √300 - 0 - 100 - 121

max_d = √79

max_d = 8.8881944173156

Since max_d = 8.8881944173156 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 02 - 102 - 122

max_d = √300 - 0 - 100 - 144

max_d = √56

max_d = 7.4833147735479

Since max_d = 7.4833147735479 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 02 - 102 - 132

max_d = √300 - 0 - 100 - 169

max_d = √31

max_d = 5.56776436283

Since max_d = 5.56776436283 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 02 - 102 - 142

max_d = √300 - 0 - 100 - 196

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (0, 10, 14, 2) is an integer solution proven below

02 + 102 + 142 + 22 → 0 + 100 + 196 + 4 = 300

b = 11

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 02 - 112)

max_c = Floor(√300 - 0 - 121)

max_c = Floor(√179)

max_c = Floor(13.37908816026)

max_c = 13

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 02 - 112)/2 = 89.5

When min_c = 10, then it is c2 = 100 ≥ 89.5, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 02 - 112 - 102

max_d = √300 - 0 - 121 - 100

max_d = √79

max_d = 8.8881944173156

Since max_d = 8.8881944173156 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 02 - 112 - 112

max_d = √300 - 0 - 121 - 121

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 02 - 112 - 122

max_d = √300 - 0 - 121 - 144

max_d = √35

max_d = 5.9160797830996

Since max_d = 5.9160797830996 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 02 - 112 - 132

max_d = √300 - 0 - 121 - 169

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

b = 12

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 02 - 122)

max_c = Floor(√300 - 0 - 144)

max_c = Floor(√156)

max_c = Floor(12.489995996797)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 02 - 122)/2 = 78

When min_c = 9, then it is c2 = 81 ≥ 78, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 02 - 122 - 92

max_d = √300 - 0 - 144 - 81

max_d = √75

max_d = 8.6602540378444

Since max_d = 8.6602540378444 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 02 - 122 - 102

max_d = √300 - 0 - 144 - 100

max_d = √56

max_d = 7.4833147735479

Since max_d = 7.4833147735479 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 02 - 122 - 112

max_d = √300 - 0 - 144 - 121

max_d = √35

max_d = 5.9160797830996

Since max_d = 5.9160797830996 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 02 - 122 - 122

max_d = √300 - 0 - 144 - 144

max_d = √12

max_d = 3.4641016151378

Since max_d = 3.4641016151378 is not an integer, this is not a solution

b = 13

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 02 - 132)

max_c = Floor(√300 - 0 - 169)

max_c = Floor(√131)

max_c = Floor(11.44552314226)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 02 - 132)/2 = 65.5

When min_c = 9, then it is c2 = 81 ≥ 65.5, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 02 - 132 - 92

max_d = √300 - 0 - 169 - 81

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 02 - 132 - 102

max_d = √300 - 0 - 169 - 100

max_d = √31

max_d = 5.56776436283

Since max_d = 5.56776436283 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 02 - 132 - 112

max_d = √300 - 0 - 169 - 121

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

b = 14

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 02 - 142)

max_c = Floor(√300 - 0 - 196)

max_c = Floor(√104)

max_c = Floor(10.198039027186)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 02 - 142)/2 = 52

When min_c = 8, then it is c2 = 64 ≥ 52, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 02 - 142 - 82

max_d = √300 - 0 - 196 - 64

max_d = √40

max_d = 6.3245553203368

Since max_d = 6.3245553203368 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 02 - 142 - 92

max_d = √300 - 0 - 196 - 81

max_d = √23

max_d = 4.7958315233127

Since max_d = 4.7958315233127 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 02 - 142 - 102

max_d = √300 - 0 - 196 - 100

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (0, 14, 10, 2) is an integer solution proven below

02 + 142 + 102 + 22 → 0 + 196 + 100 + 4 = 300

b = 15

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 02 - 152)

max_c = Floor(√300 - 0 - 225)

max_c = Floor(√75)

max_c = Floor(8.6602540378444)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 02 - 152)/2 = 37.5

When min_c = 7, then it is c2 = 49 ≥ 37.5, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 02 - 152 - 72

max_d = √300 - 0 - 225 - 49

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 02 - 152 - 82

max_d = √300 - 0 - 225 - 64

max_d = √11

max_d = 3.3166247903554

Since max_d = 3.3166247903554 is not an integer, this is not a solution

b = 16

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 02 - 162)

max_c = Floor(√300 - 0 - 256)

max_c = Floor(√44)

max_c = Floor(6.6332495807108)

max_c = 6

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 02 - 162)/2 = 22

When min_c = 5, then it is c2 = 25 ≥ 22, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 02 - 162 - 52

max_d = √300 - 0 - 256 - 25

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 02 - 162 - 62

max_d = √300 - 0 - 256 - 36

max_d = √8

max_d = 2.8284271247462

Since max_d = 2.8284271247462 is not an integer, this is not a solution

b = 17

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 02 - 172)

max_c = Floor(√300 - 0 - 289)

max_c = Floor(√11)

max_c = Floor(3.3166247903554)

max_c = 3

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 02 - 172)/2 = 5.5

When min_c = 3, then it is c2 = 9 ≥ 5.5, so min_c = 3

c = 3

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 02 - 172 - 32

max_d = √300 - 0 - 289 - 9

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

a = 1

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 12)

max_b = Floor(√300 - 1)

max_b = Floor(√299)

max_b = Floor(17.291616465791)

max_b = 17

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (300 - 12)/3 = 99.666666666667

When min_b = 10, then it is b2 = 100 ≥ 99.666666666667, so min_b = 10

Test values for b in the range of (min_b, max_b)

(10, 17)

b = 10

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 12 - 102)

max_c = Floor(√300 - 1 - 100)

max_c = Floor(√199)

max_c = Floor(14.106735979666)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 12 - 102)/2 = 99.5

When min_c = 10, then it is c2 = 100 ≥ 99.5, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 12 - 102 - 102

max_d = √300 - 1 - 100 - 100

max_d = √99

max_d = 9.9498743710662

Since max_d = 9.9498743710662 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 12 - 102 - 112

max_d = √300 - 1 - 100 - 121

max_d = √78

max_d = 8.8317608663278

Since max_d = 8.8317608663278 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 12 - 102 - 122

max_d = √300 - 1 - 100 - 144

max_d = √55

max_d = 7.4161984870957

Since max_d = 7.4161984870957 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 12 - 102 - 132

max_d = √300 - 1 - 100 - 169

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 12 - 102 - 142

max_d = √300 - 1 - 100 - 196

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

b = 11

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 12 - 112)

max_c = Floor(√300 - 1 - 121)

max_c = Floor(√178)

max_c = Floor(13.341664064126)

max_c = 13

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 12 - 112)/2 = 89

When min_c = 10, then it is c2 = 100 ≥ 89, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 12 - 112 - 102

max_d = √300 - 1 - 121 - 100

max_d = √78

max_d = 8.8317608663278

Since max_d = 8.8317608663278 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 12 - 112 - 112

max_d = √300 - 1 - 121 - 121

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 12 - 112 - 122

max_d = √300 - 1 - 121 - 144

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 12 - 112 - 132

max_d = √300 - 1 - 121 - 169

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (1, 11, 13, 3) is an integer solution proven below

12 + 112 + 132 + 32 → 1 + 121 + 169 + 9 = 300

b = 12

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 12 - 122)

max_c = Floor(√300 - 1 - 144)

max_c = Floor(√155)

max_c = Floor(12.449899597989)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 12 - 122)/2 = 77.5

When min_c = 9, then it is c2 = 81 ≥ 77.5, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 12 - 122 - 92

max_d = √300 - 1 - 144 - 81

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 12 - 122 - 102

max_d = √300 - 1 - 144 - 100

max_d = √55

max_d = 7.4161984870957

Since max_d = 7.4161984870957 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 12 - 122 - 112

max_d = √300 - 1 - 144 - 121

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 12 - 122 - 122

max_d = √300 - 1 - 144 - 144

max_d = √11

max_d = 3.3166247903554

Since max_d = 3.3166247903554 is not an integer, this is not a solution

b = 13

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 12 - 132)

max_c = Floor(√300 - 1 - 169)

max_c = Floor(√130)

max_c = Floor(11.401754250991)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 12 - 132)/2 = 65

When min_c = 9, then it is c2 = 81 ≥ 65, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 12 - 132 - 92

max_d = √300 - 1 - 169 - 81

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (1, 13, 9, 7) is an integer solution proven below

12 + 132 + 92 + 72 → 1 + 169 + 81 + 49 = 300

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 12 - 132 - 102

max_d = √300 - 1 - 169 - 100

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 12 - 132 - 112

max_d = √300 - 1 - 169 - 121

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (1, 13, 11, 3) is an integer solution proven below

12 + 132 + 112 + 32 → 1 + 169 + 121 + 9 = 300

b = 14

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 12 - 142)

max_c = Floor(√300 - 1 - 196)

max_c = Floor(√103)

max_c = Floor(10.148891565092)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 12 - 142)/2 = 51.5

When min_c = 8, then it is c2 = 64 ≥ 51.5, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 12 - 142 - 82

max_d = √300 - 1 - 196 - 64

max_d = √39

max_d = 6.2449979983984

Since max_d = 6.2449979983984 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 12 - 142 - 92

max_d = √300 - 1 - 196 - 81

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 12 - 142 - 102

max_d = √300 - 1 - 196 - 100

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

b = 15

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 12 - 152)

max_c = Floor(√300 - 1 - 225)

max_c = Floor(√74)

max_c = Floor(8.6023252670426)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 12 - 152)/2 = 37

When min_c = 7, then it is c2 = 49 ≥ 37, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 12 - 152 - 72

max_d = √300 - 1 - 225 - 49

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (1, 15, 7, 5) is an integer solution proven below

12 + 152 + 72 + 52 → 1 + 225 + 49 + 25 = 300

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 12 - 152 - 82

max_d = √300 - 1 - 225 - 64

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

b = 16

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 12 - 162)

max_c = Floor(√300 - 1 - 256)

max_c = Floor(√43)

max_c = Floor(6.557438524302)

max_c = 6

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 12 - 162)/2 = 21.5

When min_c = 5, then it is c2 = 25 ≥ 21.5, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 12 - 162 - 52

max_d = √300 - 1 - 256 - 25

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 12 - 162 - 62

max_d = √300 - 1 - 256 - 36

max_d = √7

max_d = 2.6457513110646

Since max_d = 2.6457513110646 is not an integer, this is not a solution

b = 17

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 12 - 172)

max_c = Floor(√300 - 1 - 289)

max_c = Floor(√10)

max_c = Floor(3.1622776601684)

max_c = 3

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 12 - 172)/2 = 5

When min_c = 3, then it is c2 = 9 ≥ 5, so min_c = 3

c = 3

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 12 - 172 - 32

max_d = √300 - 1 - 289 - 9

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (1, 17, 3, 1) is an integer solution proven below

12 + 172 + 32 + 12 → 1 + 289 + 9 + 1 = 300

a = 2

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 22)

max_b = Floor(√300 - 4)

max_b = Floor(√296)

max_b = Floor(17.204650534085)

max_b = 17

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (300 - 22)/3 = 98.666666666667

When min_b = 10, then it is b2 = 100 ≥ 98.666666666667, so min_b = 10

Test values for b in the range of (min_b, max_b)

(10, 17)

b = 10

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 22 - 102)

max_c = Floor(√300 - 4 - 100)

max_c = Floor(√196)

max_c = Floor(14)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 22 - 102)/2 = 98

When min_c = 10, then it is c2 = 100 ≥ 98, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 102 - 102

max_d = √300 - 4 - 100 - 100

max_d = √96

max_d = 9.7979589711327

Since max_d = 9.7979589711327 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 102 - 112

max_d = √300 - 4 - 100 - 121

max_d = √75

max_d = 8.6602540378444

Since max_d = 8.6602540378444 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 102 - 122

max_d = √300 - 4 - 100 - 144

max_d = √52

max_d = 7.211102550928

Since max_d = 7.211102550928 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 102 - 132

max_d = √300 - 4 - 100 - 169

max_d = √27

max_d = 5.1961524227066

Since max_d = 5.1961524227066 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 102 - 142

max_d = √300 - 4 - 100 - 196

max_d = √0

max_d = 0

Since max_d = 0, then (a, b, c, d) = (2, 10, 14, 0) is an integer solution proven below

22 + 102 + 142 + 02 → 4 + 100 + 196 + 0 = 300

b = 11

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 22 - 112)

max_c = Floor(√300 - 4 - 121)

max_c = Floor(√175)

max_c = Floor(13.228756555323)

max_c = 13

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 22 - 112)/2 = 87.5

When min_c = 10, then it is c2 = 100 ≥ 87.5, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 112 - 102

max_d = √300 - 4 - 121 - 100

max_d = √75

max_d = 8.6602540378444

Since max_d = 8.6602540378444 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 112 - 112

max_d = √300 - 4 - 121 - 121

max_d = √54

max_d = 7.3484692283495

Since max_d = 7.3484692283495 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 112 - 122

max_d = √300 - 4 - 121 - 144

max_d = √31

max_d = 5.56776436283

Since max_d = 5.56776436283 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 112 - 132

max_d = √300 - 4 - 121 - 169

max_d = √6

max_d = 2.4494897427832

Since max_d = 2.4494897427832 is not an integer, this is not a solution

b = 12

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 22 - 122)

max_c = Floor(√300 - 4 - 144)

max_c = Floor(√152)

max_c = Floor(12.328828005938)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 22 - 122)/2 = 76

When min_c = 9, then it is c2 = 81 ≥ 76, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 122 - 92

max_d = √300 - 4 - 144 - 81

max_d = √71

max_d = 8.4261497731764

Since max_d = 8.4261497731764 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 122 - 102

max_d = √300 - 4 - 144 - 100

max_d = √52

max_d = 7.211102550928

Since max_d = 7.211102550928 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 122 - 112

max_d = √300 - 4 - 144 - 121

max_d = √31

max_d = 5.56776436283

Since max_d = 5.56776436283 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 122 - 122

max_d = √300 - 4 - 144 - 144

max_d = √8

max_d = 2.8284271247462

Since max_d = 2.8284271247462 is not an integer, this is not a solution

b = 13

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 22 - 132)

max_c = Floor(√300 - 4 - 169)

max_c = Floor(√127)

max_c = Floor(11.269427669585)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 22 - 132)/2 = 63.5

When min_c = 8, then it is c2 = 64 ≥ 63.5, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 132 - 82

max_d = √300 - 4 - 169 - 64

max_d = √63

max_d = 7.9372539331938

Since max_d = 7.9372539331938 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 132 - 92

max_d = √300 - 4 - 169 - 81

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 132 - 102

max_d = √300 - 4 - 169 - 100

max_d = √27

max_d = 5.1961524227066

Since max_d = 5.1961524227066 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 132 - 112

max_d = √300 - 4 - 169 - 121

max_d = √6

max_d = 2.4494897427832

Since max_d = 2.4494897427832 is not an integer, this is not a solution

b = 14

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 22 - 142)

max_c = Floor(√300 - 4 - 196)

max_c = Floor(√100)

max_c = Floor(10)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 22 - 142)/2 = 50

When min_c = 8, then it is c2 = 64 ≥ 50, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 142 - 82

max_d = √300 - 4 - 196 - 64

max_d = √36

max_d = 6

Since max_d = 6, then (a, b, c, d) = (2, 14, 8, 6) is an integer solution proven below

22 + 142 + 82 + 62 → 4 + 196 + 64 + 36 = 300

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 142 - 92

max_d = √300 - 4 - 196 - 81

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 142 - 102

max_d = √300 - 4 - 196 - 100

max_d = √0

max_d = 0

Since max_d = 0, then (a, b, c, d) = (2, 14, 10, 0) is an integer solution proven below

22 + 142 + 102 + 02 → 4 + 196 + 100 + 0 = 300

b = 15

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 22 - 152)

max_c = Floor(√300 - 4 - 225)

max_c = Floor(√71)

max_c = Floor(8.4261497731764)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 22 - 152)/2 = 35.5

When min_c = 6, then it is c2 = 36 ≥ 35.5, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 152 - 62

max_d = √300 - 4 - 225 - 36

max_d = √35

max_d = 5.9160797830996

Since max_d = 5.9160797830996 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 152 - 72

max_d = √300 - 4 - 225 - 49

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 152 - 82

max_d = √300 - 4 - 225 - 64

max_d = √7

max_d = 2.6457513110646

Since max_d = 2.6457513110646 is not an integer, this is not a solution

b = 16

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 22 - 162)

max_c = Floor(√300 - 4 - 256)

max_c = Floor(√40)

max_c = Floor(6.3245553203368)

max_c = 6

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 22 - 162)/2 = 20

When min_c = 5, then it is c2 = 25 ≥ 20, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 162 - 52

max_d = √300 - 4 - 256 - 25

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 162 - 62

max_d = √300 - 4 - 256 - 36

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (2, 16, 6, 2) is an integer solution proven below

22 + 162 + 62 + 22 → 4 + 256 + 36 + 4 = 300

b = 17

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 22 - 172)

max_c = Floor(√300 - 4 - 289)

max_c = Floor(√7)

max_c = Floor(2.6457513110646)

max_c = 2

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 22 - 172)/2 = 3.5

When min_c = 2, then it is c2 = 4 ≥ 3.5, so min_c = 2

c = 2

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 22 - 172 - 22

max_d = √300 - 4 - 289 - 4

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

a = 3

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 32)

max_b = Floor(√300 - 9)

max_b = Floor(√291)

max_b = Floor(17.058722109232)

max_b = 17

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (300 - 32)/3 = 97

When min_b = 10, then it is b2 = 100 ≥ 97, so min_b = 10

Test values for b in the range of (min_b, max_b)

(10, 17)

b = 10

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 32 - 102)

max_c = Floor(√300 - 9 - 100)

max_c = Floor(√191)

max_c = Floor(13.820274961085)

max_c = 13

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 32 - 102)/2 = 95.5

When min_c = 10, then it is c2 = 100 ≥ 95.5, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 102 - 102

max_d = √300 - 9 - 100 - 100

max_d = √91

max_d = 9.5393920141695

Since max_d = 9.5393920141695 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 102 - 112

max_d = √300 - 9 - 100 - 121

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 102 - 122

max_d = √300 - 9 - 100 - 144

max_d = √47

max_d = 6.855654600401

Since max_d = 6.855654600401 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 102 - 132

max_d = √300 - 9 - 100 - 169

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 11

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 32 - 112)

max_c = Floor(√300 - 9 - 121)

max_c = Floor(√170)

max_c = Floor(13.038404810405)

max_c = 13

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 32 - 112)/2 = 85

When min_c = 10, then it is c2 = 100 ≥ 85, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 112 - 102

max_d = √300 - 9 - 121 - 100

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 112 - 112

max_d = √300 - 9 - 121 - 121

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (3, 11, 11, 7) is an integer solution proven below

32 + 112 + 112 + 72 → 9 + 121 + 121 + 49 = 300

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 112 - 122

max_d = √300 - 9 - 121 - 144

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 112 - 132

max_d = √300 - 9 - 121 - 169

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (3, 11, 13, 1) is an integer solution proven below

32 + 112 + 132 + 12 → 9 + 121 + 169 + 1 = 300

b = 12

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 32 - 122)

max_c = Floor(√300 - 9 - 144)

max_c = Floor(√147)

max_c = Floor(12.124355652982)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 32 - 122)/2 = 73.5

When min_c = 9, then it is c2 = 81 ≥ 73.5, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 122 - 92

max_d = √300 - 9 - 144 - 81

max_d = √66

max_d = 8.124038404636

Since max_d = 8.124038404636 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 122 - 102

max_d = √300 - 9 - 144 - 100

max_d = √47

max_d = 6.855654600401

Since max_d = 6.855654600401 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 122 - 112

max_d = √300 - 9 - 144 - 121

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 122 - 122

max_d = √300 - 9 - 144 - 144

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

b = 13

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 32 - 132)

max_c = Floor(√300 - 9 - 169)

max_c = Floor(√122)

max_c = Floor(11.045361017187)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 32 - 132)/2 = 61

When min_c = 8, then it is c2 = 64 ≥ 61, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 132 - 82

max_d = √300 - 9 - 169 - 64

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 132 - 92

max_d = √300 - 9 - 169 - 81

max_d = √41

max_d = 6.4031242374328

Since max_d = 6.4031242374328 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 132 - 102

max_d = √300 - 9 - 169 - 100

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 132 - 112

max_d = √300 - 9 - 169 - 121

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (3, 13, 11, 1) is an integer solution proven below

32 + 132 + 112 + 12 → 9 + 169 + 121 + 1 = 300

b = 14

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 32 - 142)

max_c = Floor(√300 - 9 - 196)

max_c = Floor(√95)

max_c = Floor(9.746794344809)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 32 - 142)/2 = 47.5

When min_c = 7, then it is c2 = 49 ≥ 47.5, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 142 - 72

max_d = √300 - 9 - 196 - 49

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 142 - 82

max_d = √300 - 9 - 196 - 64

max_d = √31

max_d = 5.56776436283

Since max_d = 5.56776436283 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 142 - 92

max_d = √300 - 9 - 196 - 81

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 15

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 32 - 152)

max_c = Floor(√300 - 9 - 225)

max_c = Floor(√66)

max_c = Floor(8.124038404636)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 32 - 152)/2 = 33

When min_c = 6, then it is c2 = 36 ≥ 33, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 152 - 62

max_d = √300 - 9 - 225 - 36

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 152 - 72

max_d = √300 - 9 - 225 - 49

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 152 - 82

max_d = √300 - 9 - 225 - 64

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 16

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 32 - 162)

max_c = Floor(√300 - 9 - 256)

max_c = Floor(√35)

max_c = Floor(5.9160797830996)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 32 - 162)/2 = 17.5

When min_c = 5, then it is c2 = 25 ≥ 17.5, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 162 - 52

max_d = √300 - 9 - 256 - 25

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

b = 17

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 32 - 172)

max_c = Floor(√300 - 9 - 289)

max_c = Floor(√2)

max_c = Floor(1.4142135623731)

max_c = 1

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 32 - 172)/2 = 1

When min_c = 0, then it is c2 = 1 ≥ 1, so min_c = 0

c = 0

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 172 - 02

max_d = √300 - 9 - 289 - 0

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

c = 1

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 32 - 172 - 12

max_d = √300 - 9 - 289 - 1

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (3, 17, 1, 1) is an integer solution proven below

32 + 172 + 12 + 12 → 9 + 289 + 1 + 1 = 300

a = 4

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 42)

max_b = Floor(√300 - 16)

max_b = Floor(√284)

max_b = Floor(16.852299546353)

max_b = 16

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (300 - 42)/3 = 94.666666666667

When min_b = 10, then it is b2 = 100 ≥ 94.666666666667, so min_b = 10

Test values for b in the range of (min_b, max_b)

(10, 16)

b = 10

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 42 - 102)

max_c = Floor(√300 - 16 - 100)

max_c = Floor(√184)

max_c = Floor(13.564659966251)

max_c = 13

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 42 - 102)/2 = 92

When min_c = 10, then it is c2 = 100 ≥ 92, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 42 - 102 - 102

max_d = √300 - 16 - 100 - 100

max_d = √84

max_d = 9.1651513899117

Since max_d = 9.1651513899117 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 42 - 102 - 112

max_d = √300 - 16 - 100 - 121

max_d = √63

max_d = 7.9372539331938

Since max_d = 7.9372539331938 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 42 - 102 - 122

max_d = √300 - 16 - 100 - 144

max_d = √40

max_d = 6.3245553203368

Since max_d = 6.3245553203368 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 42 - 102 - 132

max_d = √300 - 16 - 100 - 169

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

b = 11

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 42 - 112)

max_c = Floor(√300 - 16 - 121)

max_c = Floor(√163)

max_c = Floor(12.767145334804)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 42 - 112)/2 = 81.5

When min_c = 10, then it is c2 = 100 ≥ 81.5, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 42 - 112 - 102

max_d = √300 - 16 - 121 - 100

max_d = √63

max_d = 7.9372539331938

Since max_d = 7.9372539331938 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 42 - 112 - 112

max_d = √300 - 16 - 121 - 121

max_d = √42

max_d = 6.4807406984079

Since max_d = 6.4807406984079 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 42 - 112 - 122

max_d = √300 - 16 - 121 - 144

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

b = 12

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 42 - 122)

max_c = Floor(√300 - 16 - 144)

max_c = Floor(√140)

max_c = Floor(11.832159566199)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 42 - 122)/2 = 70

When min_c = 9, then it is c2 = 81 ≥ 70, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 42 - 122 - 92

max_d = √300 - 16 - 144 - 81

max_d = √59

max_d = 7.6811457478686

Since max_d = 7.6811457478686 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 42 - 122 - 102

max_d = √300 - 16 - 144 - 100

max_d = √40

max_d = 6.3245553203368

Since max_d = 6.3245553203368 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 42 - 122 - 112

max_d = √300 - 16 - 144 - 121

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

b = 13

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 42 - 132)

max_c = Floor(√300 - 16 - 169)

max_c = Floor(√115)

max_c = Floor(10.723805294764)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 42 - 132)/2 = 57.5

When min_c = 8, then it is c2 = 64 ≥ 57.5, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 42 - 132 - 82

max_d = √300 - 16 - 169 - 64

max_d = √51

max_d = 7.1414284285429

Since max_d = 7.1414284285429 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 42 - 132 - 92

max_d = √300 - 16 - 169 - 81

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 42 - 132 - 102

max_d = √300 - 16 - 169 - 100

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

b = 14

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 42 - 142)

max_c = Floor(√300 - 16 - 196)

max_c = Floor(√88)

max_c = Floor(9.3808315196469)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 42 - 142)/2 = 44

When min_c = 7, then it is c2 = 49 ≥ 44, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 42 - 142 - 72

max_d = √300 - 16 - 196 - 49

max_d = √39

max_d = 6.2449979983984

Since max_d = 6.2449979983984 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 42 - 142 - 82

max_d = √300 - 16 - 196 - 64

max_d = √24

max_d = 4.8989794855664

Since max_d = 4.8989794855664 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 42 - 142 - 92

max_d = √300 - 16 - 196 - 81

max_d = √7

max_d = 2.6457513110646

Since max_d = 2.6457513110646 is not an integer, this is not a solution

b = 15

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 42 - 152)

max_c = Floor(√300 - 16 - 225)

max_c = Floor(√59)

max_c = Floor(7.6811457478686)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 42 - 152)/2 = 29.5

When min_c = 6, then it is c2 = 36 ≥ 29.5, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 42 - 152 - 62

max_d = √300 - 16 - 225 - 36

max_d = √23

max_d = 4.7958315233127

Since max_d = 4.7958315233127 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 42 - 152 - 72

max_d = √300 - 16 - 225 - 49

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

b = 16

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 42 - 162)

max_c = Floor(√300 - 16 - 256)

max_c = Floor(√28)

max_c = Floor(5.2915026221292)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 42 - 162)/2 = 14

When min_c = 4, then it is c2 = 16 ≥ 14, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 42 - 162 - 42

max_d = √300 - 16 - 256 - 16

max_d = √12

max_d = 3.4641016151378

Since max_d = 3.4641016151378 is not an integer, this is not a solution

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 42 - 162 - 52

max_d = √300 - 16 - 256 - 25

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

a = 5

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 52)

max_b = Floor(√300 - 25)

max_b = Floor(√275)

max_b = Floor(16.583123951777)

max_b = 16

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (300 - 52)/3 = 91.666666666667

When min_b = 10, then it is b2 = 100 ≥ 91.666666666667, so min_b = 10

Test values for b in the range of (min_b, max_b)

(10, 16)

b = 10

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 52 - 102)

max_c = Floor(√300 - 25 - 100)

max_c = Floor(√175)

max_c = Floor(13.228756555323)

max_c = 13

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 52 - 102)/2 = 87.5

When min_c = 10, then it is c2 = 100 ≥ 87.5, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 52 - 102 - 102

max_d = √300 - 25 - 100 - 100

max_d = √75

max_d = 8.6602540378444

Since max_d = 8.6602540378444 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 52 - 102 - 112

max_d = √300 - 25 - 100 - 121

max_d = √54

max_d = 7.3484692283495

Since max_d = 7.3484692283495 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 52 - 102 - 122

max_d = √300 - 25 - 100 - 144

max_d = √31

max_d = 5.56776436283

Since max_d = 5.56776436283 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 52 - 102 - 132

max_d = √300 - 25 - 100 - 169

max_d = √6

max_d = 2.4494897427832

Since max_d = 2.4494897427832 is not an integer, this is not a solution

b = 11

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 52 - 112)

max_c = Floor(√300 - 25 - 121)

max_c = Floor(√154)

max_c = Floor(12.409673645991)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 52 - 112)/2 = 77

When min_c = 9, then it is c2 = 81 ≥ 77, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 52 - 112 - 92

max_d = √300 - 25 - 121 - 81

max_d = √73

max_d = 8.5440037453175

Since max_d = 8.5440037453175 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 52 - 112 - 102

max_d = √300 - 25 - 121 - 100

max_d = √54

max_d = 7.3484692283495

Since max_d = 7.3484692283495 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 52 - 112 - 112

max_d = √300 - 25 - 121 - 121

max_d = √33

max_d = 5.744562646538

Since max_d = 5.744562646538 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 52 - 112 - 122

max_d = √300 - 25 - 121 - 144

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

b = 12

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 52 - 122)

max_c = Floor(√300 - 25 - 144)

max_c = Floor(√131)

max_c = Floor(11.44552314226)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 52 - 122)/2 = 65.5

When min_c = 9, then it is c2 = 81 ≥ 65.5, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 52 - 122 - 92

max_d = √300 - 25 - 144 - 81

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 52 - 122 - 102

max_d = √300 - 25 - 144 - 100

max_d = √31

max_d = 5.56776436283

Since max_d = 5.56776436283 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 52 - 122 - 112

max_d = √300 - 25 - 144 - 121

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

b = 13

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 52 - 132)

max_c = Floor(√300 - 25 - 169)

max_c = Floor(√106)

max_c = Floor(10.295630140987)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 52 - 132)/2 = 53

When min_c = 8, then it is c2 = 64 ≥ 53, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 52 - 132 - 82

max_d = √300 - 25 - 169 - 64

max_d = √42

max_d = 6.4807406984079

Since max_d = 6.4807406984079 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 52 - 132 - 92

max_d = √300 - 25 - 169 - 81

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (5, 13, 9, 5) is an integer solution proven below

52 + 132 + 92 + 52 → 25 + 169 + 81 + 25 = 300

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 52 - 132 - 102

max_d = √300 - 25 - 169 - 100

max_d = √6

max_d = 2.4494897427832

Since max_d = 2.4494897427832 is not an integer, this is not a solution

b = 14

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 52 - 142)

max_c = Floor(√300 - 25 - 196)

max_c = Floor(√79)

max_c = Floor(8.8881944173156)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 52 - 142)/2 = 39.5

When min_c = 7, then it is c2 = 49 ≥ 39.5, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 52 - 142 - 72

max_d = √300 - 25 - 196 - 49

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 52 - 142 - 82

max_d = √300 - 25 - 196 - 64

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

b = 15

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 52 - 152)

max_c = Floor(√300 - 25 - 225)

max_c = Floor(√50)

max_c = Floor(7.0710678118655)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 52 - 152)/2 = 25

When min_c = 5, then it is c2 = 25 ≥ 25, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 52 - 152 - 52

max_d = √300 - 25 - 225 - 25

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (5, 15, 5, 5) is an integer solution proven below

52 + 152 + 52 + 52 → 25 + 225 + 25 + 25 = 300

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 52 - 152 - 62

max_d = √300 - 25 - 225 - 36

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 52 - 152 - 72

max_d = √300 - 25 - 225 - 49

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (5, 15, 7, 1) is an integer solution proven below

52 + 152 + 72 + 12 → 25 + 225 + 49 + 1 = 300

b = 16

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 52 - 162)

max_c = Floor(√300 - 25 - 256)

max_c = Floor(√19)

max_c = Floor(4.3588989435407)

max_c = 4

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 52 - 162)/2 = 9.5

When min_c = 4, then it is c2 = 16 ≥ 9.5, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 52 - 162 - 42

max_d = √300 - 25 - 256 - 16

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

a = 6

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 62)

max_b = Floor(√300 - 36)

max_b = Floor(√264)

max_b = Floor(16.248076809272)

max_b = 16

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (300 - 62)/3 = 88

When min_b = 10, then it is b2 = 100 ≥ 88, so min_b = 10

Test values for b in the range of (min_b, max_b)

(10, 16)

b = 10

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 62 - 102)

max_c = Floor(√300 - 36 - 100)

max_c = Floor(√164)

max_c = Floor(12.806248474866)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 62 - 102)/2 = 82

When min_c = 10, then it is c2 = 100 ≥ 82, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 62 - 102 - 102

max_d = √300 - 36 - 100 - 100

max_d = √64

max_d = 8

Since max_d = 8, then (a, b, c, d) = (6, 10, 10, 8) is an integer solution proven below

62 + 102 + 102 + 82 → 36 + 100 + 100 + 64 = 300

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 62 - 102 - 112

max_d = √300 - 36 - 100 - 121

max_d = √43

max_d = 6.557438524302

Since max_d = 6.557438524302 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 62 - 102 - 122

max_d = √300 - 36 - 100 - 144

max_d = √20

max_d = 4.4721359549996

Since max_d = 4.4721359549996 is not an integer, this is not a solution

b = 11

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 62 - 112)

max_c = Floor(√300 - 36 - 121)

max_c = Floor(√143)

max_c = Floor(11.958260743101)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 62 - 112)/2 = 71.5

When min_c = 9, then it is c2 = 81 ≥ 71.5, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 62 - 112 - 92

max_d = √300 - 36 - 121 - 81

max_d = √62

max_d = 7.8740078740118

Since max_d = 7.8740078740118 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 62 - 112 - 102

max_d = √300 - 36 - 121 - 100

max_d = √43

max_d = 6.557438524302

Since max_d = 6.557438524302 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 62 - 112 - 112

max_d = √300 - 36 - 121 - 121

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 12

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 62 - 122)

max_c = Floor(√300 - 36 - 144)

max_c = Floor(√120)

max_c = Floor(10.954451150103)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 62 - 122)/2 = 60

When min_c = 8, then it is c2 = 64 ≥ 60, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 62 - 122 - 82

max_d = √300 - 36 - 144 - 64

max_d = √56

max_d = 7.4833147735479

Since max_d = 7.4833147735479 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 62 - 122 - 92

max_d = √300 - 36 - 144 - 81

max_d = √39

max_d = 6.2449979983984

Since max_d = 6.2449979983984 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 62 - 122 - 102

max_d = √300 - 36 - 144 - 100

max_d = √20

max_d = 4.4721359549996

Since max_d = 4.4721359549996 is not an integer, this is not a solution

b = 13

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 62 - 132)

max_c = Floor(√300 - 36 - 169)

max_c = Floor(√95)

max_c = Floor(9.746794344809)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 62 - 132)/2 = 47.5

When min_c = 7, then it is c2 = 49 ≥ 47.5, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 62 - 132 - 72

max_d = √300 - 36 - 169 - 49

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 62 - 132 - 82

max_d = √300 - 36 - 169 - 64

max_d = √31

max_d = 5.56776436283

Since max_d = 5.56776436283 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 62 - 132 - 92

max_d = √300 - 36 - 169 - 81

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 14

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 62 - 142)

max_c = Floor(√300 - 36 - 196)

max_c = Floor(√68)

max_c = Floor(8.2462112512353)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 62 - 142)/2 = 34

When min_c = 6, then it is c2 = 36 ≥ 34, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 62 - 142 - 62

max_d = √300 - 36 - 196 - 36

max_d = √32

max_d = 5.6568542494924

Since max_d = 5.6568542494924 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 62 - 142 - 72

max_d = √300 - 36 - 196 - 49

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 62 - 142 - 82

max_d = √300 - 36 - 196 - 64

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (6, 14, 8, 2) is an integer solution proven below

62 + 142 + 82 + 22 → 36 + 196 + 64 + 4 = 300

b = 15

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 62 - 152)

max_c = Floor(√300 - 36 - 225)

max_c = Floor(√39)

max_c = Floor(6.2449979983984)

max_c = 6

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 62 - 152)/2 = 19.5

When min_c = 5, then it is c2 = 25 ≥ 19.5, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 62 - 152 - 52

max_d = √300 - 36 - 225 - 25

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 62 - 152 - 62

max_d = √300 - 36 - 225 - 36

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

b = 16

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 62 - 162)

max_c = Floor(√300 - 36 - 256)

max_c = Floor(√8)

max_c = Floor(2.8284271247462)

max_c = 2

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 62 - 162)/2 = 4

When min_c = 2, then it is c2 = 4 ≥ 4, so min_c = 2

c = 2

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 62 - 162 - 22

max_d = √300 - 36 - 256 - 4

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (6, 16, 2, 2) is an integer solution proven below

62 + 162 + 22 + 22 → 36 + 256 + 4 + 4 = 300

a = 7

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 72)

max_b = Floor(√300 - 49)

max_b = Floor(√251)

max_b = Floor(15.842979517755)

max_b = 15

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (300 - 72)/3 = 83.666666666667

When min_b = 10, then it is b2 = 100 ≥ 83.666666666667, so min_b = 10

Test values for b in the range of (min_b, max_b)

(10, 15)

b = 10

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 72 - 102)

max_c = Floor(√300 - 49 - 100)

max_c = Floor(√151)

max_c = Floor(12.288205727445)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 72 - 102)/2 = 75.5

When min_c = 9, then it is c2 = 81 ≥ 75.5, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 72 - 102 - 92

max_d = √300 - 49 - 100 - 81

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 72 - 102 - 102

max_d = √300 - 49 - 100 - 100

max_d = √51

max_d = 7.1414284285429

Since max_d = 7.1414284285429 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 72 - 102 - 112

max_d = √300 - 49 - 100 - 121

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 72 - 102 - 122

max_d = √300 - 49 - 100 - 144

max_d = √7

max_d = 2.6457513110646

Since max_d = 2.6457513110646 is not an integer, this is not a solution

b = 11

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 72 - 112)

max_c = Floor(√300 - 49 - 121)

max_c = Floor(√130)

max_c = Floor(11.401754250991)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 72 - 112)/2 = 65

When min_c = 9, then it is c2 = 81 ≥ 65, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 72 - 112 - 92

max_d = √300 - 49 - 121 - 81

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (7, 11, 9, 7) is an integer solution proven below

72 + 112 + 92 + 72 → 49 + 121 + 81 + 49 = 300

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 72 - 112 - 102

max_d = √300 - 49 - 121 - 100

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 72 - 112 - 112

max_d = √300 - 49 - 121 - 121

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (7, 11, 11, 3) is an integer solution proven below

72 + 112 + 112 + 32 → 49 + 121 + 121 + 9 = 300

b = 12

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 72 - 122)

max_c = Floor(√300 - 49 - 144)

max_c = Floor(√107)

max_c = Floor(10.344080432789)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 72 - 122)/2 = 53.5

When min_c = 8, then it is c2 = 64 ≥ 53.5, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 72 - 122 - 82

max_d = √300 - 49 - 144 - 64

max_d = √43

max_d = 6.557438524302

Since max_d = 6.557438524302 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 72 - 122 - 92

max_d = √300 - 49 - 144 - 81

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 72 - 122 - 102

max_d = √300 - 49 - 144 - 100

max_d = √7

max_d = 2.6457513110646

Since max_d = 2.6457513110646 is not an integer, this is not a solution

b = 13

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 72 - 132)

max_c = Floor(√300 - 49 - 169)

max_c = Floor(√82)

max_c = Floor(9.0553851381374)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 72 - 132)/2 = 41

When min_c = 7, then it is c2 = 49 ≥ 41, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 72 - 132 - 72

max_d = √300 - 49 - 169 - 49

max_d = √33

max_d = 5.744562646538

Since max_d = 5.744562646538 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 72 - 132 - 82

max_d = √300 - 49 - 169 - 64

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 72 - 132 - 92

max_d = √300 - 49 - 169 - 81

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (7, 13, 9, 1) is an integer solution proven below

72 + 132 + 92 + 12 → 49 + 169 + 81 + 1 = 300

b = 14

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 72 - 142)

max_c = Floor(√300 - 49 - 196)

max_c = Floor(√55)

max_c = Floor(7.4161984870957)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 72 - 142)/2 = 27.5

When min_c = 6, then it is c2 = 36 ≥ 27.5, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 72 - 142 - 62

max_d = √300 - 49 - 196 - 36

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 72 - 142 - 72

max_d = √300 - 49 - 196 - 49

max_d = √6

max_d = 2.4494897427832

Since max_d = 2.4494897427832 is not an integer, this is not a solution

b = 15

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 72 - 152)

max_c = Floor(√300 - 49 - 225)

max_c = Floor(√26)

max_c = Floor(5.0990195135928)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 72 - 152)/2 = 13

When min_c = 4, then it is c2 = 16 ≥ 13, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 72 - 152 - 42

max_d = √300 - 49 - 225 - 16

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 72 - 152 - 52

max_d = √300 - 49 - 225 - 25

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (7, 15, 5, 1) is an integer solution proven below

72 + 152 + 52 + 12 → 49 + 225 + 25 + 1 = 300

a = 8

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 82)

max_b = Floor(√300 - 64)

max_b = Floor(√236)

max_b = Floor(15.362291495737)

max_b = 15

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (300 - 82)/3 = 78.666666666667

When min_b = 9, then it is b2 = 81 ≥ 78.666666666667, so min_b = 9

Test values for b in the range of (min_b, max_b)

(9, 15)

b = 9

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 82 - 92)

max_c = Floor(√300 - 64 - 81)

max_c = Floor(√155)

max_c = Floor(12.449899597989)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 82 - 92)/2 = 77.5

When min_c = 9, then it is c2 = 81 ≥ 77.5, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 82 - 92 - 92

max_d = √300 - 64 - 81 - 81

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 82 - 92 - 102

max_d = √300 - 64 - 81 - 100

max_d = √55

max_d = 7.4161984870957

Since max_d = 7.4161984870957 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 82 - 92 - 112

max_d = √300 - 64 - 81 - 121

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 82 - 92 - 122

max_d = √300 - 64 - 81 - 144

max_d = √11

max_d = 3.3166247903554

Since max_d = 3.3166247903554 is not an integer, this is not a solution

b = 10

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 82 - 102)

max_c = Floor(√300 - 64 - 100)

max_c = Floor(√136)

max_c = Floor(11.661903789691)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 82 - 102)/2 = 68

When min_c = 9, then it is c2 = 81 ≥ 68, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 82 - 102 - 92

max_d = √300 - 64 - 100 - 81

max_d = √55

max_d = 7.4161984870957

Since max_d = 7.4161984870957 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 82 - 102 - 102

max_d = √300 - 64 - 100 - 100

max_d = √36

max_d = 6

Since max_d = 6, then (a, b, c, d) = (8, 10, 10, 6) is an integer solution proven below

82 + 102 + 102 + 62 → 64 + 100 + 100 + 36 = 300

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 82 - 102 - 112

max_d = √300 - 64 - 100 - 121

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

b = 11

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 82 - 112)

max_c = Floor(√300 - 64 - 121)

max_c = Floor(√115)

max_c = Floor(10.723805294764)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 82 - 112)/2 = 57.5

When min_c = 8, then it is c2 = 64 ≥ 57.5, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 82 - 112 - 82

max_d = √300 - 64 - 121 - 64

max_d = √51

max_d = 7.1414284285429

Since max_d = 7.1414284285429 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 82 - 112 - 92

max_d = √300 - 64 - 121 - 81

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 82 - 112 - 102

max_d = √300 - 64 - 121 - 100

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

b = 12

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 82 - 122)

max_c = Floor(√300 - 64 - 144)

max_c = Floor(√92)

max_c = Floor(9.5916630466254)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 82 - 122)/2 = 46

When min_c = 7, then it is c2 = 49 ≥ 46, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 82 - 122 - 72

max_d = √300 - 64 - 144 - 49

max_d = √43

max_d = 6.557438524302

Since max_d = 6.557438524302 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 82 - 122 - 82

max_d = √300 - 64 - 144 - 64

max_d = √28

max_d = 5.2915026221292

Since max_d = 5.2915026221292 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 82 - 122 - 92

max_d = √300 - 64 - 144 - 81

max_d = √11

max_d = 3.3166247903554

Since max_d = 3.3166247903554 is not an integer, this is not a solution

b = 13

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 82 - 132)

max_c = Floor(√300 - 64 - 169)

max_c = Floor(√67)

max_c = Floor(8.1853527718725)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 82 - 132)/2 = 33.5

When min_c = 6, then it is c2 = 36 ≥ 33.5, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 82 - 132 - 62

max_d = √300 - 64 - 169 - 36

max_d = √31

max_d = 5.56776436283

Since max_d = 5.56776436283 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 82 - 132 - 72

max_d = √300 - 64 - 169 - 49

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 82 - 132 - 82

max_d = √300 - 64 - 169 - 64

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

b = 14

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 82 - 142)

max_c = Floor(√300 - 64 - 196)

max_c = Floor(√40)

max_c = Floor(6.3245553203368)

max_c = 6

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 82 - 142)/2 = 20

When min_c = 5, then it is c2 = 25 ≥ 20, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 82 - 142 - 52

max_d = √300 - 64 - 196 - 25

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 82 - 142 - 62

max_d = √300 - 64 - 196 - 36

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (8, 14, 6, 2) is an integer solution proven below

82 + 142 + 62 + 22 → 64 + 196 + 36 + 4 = 300

b = 15

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 82 - 152)

max_c = Floor(√300 - 64 - 225)

max_c = Floor(√11)

max_c = Floor(3.3166247903554)

max_c = 3

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 82 - 152)/2 = 5.5

When min_c = 3, then it is c2 = 9 ≥ 5.5, so min_c = 3

c = 3

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 82 - 152 - 32

max_d = √300 - 64 - 225 - 9

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

a = 9

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 92)

max_b = Floor(√300 - 81)

max_b = Floor(√219)

max_b = Floor(14.798648586949)

max_b = 14

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (300 - 92)/3 = 73

When min_b = 9, then it is b2 = 81 ≥ 73, so min_b = 9

Test values for b in the range of (min_b, max_b)

(9, 14)

b = 9

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 92 - 92)

max_c = Floor(√300 - 81 - 81)

max_c = Floor(√138)

max_c = Floor(11.747340124471)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 92 - 92)/2 = 69

When min_c = 9, then it is c2 = 81 ≥ 69, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 92 - 92

max_d = √300 - 81 - 81 - 81

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 92 - 102

max_d = √300 - 81 - 81 - 100

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 92 - 112

max_d = √300 - 81 - 81 - 121

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 10

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 92 - 102)

max_c = Floor(√300 - 81 - 100)

max_c = Floor(√119)

max_c = Floor(10.908712114636)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 92 - 102)/2 = 59.5

When min_c = 8, then it is c2 = 64 ≥ 59.5, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 102 - 82

max_d = √300 - 81 - 100 - 64

max_d = √55

max_d = 7.4161984870957

Since max_d = 7.4161984870957 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 102 - 92

max_d = √300 - 81 - 100 - 81

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 102 - 102

max_d = √300 - 81 - 100 - 100

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

b = 11

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 92 - 112)

max_c = Floor(√300 - 81 - 121)

max_c = Floor(√98)

max_c = Floor(9.8994949366117)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 92 - 112)/2 = 49

When min_c = 7, then it is c2 = 49 ≥ 49, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 112 - 72

max_d = √300 - 81 - 121 - 49

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (9, 11, 7, 7) is an integer solution proven below

92 + 112 + 72 + 72 → 81 + 121 + 49 + 49 = 300

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 112 - 82

max_d = √300 - 81 - 121 - 64

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 112 - 92

max_d = √300 - 81 - 121 - 81

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 12

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 92 - 122)

max_c = Floor(√300 - 81 - 144)

max_c = Floor(√75)

max_c = Floor(8.6602540378444)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 92 - 122)/2 = 37.5

When min_c = 7, then it is c2 = 49 ≥ 37.5, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 122 - 72

max_d = √300 - 81 - 144 - 49

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 122 - 82

max_d = √300 - 81 - 144 - 64

max_d = √11

max_d = 3.3166247903554

Since max_d = 3.3166247903554 is not an integer, this is not a solution

b = 13

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 92 - 132)

max_c = Floor(√300 - 81 - 169)

max_c = Floor(√50)

max_c = Floor(7.0710678118655)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 92 - 132)/2 = 25

When min_c = 5, then it is c2 = 25 ≥ 25, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 132 - 52

max_d = √300 - 81 - 169 - 25

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (9, 13, 5, 5) is an integer solution proven below

92 + 132 + 52 + 52 → 81 + 169 + 25 + 25 = 300

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 132 - 62

max_d = √300 - 81 - 169 - 36

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 132 - 72

max_d = √300 - 81 - 169 - 49

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (9, 13, 7, 1) is an integer solution proven below

92 + 132 + 72 + 12 → 81 + 169 + 49 + 1 = 300

b = 14

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 92 - 142)

max_c = Floor(√300 - 81 - 196)

max_c = Floor(√23)

max_c = Floor(4.7958315233127)

max_c = 4

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 92 - 142)/2 = 11.5

When min_c = 4, then it is c2 = 16 ≥ 11.5, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 142 - 42

max_d = √300 - 81 - 196 - 16

max_d = √7

max_d = 2.6457513110646

Since max_d = 2.6457513110646 is not an integer, this is not a solution

a = 10

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 102)

max_b = Floor(√300 - 100)

max_b = Floor(√200)

max_b = Floor(14.142135623731)

max_b = 14

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (300 - 102)/3 = 66.666666666667

When min_b = 9, then it is b2 = 81 ≥ 66.666666666667, so min_b = 9

Test values for b in the range of (min_b, max_b)

(9, 14)

b = 9

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 102 - 92)

max_c = Floor(√300 - 100 - 81)

max_c = Floor(√119)

max_c = Floor(10.908712114636)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 102 - 92)/2 = 59.5

When min_c = 8, then it is c2 = 64 ≥ 59.5, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 92 - 82

max_d = √300 - 100 - 81 - 64

max_d = √55

max_d = 7.4161984870957

Since max_d = 7.4161984870957 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 92 - 92

max_d = √300 - 100 - 81 - 81

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 92 - 102

max_d = √300 - 100 - 81 - 100

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

b = 10

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 102 - 102)

max_c = Floor(√300 - 100 - 100)

max_c = Floor(√100)

max_c = Floor(10)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 102 - 102)/2 = 50

When min_c = 8, then it is c2 = 64 ≥ 50, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 102 - 82

max_d = √300 - 100 - 100 - 64

max_d = √36

max_d = 6

Since max_d = 6, then (a, b, c, d) = (10, 10, 8, 6) is an integer solution proven below

102 + 102 + 82 + 62 → 100 + 100 + 64 + 36 = 300

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 102 - 92

max_d = √300 - 100 - 100 - 81

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 102 - 102

max_d = √300 - 100 - 100 - 100

max_d = √0

max_d = 0

Since max_d = 0, then (a, b, c, d) = (10, 10, 10, 0) is an integer solution proven below

102 + 102 + 102 + 02 → 100 + 100 + 100 + 0 = 300

b = 11

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 102 - 112)

max_c = Floor(√300 - 100 - 121)

max_c = Floor(√79)

max_c = Floor(8.8881944173156)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 102 - 112)/2 = 39.5

When min_c = 7, then it is c2 = 49 ≥ 39.5, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 112 - 72

max_d = √300 - 100 - 121 - 49

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 112 - 82

max_d = √300 - 100 - 121 - 64

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

b = 12

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 102 - 122)

max_c = Floor(√300 - 100 - 144)

max_c = Floor(√56)

max_c = Floor(7.4833147735479)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 102 - 122)/2 = 28

When min_c = 6, then it is c2 = 36 ≥ 28, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 122 - 62

max_d = √300 - 100 - 144 - 36

max_d = √20

max_d = 4.4721359549996

Since max_d = 4.4721359549996 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 122 - 72

max_d = √300 - 100 - 144 - 49

max_d = √7

max_d = 2.6457513110646

Since max_d = 2.6457513110646 is not an integer, this is not a solution

b = 13

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 102 - 132)

max_c = Floor(√300 - 100 - 169)

max_c = Floor(√31)

max_c = Floor(5.56776436283)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 102 - 132)/2 = 15.5

When min_c = 4, then it is c2 = 16 ≥ 15.5, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 132 - 42

max_d = √300 - 100 - 169 - 16

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 132 - 52

max_d = √300 - 100 - 169 - 25

max_d = √6

max_d = 2.4494897427832

Since max_d = 2.4494897427832 is not an integer, this is not a solution

b = 14

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 102 - 142)

max_c = Floor(√300 - 100 - 196)

max_c = Floor(√4)

max_c = Floor(2)

max_c = 2

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 102 - 142)/2 = 2

When min_c = 2, then it is c2 = 4 ≥ 2, so min_c = 2

c = 2

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 142 - 22

max_d = √300 - 100 - 196 - 4

max_d = √0

max_d = 0

Since max_d = 0, then (a, b, c, d) = (10, 14, 2, 0) is an integer solution proven below

102 + 142 + 22 + 02 → 100 + 196 + 4 + 0 = 300

a = 11

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 112)

max_b = Floor(√300 - 121)

max_b = Floor(√179)

max_b = Floor(13.37908816026)

max_b = 13

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (300 - 112)/3 = 59.666666666667

When min_b = 8, then it is b2 = 64 ≥ 59.666666666667, so min_b = 8

Test values for b in the range of (min_b, max_b)

(8, 13)

b = 8

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 112 - 82)

max_c = Floor(√300 - 121 - 64)

max_c = Floor(√115)

max_c = Floor(10.723805294764)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 112 - 82)/2 = 57.5

When min_c = 8, then it is c2 = 64 ≥ 57.5, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 112 - 82 - 82

max_d = √300 - 121 - 64 - 64

max_d = √51

max_d = 7.1414284285429

Since max_d = 7.1414284285429 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 112 - 82 - 92

max_d = √300 - 121 - 64 - 81

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 112 - 82 - 102

max_d = √300 - 121 - 64 - 100

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

b = 9

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 112 - 92)

max_c = Floor(√300 - 121 - 81)

max_c = Floor(√98)

max_c = Floor(9.8994949366117)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 112 - 92)/2 = 49

When min_c = 7, then it is c2 = 49 ≥ 49, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 112 - 92 - 72

max_d = √300 - 121 - 81 - 49

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (11, 9, 7, 7) is an integer solution proven below

112 + 92 + 72 + 72 → 121 + 81 + 49 + 49 = 300

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 112 - 92 - 82

max_d = √300 - 121 - 81 - 64

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 112 - 92 - 92

max_d = √300 - 121 - 81 - 81

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 10

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 112 - 102)

max_c = Floor(√300 - 121 - 100)

max_c = Floor(√79)

max_c = Floor(8.8881944173156)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 112 - 102)/2 = 39.5

When min_c = 7, then it is c2 = 49 ≥ 39.5, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 112 - 102 - 72

max_d = √300 - 121 - 100 - 49

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 112 - 102 - 82

max_d = √300 - 121 - 100 - 64

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

b = 11

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 112 - 112)

max_c = Floor(√300 - 121 - 121)

max_c = Floor(√58)

max_c = Floor(7.6157731058639)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 112 - 112)/2 = 29

When min_c = 6, then it is c2 = 36 ≥ 29, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 112 - 112 - 62

max_d = √300 - 121 - 121 - 36

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 112 - 112 - 72

max_d = √300 - 121 - 121 - 49

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (11, 11, 7, 3) is an integer solution proven below

112 + 112 + 72 + 32 → 121 + 121 + 49 + 9 = 300

b = 12

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 112 - 122)

max_c = Floor(√300 - 121 - 144)

max_c = Floor(√35)

max_c = Floor(5.9160797830996)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 112 - 122)/2 = 17.5

When min_c = 5, then it is c2 = 25 ≥ 17.5, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 112 - 122 - 52

max_d = √300 - 121 - 144 - 25

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

b = 13

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 112 - 132)

max_c = Floor(√300 - 121 - 169)

max_c = Floor(√10)

max_c = Floor(3.1622776601684)

max_c = 3

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 112 - 132)/2 = 5

When min_c = 3, then it is c2 = 9 ≥ 5, so min_c = 3

c = 3

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 112 - 132 - 32

max_d = √300 - 121 - 169 - 9

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (11, 13, 3, 1) is an integer solution proven below

112 + 132 + 32 + 12 → 121 + 169 + 9 + 1 = 300

a = 12

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 122)

max_b = Floor(√300 - 144)

max_b = Floor(√156)

max_b = Floor(12.489995996797)

max_b = 12

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (300 - 122)/3 = 52

When min_b = 8, then it is b2 = 64 ≥ 52, so min_b = 8

Test values for b in the range of (min_b, max_b)

(8, 12)

b = 8

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 122 - 82)

max_c = Floor(√300 - 144 - 64)

max_c = Floor(√92)

max_c = Floor(9.5916630466254)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 122 - 82)/2 = 46

When min_c = 7, then it is c2 = 49 ≥ 46, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 122 - 82 - 72

max_d = √300 - 144 - 64 - 49

max_d = √43

max_d = 6.557438524302

Since max_d = 6.557438524302 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 122 - 82 - 82

max_d = √300 - 144 - 64 - 64

max_d = √28

max_d = 5.2915026221292

Since max_d = 5.2915026221292 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 122 - 82 - 92

max_d = √300 - 144 - 64 - 81

max_d = √11

max_d = 3.3166247903554

Since max_d = 3.3166247903554 is not an integer, this is not a solution

b = 9

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 122 - 92)

max_c = Floor(√300 - 144 - 81)

max_c = Floor(√75)

max_c = Floor(8.6602540378444)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 122 - 92)/2 = 37.5

When min_c = 7, then it is c2 = 49 ≥ 37.5, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 122 - 92 - 72

max_d = √300 - 144 - 81 - 49

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 122 - 92 - 82

max_d = √300 - 144 - 81 - 64

max_d = √11

max_d = 3.3166247903554

Since max_d = 3.3166247903554 is not an integer, this is not a solution

b = 10

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 122 - 102)

max_c = Floor(√300 - 144 - 100)

max_c = Floor(√56)

max_c = Floor(7.4833147735479)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 122 - 102)/2 = 28

When min_c = 6, then it is c2 = 36 ≥ 28, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 122 - 102 - 62

max_d = √300 - 144 - 100 - 36

max_d = √20

max_d = 4.4721359549996

Since max_d = 4.4721359549996 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 122 - 102 - 72

max_d = √300 - 144 - 100 - 49

max_d = √7

max_d = 2.6457513110646

Since max_d = 2.6457513110646 is not an integer, this is not a solution

b = 11

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 122 - 112)

max_c = Floor(√300 - 144 - 121)

max_c = Floor(√35)

max_c = Floor(5.9160797830996)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 122 - 112)/2 = 17.5

When min_c = 5, then it is c2 = 25 ≥ 17.5, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 122 - 112 - 52

max_d = √300 - 144 - 121 - 25

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

b = 12

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 122 - 122)

max_c = Floor(√300 - 144 - 144)

max_c = Floor(√12)

max_c = Floor(3.4641016151378)

max_c = 3

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 122 - 122)/2 = 6

When min_c = 3, then it is c2 = 9 ≥ 6, so min_c = 3

c = 3

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 122 - 122 - 32

max_d = √300 - 144 - 144 - 9

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

a = 13

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 132)

max_b = Floor(√300 - 169)

max_b = Floor(√131)

max_b = Floor(11.44552314226)

max_b = 11

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (300 - 132)/3 = 43.666666666667

When min_b = 7, then it is b2 = 49 ≥ 43.666666666667, so min_b = 7

Test values for b in the range of (min_b, max_b)

(7, 11)

b = 7

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 132 - 72)

max_c = Floor(√300 - 169 - 49)

max_c = Floor(√82)

max_c = Floor(9.0553851381374)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 132 - 72)/2 = 41

When min_c = 7, then it is c2 = 49 ≥ 41, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 132 - 72 - 72

max_d = √300 - 169 - 49 - 49

max_d = √33

max_d = 5.744562646538

Since max_d = 5.744562646538 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 132 - 72 - 82

max_d = √300 - 169 - 49 - 64

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 132 - 72 - 92

max_d = √300 - 169 - 49 - 81

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (13, 7, 9, 1) is an integer solution proven below

132 + 72 + 92 + 12 → 169 + 49 + 81 + 1 = 300

b = 8

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 132 - 82)

max_c = Floor(√300 - 169 - 64)

max_c = Floor(√67)

max_c = Floor(8.1853527718725)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 132 - 82)/2 = 33.5

When min_c = 6, then it is c2 = 36 ≥ 33.5, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 132 - 82 - 62

max_d = √300 - 169 - 64 - 36

max_d = √31

max_d = 5.56776436283

Since max_d = 5.56776436283 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 132 - 82 - 72

max_d = √300 - 169 - 64 - 49

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 132 - 82 - 82

max_d = √300 - 169 - 64 - 64

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

b = 9

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 132 - 92)

max_c = Floor(√300 - 169 - 81)

max_c = Floor(√50)

max_c = Floor(7.0710678118655)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 132 - 92)/2 = 25

When min_c = 5, then it is c2 = 25 ≥ 25, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 132 - 92 - 52

max_d = √300 - 169 - 81 - 25

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (13, 9, 5, 5) is an integer solution proven below

132 + 92 + 52 + 52 → 169 + 81 + 25 + 25 = 300

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 132 - 92 - 62

max_d = √300 - 169 - 81 - 36

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 132 - 92 - 72

max_d = √300 - 169 - 81 - 49

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (13, 9, 7, 1) is an integer solution proven below

132 + 92 + 72 + 12 → 169 + 81 + 49 + 1 = 300

b = 10

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 132 - 102)

max_c = Floor(√300 - 169 - 100)

max_c = Floor(√31)

max_c = Floor(5.56776436283)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 132 - 102)/2 = 15.5

When min_c = 4, then it is c2 = 16 ≥ 15.5, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 132 - 102 - 42

max_d = √300 - 169 - 100 - 16

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 132 - 102 - 52

max_d = √300 - 169 - 100 - 25

max_d = √6

max_d = 2.4494897427832

Since max_d = 2.4494897427832 is not an integer, this is not a solution

b = 11

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 132 - 112)

max_c = Floor(√300 - 169 - 121)

max_c = Floor(√10)

max_c = Floor(3.1622776601684)

max_c = 3

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 132 - 112)/2 = 5

When min_c = 3, then it is c2 = 9 ≥ 5, so min_c = 3

c = 3

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 132 - 112 - 32

max_d = √300 - 169 - 121 - 9

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (13, 11, 3, 1) is an integer solution proven below

132 + 112 + 32 + 12 → 169 + 121 + 9 + 1 = 300

a = 14

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 142)

max_b = Floor(√300 - 196)

max_b = Floor(√104)

max_b = Floor(10.198039027186)

max_b = 10

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (300 - 142)/3 = 34.666666666667

When min_b = 6, then it is b2 = 36 ≥ 34.666666666667, so min_b = 6

Test values for b in the range of (min_b, max_b)

(6, 10)

b = 6

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 142 - 62)

max_c = Floor(√300 - 196 - 36)

max_c = Floor(√68)

max_c = Floor(8.2462112512353)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 142 - 62)/2 = 34

When min_c = 6, then it is c2 = 36 ≥ 34, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 142 - 62 - 62

max_d = √300 - 196 - 36 - 36

max_d = √32

max_d = 5.6568542494924

Since max_d = 5.6568542494924 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 142 - 62 - 72

max_d = √300 - 196 - 36 - 49

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 142 - 62 - 82

max_d = √300 - 196 - 36 - 64

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (14, 6, 8, 2) is an integer solution proven below

142 + 62 + 82 + 22 → 196 + 36 + 64 + 4 = 300

b = 7

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 142 - 72)

max_c = Floor(√300 - 196 - 49)

max_c = Floor(√55)

max_c = Floor(7.4161984870957)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 142 - 72)/2 = 27.5

When min_c = 6, then it is c2 = 36 ≥ 27.5, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 142 - 72 - 62

max_d = √300 - 196 - 49 - 36

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 142 - 72 - 72

max_d = √300 - 196 - 49 - 49

max_d = √6

max_d = 2.4494897427832

Since max_d = 2.4494897427832 is not an integer, this is not a solution

b = 8

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 142 - 82)

max_c = Floor(√300 - 196 - 64)

max_c = Floor(√40)

max_c = Floor(6.3245553203368)

max_c = 6

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 142 - 82)/2 = 20

When min_c = 5, then it is c2 = 25 ≥ 20, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 142 - 82 - 52

max_d = √300 - 196 - 64 - 25

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 142 - 82 - 62

max_d = √300 - 196 - 64 - 36

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (14, 8, 6, 2) is an integer solution proven below

142 + 82 + 62 + 22 → 196 + 64 + 36 + 4 = 300

b = 9

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 142 - 92)

max_c = Floor(√300 - 196 - 81)

max_c = Floor(√23)

max_c = Floor(4.7958315233127)

max_c = 4

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 142 - 92)/2 = 11.5

When min_c = 4, then it is c2 = 16 ≥ 11.5, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 142 - 92 - 42

max_d = √300 - 196 - 81 - 16

max_d = √7

max_d = 2.6457513110646

Since max_d = 2.6457513110646 is not an integer, this is not a solution

b = 10

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 142 - 102)

max_c = Floor(√300 - 196 - 100)

max_c = Floor(√4)

max_c = Floor(2)

max_c = 2

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 142 - 102)/2 = 2

When min_c = 2, then it is c2 = 4 ≥ 2, so min_c = 2

c = 2

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 142 - 102 - 22

max_d = √300 - 196 - 100 - 4

max_d = √0

max_d = 0

Since max_d = 0, then (a, b, c, d) = (14, 10, 2, 0) is an integer solution proven below

142 + 102 + 22 + 02 → 196 + 100 + 4 + 0 = 300

a = 15

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 152)

max_b = Floor(√300 - 225)

max_b = Floor(√75)

max_b = Floor(8.6602540378444)

max_b = 8

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (300 - 152)/3 = 25

When min_b = 5, then it is b2 = 25 ≥ 25, so min_b = 5

Test values for b in the range of (min_b, max_b)

(5, 8)

b = 5

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 152 - 52)

max_c = Floor(√300 - 225 - 25)

max_c = Floor(√50)

max_c = Floor(7.0710678118655)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 152 - 52)/2 = 25

When min_c = 5, then it is c2 = 25 ≥ 25, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 152 - 52 - 52

max_d = √300 - 225 - 25 - 25

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (15, 5, 5, 5) is an integer solution proven below

152 + 52 + 52 + 52 → 225 + 25 + 25 + 25 = 300

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 152 - 52 - 62

max_d = √300 - 225 - 25 - 36

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 152 - 52 - 72

max_d = √300 - 225 - 25 - 49

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (15, 5, 7, 1) is an integer solution proven below

152 + 52 + 72 + 12 → 225 + 25 + 49 + 1 = 300

b = 6

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 152 - 62)

max_c = Floor(√300 - 225 - 36)

max_c = Floor(√39)

max_c = Floor(6.2449979983984)

max_c = 6

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 152 - 62)/2 = 19.5

When min_c = 5, then it is c2 = 25 ≥ 19.5, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 152 - 62 - 52

max_d = √300 - 225 - 36 - 25

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 152 - 62 - 62

max_d = √300 - 225 - 36 - 36

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

b = 7

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 152 - 72)

max_c = Floor(√300 - 225 - 49)

max_c = Floor(√26)

max_c = Floor(5.0990195135928)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 152 - 72)/2 = 13

When min_c = 4, then it is c2 = 16 ≥ 13, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 152 - 72 - 42

max_d = √300 - 225 - 49 - 16

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 152 - 72 - 52

max_d = √300 - 225 - 49 - 25

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (15, 7, 5, 1) is an integer solution proven below

152 + 72 + 52 + 12 → 225 + 49 + 25 + 1 = 300

b = 8

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 152 - 82)

max_c = Floor(√300 - 225 - 64)

max_c = Floor(√11)

max_c = Floor(3.3166247903554)

max_c = 3

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 152 - 82)/2 = 5.5

When min_c = 3, then it is c2 = 9 ≥ 5.5, so min_c = 3

c = 3

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 152 - 82 - 32

max_d = √300 - 225 - 64 - 9

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

a = 16

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 162)

max_b = Floor(√300 - 256)

max_b = Floor(√44)

max_b = Floor(6.6332495807108)

max_b = 6

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (300 - 162)/3 = 14.666666666667

When min_b = 4, then it is b2 = 16 ≥ 14.666666666667, so min_b = 4

Test values for b in the range of (min_b, max_b)

(4, 6)

b = 4

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 162 - 42)

max_c = Floor(√300 - 256 - 16)

max_c = Floor(√28)

max_c = Floor(5.2915026221292)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 162 - 42)/2 = 14

When min_c = 4, then it is c2 = 16 ≥ 14, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 162 - 42 - 42

max_d = √300 - 256 - 16 - 16

max_d = √12

max_d = 3.4641016151378

Since max_d = 3.4641016151378 is not an integer, this is not a solution

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 162 - 42 - 52

max_d = √300 - 256 - 16 - 25

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

b = 5

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 162 - 52)

max_c = Floor(√300 - 256 - 25)

max_c = Floor(√19)

max_c = Floor(4.3588989435407)

max_c = 4

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 162 - 52)/2 = 9.5

When min_c = 4, then it is c2 = 16 ≥ 9.5, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 162 - 52 - 42

max_d = √300 - 256 - 25 - 16

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

b = 6

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 162 - 62)

max_c = Floor(√300 - 256 - 36)

max_c = Floor(√8)

max_c = Floor(2.8284271247462)

max_c = 2

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 162 - 62)/2 = 4

When min_c = 2, then it is c2 = 4 ≥ 4, so min_c = 2

c = 2

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 162 - 62 - 22

max_d = √300 - 256 - 36 - 4

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (16, 6, 2, 2) is an integer solution proven below

162 + 62 + 22 + 22 → 256 + 36 + 4 + 4 = 300

a = 17

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 172)

max_b = Floor(√300 - 289)

max_b = Floor(√11)

max_b = Floor(3.3166247903554)

max_b = 3

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (300 - 172)/3 = 3.6666666666667

When min_b = 2, then it is b2 = 4 ≥ 3.6666666666667, so min_b = 2

Test values for b in the range of (min_b, max_b)

(2, 3)

b = 2

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 172 - 22)

max_c = Floor(√300 - 289 - 4)

max_c = Floor(√7)

max_c = Floor(2.6457513110646)

max_c = 2

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 172 - 22)/2 = 3.5

When min_c = 2, then it is c2 = 4 ≥ 3.5, so min_c = 2

c = 2

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 172 - 22 - 22

max_d = √300 - 289 - 4 - 4

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

b = 3

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 172 - 32)

max_c = Floor(√300 - 289 - 9)

max_c = Floor(√2)

max_c = Floor(1.4142135623731)

max_c = 1

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 172 - 32)/2 = 1

When min_c = 0, then it is c2 = 1 ≥ 1, so min_c = 0

c = 0

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 172 - 32 - 02

max_d = √300 - 289 - 9 - 0

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

c = 1

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 172 - 32 - 12

max_d = √300 - 289 - 9 - 1

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (17, 3, 1, 1) is an integer solution proven below

172 + 32 + 12 + 12 → 289 + 9 + 1 + 1 = 300

List out 13 solutions:


(a, b, c, d) = (10, 10, 10, 0)
(a, b, c, d) = (14, 10, 2, 0)
(a, b, c, d) = (13, 11, 3, 1)
(a, b, c, d) = (13, 9, 7, 1)
(a, b, c, d) = (15, 7, 5, 1)
(a, b, c, d) = (17, 3, 1, 1)
(a, b, c, d) = (14, 8, 6, 2)
(a, b, c, d) = (16, 6, 2, 2)
(a, b, c, d) = (11, 11, 7, 3)
(a, b, c, d) = (13, 9, 5, 5)
(a, b, c, d) = (15, 5, 5, 5)
(a, b, c, d) = (10, 10, 8, 6)
(a, b, c, d) = (11, 9, 7, 7)


Download the mobile appGenerate a practice problemGenerate a quiz

What is the Answer?
(a, b, c, d) = (10, 10, 10, 0)
(a, b, c, d) = (14, 10, 2, 0)
(a, b, c, d) = (13, 11, 3, 1)
(a, b, c, d) = (13, 9, 7, 1)
(a, b, c, d) = (15, 7, 5, 1)
(a, b, c, d) = (17, 3, 1, 1)
(a, b, c, d) = (14, 8, 6, 2)
(a, b, c, d) = (16, 6, 2, 2)
(a, b, c, d) = (11, 11, 7, 3)
(a, b, c, d) = (13, 9, 5, 5)
(a, b, c, d) = (15, 5, 5, 5)
(a, b, c, d) = (10, 10, 8, 6)
(a, b, c, d) = (11, 9, 7, 7)
How does the Lagrange Four Square Theorem (Bachet Conjecture) Calculator work?
Free Lagrange Four Square Theorem (Bachet Conjecture) Calculator - Builds the Lagrange Theorem Notation (Bachet Conjecture) for any natural number using the Sum of four squares.
This calculator has 1 input.
What 1 formula is used for the Lagrange Four Square Theorem (Bachet Conjecture) Calculator?
p = a2 + b2 + c2 + d2
What 7 concepts are covered in the Lagrange Four Square Theorem (Bachet Conjecture) Calculator?
algorithm
A process to solve a problem in a set amount of time
floor
the greatest integer that is less than or equal to x
integer
a whole number; a number that is not a fraction
...,-5,-4,-3,-2,-1,0,1,2,3,4,5,...
lagrange theorem
in group theory, for any finite group say G, the order of subgroup H of group G divides the order of G
p = a2 + b2 + c2 + d2
maximum
the greatest or highest amount possible or attained
minimum
the least or lowest amount possible or attained
natural number
the positive integers (whole numbers)
1, 2, 3, ...
Example calculations for the Lagrange Four Square Theorem (Bachet Conjecture) Calculator
Lagrange Four Square Theorem (Bachet Conjecture) Calculator Video

Tags:



Add This Calculator To Your Website