A certain group of woman has a 0.69% rate of red/green color blindness. If a woman is randomly selected, what is the probability that she does not have red/green color blindness?
0.69% = 0.0069.
There exists a statistics theorem for an event A that states:
P(A) + P(A') = 1 where A' is the event not happening
In this case, A is the woman having red/green color blindness. So A' is the woman not having red/green color blindness
So we have:
0.0069 + P(A') = 1
Subtract 0.0069 from each side, we get:
P(A') = 1 - 0.0069
P(A') = 0.9931
0.69% = 0.0069.
There exists a statistics theorem for an event A that states:
P(A) + P(A') = 1 where A' is the event not happening
In this case, A is the woman having red/green color blindness. So A' is the woman not having red/green color blindness
So we have:
0.0069 + P(A') = 1
Subtract 0.0069 from each side, we get:
P(A') = 1 - 0.0069
P(A') = 0.9931