If 2^x + 2^x + 2^x + 2^x = 2^16, what is the value of x?
Add up the left side, we get:
4(2^x) = 2^16
But 4 = 2^2, so we have:
2^2(2^x) = 2^16
Using our exponent rule, we have:
2^(x + 2) = 2^16
x + 2 = 16
Subtract 2 from each side, we get:
x = 14
Add up the left side, we get:
4(2^x) = 2^16
But 4 = 2^2, so we have:
2^2(2^x) = 2^16
Using our exponent rule, we have:
2^(x + 2) = 2^16
x + 2 = 16
Subtract 2 from each side, we get:
x = 14
Last edited: