Pleasantburg has a population growth model of P(t)=at^2+bt+P0 where P0 is the initial population. Suppose that the future population of Pleasantburg t years after January 1, 2012, is described by the quadratic model P(t)=0.7t^2+6t+15,000. In what month and year will the population reach 19,200?
Set P(t) = 19,200
0.7t^2+6t+15,000 = 19,200
Subtract 19,200 from each side:
0.7t^2+6t+4200 = 0
The Quadratic has irrational roots. So I set up a table below to run through the values. At t = 74, we pass 19,200. Which means we add 74 years to 2012: 2012 + 74 = 2086
t 0.7t^2 6t Add 15000 Total
1 0.7 6 15000 15006.7
2 2.8 12 15000 15014.8
3 6.3 18 15000 15024.3
4 11.2 24 15000 15035.2
5 17.5 30 15000 15047.5
6 25.2 36 15000 15061.2
7 34.3 42 15000 15076.3
8 44.8 48 15000 15092.8
9 56.7 54 15000 15110.7
10 70 60 15000 15130
11 84.7 66 15000 15150.7
12 100.8 72 15000 15172.8
13 118.3 78 15000 15196.3
14 137.2 84 15000 15221.2
15 157.5 90 15000 15247.5
16 179.2 96 15000 15275.2
17 202.3 102 15000 15304.3
18 226.8 108 15000 15334.8
19 252.7 114 15000 15366.7
20 280 120 15000 15400
21 308.7 126 15000 15434.7
22 338.8 132 15000 15470.8
23 370.3 138 15000 15508.3
24 403.2 144 15000 15547.2
25 437.5 150 15000 15587.5
26 473.2 156 15000 15629.2
27 510.3 162 15000 15672.3
28 548.8 168 15000 15716.8
29 588.7 174 15000 15762.7
30 630 180 15000 15810
31 672.7 186 15000 15858.7
32 716.8 192 15000 15908.8
33 762.3 198 15000 15960.3
34 809.2 204 15000 16013.2
35 857.5 210 15000 16067.5
36 907.2 216 15000 16123.2
37 958.3 222 15000 16180.3
38 1010.8 228 15000 16238.8
39 1064.7 234 15000 16298.7
40 1120 240 15000 16360
41 1176.7 246 15000 16422.7
42 1234.8 252 15000 16486.8
43 1294.3 258 15000 16552.3
44 1355.2 264 15000 16619.2
45 1417.5 270 15000 16687.5
46 1481.2 276 15000 16757.2
47 1546.3 282 15000 16828.3
48 1612.8 288 15000 16900.8
49 1680.7 294 15000 16974.7
50 1750 300 15000 17050
51 1820.7 306 15000 17126.7
52 1892.8 312 15000 17204.8
53 1966.3 318 15000 17284.3
54 2041.2 324 15000 17365.2
55 2117.5 330 15000 17447.5
56 2195.2 336 15000 17531.2
57 2274.3 342 15000 17616.3
58 2354.8 348 15000 17702.8
59 2436.7 354 15000 17790.7
60 2520 360 15000 17880
61 2604.7 366 15000 17970.7
62 2690.8 372 15000 18062.8
63 2778.3 378 15000 18156.3
64 2867.2 384 15000 18251.2
65 2957.5 390 15000 18347.5
66 3049.2 396 15000 18445.2
67 3142.3 402 15000 18544.3
68 3236.8 408 15000 18644.8
69 3332.7 414 15000 18746.7
70 3430 420 15000 18850
71 3528.7 426 15000 18954.7
72 3628.8 432 15000 19060.8
73 3730.3 438 15000 19168.3
74 3833.2 444 15000 19277.2
Set P(t) = 19,200
0.7t^2+6t+15,000 = 19,200
Subtract 19,200 from each side:
0.7t^2+6t+4200 = 0
The Quadratic has irrational roots. So I set up a table below to run through the values. At t = 74, we pass 19,200. Which means we add 74 years to 2012: 2012 + 74 = 2086
t 0.7t^2 6t Add 15000 Total
1 0.7 6 15000 15006.7
2 2.8 12 15000 15014.8
3 6.3 18 15000 15024.3
4 11.2 24 15000 15035.2
5 17.5 30 15000 15047.5
6 25.2 36 15000 15061.2
7 34.3 42 15000 15076.3
8 44.8 48 15000 15092.8
9 56.7 54 15000 15110.7
10 70 60 15000 15130
11 84.7 66 15000 15150.7
12 100.8 72 15000 15172.8
13 118.3 78 15000 15196.3
14 137.2 84 15000 15221.2
15 157.5 90 15000 15247.5
16 179.2 96 15000 15275.2
17 202.3 102 15000 15304.3
18 226.8 108 15000 15334.8
19 252.7 114 15000 15366.7
20 280 120 15000 15400
21 308.7 126 15000 15434.7
22 338.8 132 15000 15470.8
23 370.3 138 15000 15508.3
24 403.2 144 15000 15547.2
25 437.5 150 15000 15587.5
26 473.2 156 15000 15629.2
27 510.3 162 15000 15672.3
28 548.8 168 15000 15716.8
29 588.7 174 15000 15762.7
30 630 180 15000 15810
31 672.7 186 15000 15858.7
32 716.8 192 15000 15908.8
33 762.3 198 15000 15960.3
34 809.2 204 15000 16013.2
35 857.5 210 15000 16067.5
36 907.2 216 15000 16123.2
37 958.3 222 15000 16180.3
38 1010.8 228 15000 16238.8
39 1064.7 234 15000 16298.7
40 1120 240 15000 16360
41 1176.7 246 15000 16422.7
42 1234.8 252 15000 16486.8
43 1294.3 258 15000 16552.3
44 1355.2 264 15000 16619.2
45 1417.5 270 15000 16687.5
46 1481.2 276 15000 16757.2
47 1546.3 282 15000 16828.3
48 1612.8 288 15000 16900.8
49 1680.7 294 15000 16974.7
50 1750 300 15000 17050
51 1820.7 306 15000 17126.7
52 1892.8 312 15000 17204.8
53 1966.3 318 15000 17284.3
54 2041.2 324 15000 17365.2
55 2117.5 330 15000 17447.5
56 2195.2 336 15000 17531.2
57 2274.3 342 15000 17616.3
58 2354.8 348 15000 17702.8
59 2436.7 354 15000 17790.7
60 2520 360 15000 17880
61 2604.7 366 15000 17970.7
62 2690.8 372 15000 18062.8
63 2778.3 378 15000 18156.3
64 2867.2 384 15000 18251.2
65 2957.5 390 15000 18347.5
66 3049.2 396 15000 18445.2
67 3142.3 402 15000 18544.3
68 3236.8 408 15000 18644.8
69 3332.7 414 15000 18746.7
70 3430 420 15000 18850
71 3528.7 426 15000 18954.7
72 3628.8 432 15000 19060.8
73 3730.3 438 15000 19168.3
74 3833.2 444 15000 19277.2