Solve 1113 mod 53 using:

Modular exponentiation

Build an algorithm:

n is our exponent = 13

y = 1 and u ≡ 11 mod 53 = 11

See here

n = 13 is odd

Since 13 is odd, calculate (y)(u) mod p

(y)(u) mod p = (1)(11) mod 53

(y)(u) mod p = 11 mod 53

11 mod 53 = 11
Reset y to this value

Determine u2 mod p

u2 mod p = 112 mod 53

u2 mod p = 121 mod 53

121 mod 53 = 15
Reset u to this value

Cut n in half and take the integer

13 ÷ 2 = 6

n = 6 is even

Since 6 is even, we keep y = 11

Determine u2 mod p

u2 mod p = 152 mod 53

u2 mod p = 225 mod 53

225 mod 53 = 13
Reset u to this value

Cut n in half and take the integer

6 ÷ 2 = 3

n = 3 is odd

Since 3 is odd, calculate (y)(u) mod p

(y)(u) mod p = (11)(13) mod 53

(y)(u) mod p = 143 mod 53

143 mod 53 = 37
Reset y to this value

Determine u2 mod p

u2 mod p = 132 mod 53

u2 mod p = 169 mod 53

169 mod 53 = 10
Reset u to this value

Cut n in half and take the integer

3 ÷ 2 = 1

n = 1 is odd

Since 1 is odd, calculate (y)(u) mod p

(y)(u) mod p = (37)(10) mod 53

(y)(u) mod p = 370 mod 53

370 mod 53 = 52
Reset y to this value

Determine u2 mod p

u2 mod p = 102 mod 53

u2 mod p = 100 mod 53

100 mod 53 = 47
Reset u to this value

Cut n in half and take the integer

1 ÷ 2 = 0

Because n = 0, we stop

We have our answer

1113 mod 53 ≡ 52

Solve 1113 mod 53 using:

the Successive Squaring Method

Step 1: Convert our power of 0 to binary notation:

Using our binary calculator, we see that 0 in binary form is

The length of this binary term is 0, so this is how many steps we will take for our algorithm below

Step 2: Construct Successive Squaring Algorithm:

iaa2a2 mod p

Step 3: Review red entries

Look at the binary term with values of 1 in red

This signifies which terms we use for expansion:

= 1 mod 53 = 1

Final Answer


1113 mod 53 ≡ 52
= 1 mod 53 = 1


Download the mobile appGenerate a practice problemGenerate a quiz

What is the Answer?
1113 mod 53 ≡ 52
= 1 mod 53 = 1
How does the Modular Exponentiation and Successive Squaring Calculator work?
Free Modular Exponentiation and Successive Squaring Calculator - Solves xn mod p using the following methods:
* Modular Exponentiation
* Successive Squaring
This calculator has 1 input.
What 1 formula is used for the Modular Exponentiation and Successive Squaring Calculator?
Successive Squaring I = number of digits in binary form of n. Run this many loops of a2 mod p
What 6 concepts are covered in the Modular Exponentiation and Successive Squaring Calculator?
exponent
The power to raise a number
integer
a whole number; a number that is not a fraction
...,-5,-4,-3,-2,-1,0,1,2,3,4,5,...
modular exponentiation
the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus)
modulus
the remainder of a division, after one number is divided by another.
a mod b
remainder
The portion of a division operation leftover after dividing two integers
successive squaring
an algorithm to compute in a finite field
Example calculations for the Modular Exponentiation and Successive Squaring Calculator
Modular Exponentiation and Successive Squaring Calculator Video

Tags:



Add This Calculator To Your Website