If p = log2(x), what is the value of log2(2x^3) in terms of p?
A. 6p
B. 2p^3
C. 1 + 3p
D. 3 + 3p
E. 1 + p^3
log2(2x^3) = log2(2) + log2(x^3)
log2(2) = 1, so we have:
log2(2x^3) = 1 + 3log2(x)
Since we're given log2(x) = p, we have:
log2(2x^3) = 1 + 3p - Answer C
A. 6p
B. 2p^3
C. 1 + 3p
D. 3 + 3p
E. 1 + p^3
log2(2x^3) = log2(2) + log2(x^3)
log2(2) = 1, so we have:
log2(2x^3) = 1 + 3log2(x)
Since we're given log2(x) = p, we have:
log2(2x^3) = 1 + 3p - Answer C
Last edited: