We need two consecutive integers (n) and (n + 1) who have
a product = 20
Setup relational equation:
We need to find two integers, n and n + 1 who have a product of 20
n * (n + 1) = 20
Multiplying through, we get n2 + n = 20
Rearranging the equation we get n2 + n - 20 = 0
Now that it is in Quadratic Format, determine a, b, and c:
a = 1, b = 1, and c = -20
Solution 1 = ½(-b + √b2 - 4ac)
Solution 1 = ½(-1 + √12 - 4 * 1 * -20)
Solution 1 = ½(-1 + √1 - -80)
Solution 1 = ½(-1 + √81)
Solution 1 = ½(-1 + 9)
Solution 1 = ½(8)
Solution 1 = 4
Determine Answers:
Solution 2 = Solution 1 + 1
Solution 2 = 4 + 1
Solution 2 = 5
Also, since the product of 2 negative #'s is positive, another solution is:
Solution 3 = (-1 * 4) * (-1 * 5)
Solution 3 = -1 * 4
Solution 3 = -4
Solution 4 = -1 * 5
Solution 4 = -5
Final Answers:
4, 5, -4, -5
How does the Consecutive Integer Word Problems Calculator work?
Free Consecutive Integer Word Problems Calculator - Calculates the word problem for what two consecutive integers, if summed up or multiplied together, equal a number entered.
This calculator has 1 input.
What 2 formulas are used for the Consecutive Integer Word Problems Calculator?
n + (n + 1) = Sum of Consecutive Integers
n(n + 1) = Product of Consecutive Integers
What 6 concepts are covered in the Consecutive Integer Word Problems Calculator?
- consecutive integer word problems
- consecutive integers
- integers that follow each other
n, n + 1 - integer
- a whole number; a number that is not a fraction
...,-5,-4,-3,-2,-1,0,1,2,3,4,5,... - product
- The answer when two or more values are multiplied together
- sum
- the total amount resulting from the addition of two or more numbers, amounts, or items
- word problem
- Math problems involving a lengthy description and not just math symbols