Prove the following statement for non-zero integers a, b, c,
If a divides b and b divides c, then a divides c.
If an integer a divides an integer b, then we have:
b = ax for some non-zero integer x
If an integer b divides an integer c, then we have:
c = by for some non-zero integer y
Since b = ax, we substitute this into c = by for b:
c = axy
We can write this as:
c = a(xy)
If a divides b and b divides c, then a divides c.
If an integer a divides an integer b, then we have:
b = ax for some non-zero integer x
If an integer b divides an integer c, then we have:
c = by for some non-zero integer y
Since b = ax, we substitute this into c = by for b:
c = axy
We can write this as:
c = a(xy)
- Since x and y are integers, then xy is also an integer.
- Therefore, c is the product of some integer multiplied by a
- This means a divides c
Last edited: