Take two arbitrary integers, x and y
We can express the odd integer x as 2a + 1 for some integer a
We can express the odd integer y as 2b + 1 for some integer b
x + y = 2a + 1 + 2b + 1
x + y = 2a + 2b + 2
Factor out a 2:
x + y = 2(a + b + 1)
Since 2 times any integer even or odd is always even, then x + y by definition is even.
We can express the odd integer x as 2a + 1 for some integer a
We can express the odd integer y as 2b + 1 for some integer b
x + y = 2a + 1 + 2b + 1
x + y = 2a + 2b + 2
Factor out a 2:
x + y = 2(a + b + 1)
Since 2 times any integer even or odd is always even, then x + y by definition is even.
Last edited: