A tow truck charges a service fee of $50 and an additional fee of $1.75 per mile. What distance was Marcos car towed if he received a bill for $71
Set up a cost equation C(m) where m is the number of miles:
C(m) = Cost per mile * m + Service Fee
Plugging in the service fee of 50 and cost per mile of 1.75, we get:
C(m) = 1.75m + 50
The question asks for what m is C(m) = 71. So we set C(m) = 71 and solve for m:
1.75m + 50 = 71
Solve for m in the equation 1.75m + 50 = 71
Step 1: Group constants:
We need to group our constants 50 and 71. To do that, we subtract 50 from both sides
1.75m + 50 - 50 = 71 - 50
Step 2: Cancel 50 on the left side:
1.75m = 21
Step 3: Divide each side of the equation by 1.75
1.75m/1.75 = 21/1.75
m = 12
Set up a cost equation C(m) where m is the number of miles:
C(m) = Cost per mile * m + Service Fee
Plugging in the service fee of 50 and cost per mile of 1.75, we get:
C(m) = 1.75m + 50
The question asks for what m is C(m) = 71. So we set C(m) = 71 and solve for m:
1.75m + 50 = 71
Solve for m in the equation 1.75m + 50 = 71
Step 1: Group constants:
We need to group our constants 50 and 71. To do that, we subtract 50 from both sides
1.75m + 50 - 50 = 71 - 50
Step 2: Cancel 50 on the left side:
1.75m = 21
Step 3: Divide each side of the equation by 1.75
1.75m/1.75 = 21/1.75
m = 12